BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu Z, Lammers T, Ehling J, Fokong S, Bornemann J, Kiessling F, Gätjens J. Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials 2011;32:6155-63. [PMID: 21632103 DOI: 10.1016/j.biomaterials.2011.05.019] [Cited by in Crossref: 121] [Cited by in F6Publishing: 111] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Chapla R, Huynh KT, Schutt CE. Microbubble–Nanoparticle Complexes for Ultrasound-Enhanced Cargo Delivery. Pharmaceutics 2022;14:2396. [DOI: 10.3390/pharmaceutics14112396] [Reference Citation Analysis]
2 Riaz R, Waqar H, Ahmad NM, Abbas SR. Novel Magnetic Elastic Phase-Change Nanodroplets as Dual Mode Contrast Agent for Ultrasound and Magnetic Resonance Imaging. Polymers 2022;14:2915. [DOI: 10.3390/polym14142915] [Reference Citation Analysis]
3 Waqar H, Riaz R, Ahmed NM, Majeed AI, Abbas SR. Monodisperse magnetic lecithin-PFP submicron bubbles as dual imaging contrast agents for ultrasound (US) and MRI. RSC Adv 2022;12:10504-13. [PMID: 35425014 DOI: 10.1039/d2ra01542k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Low LE, Lim HP, Ong YS, Siva SP, Sia CS, Goh B, Chan ES, Tey BT. Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.03.024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
5 Liu H, Bai L, Chen Z, Li X, Wang Y, Lv W. Engineering of ultrasound contracts agents-focused cabazitaxel-loaded microbubbles nanomaterials induces cell proliferation and enhancing apoptosis in cancer cells. Appl Nanosci. [DOI: 10.1007/s13204-022-02376-y] [Reference Citation Analysis]
6 Liu Y, Lai X, Zhu Y, Guo F, Su L, Arkin G, He T, Xu J, Ran H. Contrast-enhanced ultrasound imaging using long-circulating cationic magnetic microbubbles in vitro and in vivo validations. Int J Pharm 2021;:121299. [PMID: 34929311 DOI: 10.1016/j.ijpharm.2021.121299] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Wang Z, He X, Chen S, He C, Wang T, Mao X. Recent Advances in Metal-Based Magnetic Composites as High-Efficiency Candidates for Ultrasound-Assisted Effects in Cancer Therapy. Int J Mol Sci 2021;22:10461. [PMID: 34638801 DOI: 10.3390/ijms221910461] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Augustine R, Mamun AA, Hasan A, Salam SA, Chandrasekaran R, Ahmed R, Thakor AS. Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis. Adv Colloid Interface Sci 2021;294:102457. [PMID: 34144344 DOI: 10.1016/j.cis.2021.102457] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
9 Gu N, Zhang Z, Li Y. Adaptive iron-based magnetic nanomaterials of high performance for biomedical applications. Nano Res 2022;15:1-17. [DOI: 10.1007/s12274-021-3546-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
10 Zhang B, Wu H, Goel L, Kim H, Peng C, Kim J, Dayton PA, Gao Y, Jiang X. Magneto-sonothrombolysis with combination of magnetic microbubbles and nanodroplets. Ultrasonics 2021;116:106487. [PMID: 34119875 DOI: 10.1016/j.ultras.2021.106487] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
11 Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. Adv Sci (Weinh) 2021;8:2004951. [PMID: 34194936 DOI: 10.1002/advs.202004951] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 23.0] [Reference Citation Analysis]
12 Pathak V, Nolte T, Rama E, Rix A, Dadfar SM, Paefgen V, Banala S, Buhl EM, Weiler M, Schulz V, Lammers T, Kiessling F. Molecular magnetic resonance imaging of Alpha-v-Beta-3 integrin expression in tumors with ultrasound microbubbles. Biomaterials 2021;275:120896. [PMID: 34090049 DOI: 10.1016/j.biomaterials.2021.120896] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
13 Zhu Y, Liu Y, Xie Z, He T, Su L, Guo F, Arkin G, Lai X, Xu J, Zhang H. Magnetic black phosphorus microbubbles for targeted tumor theranostics. Nanophotonics 2021;10:3339-58. [DOI: 10.1515/nanoph-2021-0085] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
14 Arkaban H, Khajeh Ebrahimi A, Yarahmadi A, Zarrintaj P, Barani M. Development of a multifunctional system based on CoFe2O4@polyacrylic acid NPs conjugated to folic acid and loaded with doxorubicin for cancer theranostics. Nanotechnology 2021;32. [PMID: 33857938 DOI: 10.1088/1361-6528/abf878] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
15 Ghanbarei S, Sattarahmady N, Zarghampoor F, Azarpira N, Hossein-Aghdaie M. Effects of labeling human mesenchymal stem cells with superparamagnetic zinc-nickel ferrite nanoparticles on cellular characteristics and adipogenesis/osteogenesis differentiation. Biotechnol Lett 2021;43:1659-73. [PMID: 33934256 DOI: 10.1007/s10529-021-03134-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Zhang C, Liu C, He W, Jiao D, Liu Z. Cross-linking-enhanced and ultrasound-mediated drug delivery: From fabrication, mechanisms to translations. Applied Materials Today 2021;22:100897. [DOI: 10.1016/j.apmt.2020.100897] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Zhang C, Li Y, Ma X, He W, Liu C, Liu Z. Functional micro/nanobubbles for ultrasound medicine and visualizable guidance. Sci China Chem 2021;:1-16. [PMID: 33679901 DOI: 10.1007/s11426-020-9945-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
18 Zhang C, He W, Liu C, Jiao D, Liu Z. Cutting‐edge advancements of nanomaterials for medi‐translatable noninvasive theranostic modalities. VIEW 2021;2:20200144. [DOI: 10.1002/viw.20200144] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Xiaoting ZB, Zhifei DP. Micro/Nanobubbles Driven Multimodal Imaging and Theragnostics of Cancer. Advanced Ultrasound in Diagnosis and Therapy 2021;5:163. [DOI: 10.37015/audt.2021.200053] [Reference Citation Analysis]
20 de Sousa Victor R, Marcelo da Cunha Santos A, Viana de Sousa B, de Araújo Neves G, Navarro de Lima Santana L, Rodrigues Menezes R. A Review on Chitosan's Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. Materials (Basel) 2020;13:E4995. [PMID: 33171898 DOI: 10.3390/ma13214995] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 15.5] [Reference Citation Analysis]
21 Wang F, Wang Z, Pang L, Wan S, Qiu L. Preparation and in vitro study of stromal cell-derived factor 1-targeted Fe3O4/poly(lactic-co-glycolic acid)/perfluorohexane nanoparticles. Exp Ther Med 2020;20:2003-12. [PMID: 32782510 DOI: 10.3892/etm.2020.8925] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Liu M, Dasgupta A, Koczera P, Schipper S, Rommel D, Shi Y, Kiessling F, Lammers T. Drug Loading in Poly(butyl cyanoacrylate)-Based Polymeric Microbubbles. Mol Pharm 2020;17:2840-8. [PMID: 32589435 DOI: 10.1021/acs.molpharmaceut.0c00242] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
23 Tang R, Zheleznyak A, Mixdorf M, Ghai A, Prior J, Black KCL, Shokeen M, Reed N, Biswas P, Achilefu S. Osteotropic Radiolabeled Nanophotosensitizer for Imaging and Treating Multiple Myeloma. ACS Nano 2020;14:4255-64. [PMID: 32223222 DOI: 10.1021/acsnano.9b09618] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
24 Hassan M, Ur-rehman A, Nazeer MH, Farooq K, Ghanzanfar K, Anjum MN. Synthesis, Characterization, and In Vitro Study of Dextrin-Coated Bismuth-Doped Manganese Ferrite Nanoparticles (Bio.3Mno.55Fe2O4) as an MRI Contrast Agent. J Supercond Nov Magn 2020;33:859-65. [DOI: 10.1007/s10948-019-05264-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 Shi D, Wallyn J, Nguyen DV, Perton F, Felder-Flesch D, Bégin-Colin S, Maaloum M, Krafft MP. Microbubbles decorated with dendronized magnetic nanoparticles for biomedical imaging: effective stabilization via fluorous interactions. Beilstein J Nanotechnol 2019;10:2103-15. [PMID: 31728258 DOI: 10.3762/bjnano.10.205] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
26 Pillarisetti S, Uthaman S, Huh KM, Koh YS, Lee S, Park IK. Multimodal Composite Iron Oxide Nanoparticles for Biomedical Applications. Tissue Eng Regen Med 2019;16:451-65. [PMID: 31624701 DOI: 10.1007/s13770-019-00218-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
27 Rani R, Sethi K, Singh G. Nanomaterials and Their Applications in Bioimaging. In: Prasad R, editor. Plant Nanobionics. Cham: Springer International Publishing; 2019. pp. 429-50. [DOI: 10.1007/978-3-030-16379-2_15] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Torkashvand N, Sarlak N. Synthesis of completely dispersed water soluble functionalized graphene/γ-Fe2O3 nanocomposite and its application as an MRI contrast agent. Journal of Molecular Liquids 2019;291:111286. [DOI: 10.1016/j.molliq.2019.111286] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
29 Gharieh A, Khoee S, Mahdavian AR. Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Adv Colloid Interface Sci 2019;269:152-86. [PMID: 31082544 DOI: 10.1016/j.cis.2019.04.010] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 13.7] [Reference Citation Analysis]
30 Jenjob R, Phakkeeree T, Seidi F, Theerasilp M, Crespy D. Emulsion Techniques for the Production of Pharmacological Nanoparticles. Macromol Biosci 2019;19:1900063. [DOI: 10.1002/mabi.201900063] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 11.7] [Reference Citation Analysis]
31 Smirnova TI, Smirnov AI. EPR studies of bionanomaterials. Experimental Methods in the Physical Sciences 2019. [DOI: 10.1016/b978-0-12-814024-6.00007-8] [Reference Citation Analysis]
32 Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu F. Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chem Rev 2019;119:1666-762. [DOI: 10.1021/acs.chemrev.8b00401] [Cited by in Crossref: 217] [Cited by in F6Publishing: 229] [Article Influence: 54.3] [Reference Citation Analysis]
33 Beguin E, Bau L, Shrivastava S, Stride E. Comparing Strategies for Magnetic Functionalization of Microbubbles. ACS Appl Mater Interfaces 2019;11:1829-40. [DOI: 10.1021/acsami.8b18418] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
34 Yuan Y, He Y, Bo R, Ma Z, Wang Z, Dong L, Lin TY, Xue X, Li Y. A facile approach to fabricate self-assembled magnetic nanotheranostics for drug delivery and imaging. Nanoscale 2018;10:21634-9. [PMID: 30457141 DOI: 10.1039/c8nr05141k] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
35 Renfrew AK, O'neill ES, Hambley TW, New EJ. Harnessing the properties of cobalt coordination complexes for biological application. Coordination Chemistry Reviews 2018;375:221-33. [DOI: 10.1016/j.ccr.2017.11.027] [Cited by in Crossref: 54] [Cited by in F6Publishing: 39] [Article Influence: 13.5] [Reference Citation Analysis]
36 Li X, Sui Z, Li X, Xu W, Guo Q, Sun J, Jing F. Perfluorooctylbromide nanoparticles for ultrasound imaging and drug delivery. Int J Nanomedicine 2018;13:3053-67. [PMID: 29872293 DOI: 10.2147/IJN.S164905] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
37 Du S, Li J, Du C, Huang Z, Chen G, Yan W. Overendocytosis of superparamagnetic iron oxide particles increases apoptosis and triggers autophagic cell death in human osteosarcoma cell under a spinning magnetic field. Oncotarget 2017;8:9410-24. [PMID: 28031531 DOI: 10.18632/oncotarget.14114] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
38 Loh K, Ren H. Tracking Magnetic Particles Under Ultrasound Imaging Using Contrast-Enhancing Microbubbles. Electromagnetic Actuation and Sensing in Medical Robotics 2018. [DOI: 10.1007/978-981-10-6035-9_8] [Reference Citation Analysis]
39 Hu Y, Mignani S, Majoral J, Shen M, Shi X. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem Soc Rev 2018;47:1874-900. [DOI: 10.1039/c7cs00657h] [Cited by in Crossref: 217] [Cited by in F6Publishing: 229] [Article Influence: 54.3] [Reference Citation Analysis]
40 Tang K, Niu C, Xu Y, Zhu Y, Tang S, Zhang M, Zhou Q. Phase-shifted paclitaxel-loaded multifunctional contrast agent for US/MR imaging and synergistic hyperthermal/chemotherapy of metastasis in lymph nodes. RSC Adv 2018;8:5407-19. [DOI: 10.1039/c7ra13091k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
41 Chertok B, Langer R. Circulating Magnetic Microbubbles for Localized Real-Time Control of Drug Delivery by Ultrasonography-Guided Magnetic Targeting and Ultrasound. Theranostics 2018;8:341-57. [PMID: 29290812 DOI: 10.7150/thno.20781] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 9.8] [Reference Citation Analysis]
42 Nedyalkova M, Donkova B, Romanova J, Tzvetkov G, Madurga S, Simeonov V. Iron oxide nanoparticles - In vivo/in vitro biomedical applications and in silico studies. Adv Colloid Interface Sci 2017;249:192-212. [PMID: 28499604 DOI: 10.1016/j.cis.2017.05.003] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 11.0] [Reference Citation Analysis]
43 Bootdee K, Grady BP, Nithitanakul M. Magnetite/poly(D,L-lactide-co-glycolide) and hydroxyapatite/poly(D,L-lactide-co-glycolide) prepared by w/o/w emulsion technique for drug carrier: physical characteristic of composite nanoparticles. Colloid Polym Sci 2017;295:2031-2040. [DOI: 10.1007/s00396-017-4185-7] [Reference Citation Analysis]
44 Wei Z, Lin X, Wu M, Zhao B, Lin R, Zhang D, Zhang Y, Liu G, Liu X, Liu J. Core-shell NaGdF4@CaCO3 nanoparticles for enhanced magnetic resonance/ultrasonic dual-modal imaging via tumor acidic micro-enviroment triggering. Sci Rep 2017;7:5370. [PMID: 28710468 DOI: 10.1038/s41598-017-05395-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
45 Song W, Luo Y, Zhao Y, Liu X, Zhao J, Luo J, Zhang Q, Ran H, Wang Z, Guo D. Magnetic nanobubbles with potential for targeted drug delivery and trimodal imaging in breast cancer: an in vitro study. Nanomedicine 2017;12:991-1009. [DOI: 10.2217/nnm-2017-0027] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
46 Yang P, Luo X, Wang S, Wang F, Tang C, Wang C. Biodegradable yolk-shell microspheres for ultrasound/MR dual-modality imaging and controlled drug delivery. Colloids and Surfaces B: Biointerfaces 2017;151:333-43. [DOI: 10.1016/j.colsurfb.2016.12.037] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
47 Barnsley LC, Carugo D, Aron M, Stride E. Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays. Phys Med Biol 2017;62:2333-60. [PMID: 28141578 DOI: 10.1088/1361-6560/aa5d46] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
48 Raftis JB, Mills NL, Duffin R. Cardiovascular System. Adverse Effects of Engineered Nanomaterials 2017. [DOI: 10.1016/b978-0-12-809199-9.00011-2] [Reference Citation Analysis]
49 Chen W, Yang Y, Shangguan D, Wu Y, Liu Z. Multifunctional hard-shelled microbubbles for differentiating imaging, cavitation and drug release by ultrasound. RSC Adv 2017;7:25892-6. [DOI: 10.1039/c7ra03395h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
50 Zarepour A, Zarrabi A, Khosravi A. SPIONs as Nano-Theranostics Agents. SPIONs as Nano-Theranostics Agents 2017. [DOI: 10.1007/978-981-10-3563-0_1] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
51 Javad T, Yu D, Youhong T. Biomedical polymer hybrid composites. Hybrid Polymer Composite Materials 2017. [DOI: 10.1016/b978-0-08-100791-4.00006-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
52 Li Y, Song Y, Chen W, Xu Q, Liu Z. Hybrid polymeric nanoprobes for folate receptor-targeted photoacoustic imaging in vivo. Mater Chem Front 2017;1:916-21. [DOI: 10.1039/c6qm00227g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
53 Guo H, Jiang Z, Song S, Dai T, Wang X, Sun K, Zhou G, Dou H. Structural regulation of self-assembled iron oxide/polymer microbubbles towards performance-tunable magnetic resonance/ultrasonic dual imaging agents. Journal of Colloid and Interface Science 2016;482:95-104. [DOI: 10.1016/j.jcis.2016.07.042] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
54 Orza A, Yang Y, Feng T, Wang X, Wu H, Li Y, Yang L, Tang X, Mao H. A nanocomposite of Au-AgI core/shell dimer as a dual-modality contrast agent for x-ray computed tomography and photoacoustic imaging. Med Phys 2016;43:589. [PMID: 26745951 DOI: 10.1118/1.4939062] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
55 Duan L, Yang F, He W, Song L, Qiu F, Xu N, Xu L, Zhang Y, Hua Z, Gu N. A Multi‐Gradient Targeting Drug Delivery System Based on RGD‐ l ‐TRAIL‐Labeled Magnetic Microbubbles for Cancer Theranostics. Adv Funct Mater 2016;26:8313-24. [DOI: 10.1002/adfm.201603637] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
56 Qian X, Zheng Y, Chen Y. Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. Adv Mater 2016;28:8097-129. [PMID: 27384408 DOI: 10.1002/adma.201602012] [Cited by in Crossref: 365] [Cited by in F6Publishing: 387] [Article Influence: 60.8] [Reference Citation Analysis]
57 Crake C, Owen J, Smart S, Coviello C, Coussios CC, Carlisle R, Stride E. Enhancement and Passive Acoustic Mapping of Cavitation from Fluorescently Tagged Magnetic Resonance-Visible Magnetic Microbubbles In Vivo. Ultrasound Med Biol 2016;42:3022-36. [PMID: 27666788 DOI: 10.1016/j.ultrasmedbio.2016.08.002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
58 Wei KC, Lin FW, Huang CY, Ma CC, Chen JY, Feng LY, Yang HW. 1,3-Bis(2-chloroethyl)-1-nitrosourea-loaded bovine serum albumin nanoparticles with dual magnetic resonance-fluorescence imaging for tracking of chemotherapeutic agents. Int J Nanomedicine 2016;11:4065-75. [PMID: 27601895 DOI: 10.2147/IJN.S113589] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
59 Sciallero C, Balbi L, Paradossi G, Trucco A. Magnetic resonance and ultrasound contrast imaging of polymer-shelled microbubbles loaded with iron oxide nanoparticles. R Soc Open Sci 2016;3:160063. [PMID: 27853587 DOI: 10.1098/rsos.160063] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
60 Hou M, Wang X, Yang M, Li X, Li B, Han Y. Research on Optical Flow Model Based Large Deformation Ultrasound-MRI Registration. 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) 2016. [DOI: 10.1109/ihmsc.2016.59] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
61 Sattarahmady N, Heidari M, Zare T, Lotfi M, Heli H. Zinc–Nickel Ferrite Nanoparticles as a Contrast Agent in Magnetic Resonance Imaging. Appl Magn Reson 2016;47:925-35. [DOI: 10.1007/s00723-016-0801-9] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 5.5] [Reference Citation Analysis]
62 Kovalenko A, Jouhannaud J, Polavarapu P, Krafft MP, Waton G, Pourroy G. Incorporation of negatively charged iron oxide nanoparticles in the shell of anionic surfactant-stabilized microbubbles: The effect of NaCl concentration. Journal of Colloid and Interface Science 2016;472:180-6. [DOI: 10.1016/j.jcis.2016.02.016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
63 Huynh E, Rajora MA, Zheng G. Multimodal micro, nano, and size conversion ultrasound agents for imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:796-813. [PMID: 27006001 DOI: 10.1002/wnan.1398] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
64 Aadinath W, Ghosh T, Anandharamakrishnan C. Multimodal magnetic nano-carriers for cancer treatment: Challenges and advancements. Journal of Magnetism and Magnetic Materials 2016;401:1159-72. [DOI: 10.1016/j.jmmm.2015.10.123] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
65 Gao C, Dai Z. Multifunctional Ultrasound Contrast Agents Integrating Targeted Imaging and Therapy. Advances in Nanotheranostics II 2016. [DOI: 10.1007/978-981-10-0063-8_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
66 Zheng H, Zheng Y, Yan F, Chen M, Li P. Next-Generation Ultrasonic Theranostic Agents for Molecular Imaging and Therapy: Design, Preparation, and Biomedical Application. Advances in Nanotheranostics II 2016. [DOI: 10.1007/978-981-10-0063-8_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
67 Zhou D, Li C, He M, Ma M, Li P, Gong Y, Ran H, Wang Z, Wang Z, Zheng Y, Sun Y. Folate-targeted perfluorohexane nanoparticles carrying bismuth sulfide for use in US/CT dual-mode imaging and synergistic high-intensity focused ultrasound ablation of cervical cancer. J Mater Chem B 2016;4:4164-81. [DOI: 10.1039/c6tb00261g] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
68 Liu Z, Shi C, Li Y, Song Y, Xu Q. Fluorescent genipin cross-linked REDV-conjugated polymeric microbubbles for human vascular endothelial cell (HVEC) targeting. RSC Adv 2016;6:32710-4. [DOI: 10.1039/c6ra00992a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
69 Li J, Hu Y, Sun W, Luo Y, Shi X, Shen M. Facile preparation of hyaluronic acid-modified Fe 3 O 4 @Mn 3 O 4 nanocomposites for targeted T 1 /T 2 dual-mode MR imaging of cancer cells. RSC Adv 2016;6:35295-304. [DOI: 10.1039/c6ra05648b] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
70 Teraphongphom N, Chhour P, Eisenbrey JR, Naha PC, Witschey WR, Opasanont B, Jablonowski L, Cormode DP, Wheatley MA. Nanoparticle Loaded Polymeric Microbubbles as Contrast Agents for Multimodal Imaging. Langmuir 2015;31:11858-67. [PMID: 26446176 DOI: 10.1021/acs.langmuir.5b03473] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 4.6] [Reference Citation Analysis]
71 Song S, Guo H, Jiang Z, Jin Y, Wu Y, An X, Zhang Z, Sun K, Dou H. Self-assembled microbubbles as contrast agents for ultrasound/magnetic resonance dual-modality imaging. Acta Biomater 2015;24:266-78. [PMID: 26112374 DOI: 10.1016/j.actbio.2015.06.025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
72 Xu S, Yang F, Zhou X, Zhuang Y, Liu B, Mu Y, Wang X, Shen H, Zhi G, Wu D. Uniform PEGylated PLGA Microcapsules with Embedded Fe 3 O 4 Nanoparticles for US/MR Dual-Modality Imaging. ACS Appl Mater Interfaces 2015;7:20460-8. [DOI: 10.1021/acsami.5b06594] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 5.6] [Reference Citation Analysis]
73 Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chem Rev 2015;115:10637-89. [PMID: 26250431 DOI: 10.1021/acs.chemrev.5b00112] [Cited by in Crossref: 667] [Cited by in F6Publishing: 690] [Article Influence: 95.3] [Reference Citation Analysis]
74 Perlman O, Weitz IS, Azhari H. Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging. Phys Med Biol 2015;60:5767-83. [PMID: 26159685 DOI: 10.1088/0031-9155/60/15/5767] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 6.4] [Reference Citation Analysis]
75 Zare T, Lotfi M, Heli H, Azarpira N, Mehdizadeh AR, Sattarahmady N, Abdollah-dizavandi MR, Heidari M. Synthesis, characterization, in vitro and in vivo studies of dextrin-coated zinc-iron ferrite nanoparticles (Zn0.5Fe0.5Fe2O4) as contrast agent in MRI. Appl Phys A 2015;120:1189-96. [DOI: 10.1007/s00339-015-9302-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
76 Kovalenko A, Jouhannaud J, Polavarapu P, Krafft MP, Waton G, Pourroy G. Hollow magnetic microspheres obtained by nanoparticle adsorption on surfactant stabilized microbubbles. Soft Matter 2014;10:5147-56. [PMID: 24909785 DOI: 10.1039/c4sm00318g] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
77 Mørch Ý, Hansen R, Berg S, Åslund AKO, Glomm WR, Eggen S, Schmid R, Johnsen H, Kubowicz S, Snipstad S, Sulheim E, Hak S, Singh G, Mcdonagh BH, Blom H, de Lange Davies C, Stenstad PM. Nanoparticle-stabilized microbubbles for multimodal imaging and drug delivery: NP-Stabilized Microbubbles for Multimodal Imaging and Drug Delivery. Contrast Media Mol Imaging 2015;10:356-66. [DOI: 10.1002/cmmi.1639] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 6.4] [Reference Citation Analysis]
78 Huynh E, Leung BYC, Helfield BL, Shakiba M, Gandier J, Jin CS, Master ER, Wilson BC, Goertz DE, Zheng G. In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nature Nanotech 2015;10:325-32. [DOI: 10.1038/nnano.2015.25] [Cited by in Crossref: 260] [Cited by in F6Publishing: 277] [Article Influence: 37.1] [Reference Citation Analysis]
79 Sattarahmady N, Zare T, Mehdizadeh AR, Azarpira N, Heidari M, Lotfi M, Heli H. Dextrin-coated zinc substituted cobalt-ferrite nanoparticles as an MRI contrast agent: In vitro and in vivo imaging studies. Colloids Surf B Biointerfaces 2015;129:15-20. [PMID: 25819361 DOI: 10.1016/j.colsurfb.2015.03.021] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
80 Gao S, Xu Y, Asghar S, Chen M, Zou L, Eltayeb S, Huo M, Ping Q, Xiao Y. Polybutylcyanoacrylate nanocarriers as promising targeted drug delivery systems. Journal of Drug Targeting 2015;23:481-96. [DOI: 10.3109/1061186x.2015.1020426] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
81 Rangavajla G, Mokarram N, Masoodzadehgan N, Pai SB, Bellamkonda RV. Noninvasive imaging of peripheral nerves. Cells Tissues Organs 2014;200:69-77. [PMID: 25766202 DOI: 10.1159/000369451] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
82 Kačenka M, Kaman O, Kikerlová S, Pavlů B, Jirák Z, Jirák D, Herynek V, Černý J, Chaput F, Laurent S, Lukeš I. Fluorescent magnetic nanoparticles for cell labeling: flux synthesis of manganite particles and novel functionalization of silica shell. J Colloid Interface Sci 2015;447:97-106. [PMID: 25702866 DOI: 10.1016/j.jcis.2015.01.071] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
83 Huang HY, Liu HL, Hsu PH, Chiang CS, Tsai CH, Chi HS, Chen SY, Chen YY. A multitheragnostic nanobubble system to induce blood-brain barrier disruption with magnetically guided focused ultrasound. Adv Mater 2015;27:655-61. [PMID: 25472627 DOI: 10.1002/adma.201403889] [Cited by in Crossref: 71] [Cited by in F6Publishing: 77] [Article Influence: 10.1] [Reference Citation Analysis]
84 Hou M, Chen C, Tang D, Luo S, Yang F, Gu N. Magnetic microbubble-mediated ultrasound-MRI registration based on robust optical flow model. Biomed Eng Online 2015;14 Suppl 1:S14. [PMID: 25602434 DOI: 10.1186/1475-925X-14-S1-S14] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
85 Lammers T, Koczera P, Fokong S, Gremse F, Ehling J, Vogt M, Pich A, Storm G, van Zandvoort M, Kiessling F. Theranostic USPIO-Loaded Microbubbles for Mediating and Monitoring Blood-Brain Barrier Permeation. Adv Funct Mater 2015;25:36-43. [PMID: 25729344 DOI: 10.1002/adfm.201401199] [Cited by in Crossref: 100] [Cited by in F6Publishing: 109] [Article Influence: 14.3] [Reference Citation Analysis]
86 Crake C, Victor MDS, Owen J, Coviello C, Collin J, Coussios C, Stride E. Passive acoustic mapping of magnetic microbubbles for cavitation enhancement and localization. Phys Med Biol 2015;60:785-806. [DOI: 10.1088/0031-9155/60/2/785] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
87 Rand D, Walsh EG, Derdak Z, Wands JR, Rose-Petruck C. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro. Phys Med Biol 2015;60:769-84. [PMID: 25559398 DOI: 10.1088/0031-9155/60/2/769] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
88 Duan L, Yang F, Song L, Fang K, Tian J, Liang Y, Li M, Xu N, Chen Z, Zhang Y, Gu N. Controlled assembly of magnetic nanoparticles on microbubbles for multimodal imaging. Soft Matter 2015;11:5492-500. [DOI: 10.1039/c5sm00864f] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
89 Wang L, Zhang H, Zhou Z, Kong B, An L, Wei J, Yang H, Zhao J, Yang S. Gd( iii ) complex conjugated ultra-small iron oxide as an enhanced T 1 -weighted MR imaging contrast agent. J Mater Chem B 2015;3:1433-8. [DOI: 10.1039/c4tb01981d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
90 Xu P, Wei S, Yang J, Che YX, Cao XY, Zhang R. Preparation and Characterization of Ag-Deposited Silica-Coated Fe<sub>3</sub>O<sub>4</sub> Magnetic Nanoparticles with Recycling Antibacterial Properties. AMR 2014;1061-1062:256-61. [DOI: 10.4028/www.scientific.net/amr.1061-1062.256] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
91 Poehlmann M, Grishenkov D, Kothapalli SV, Härmark J, Hebert H, Philipp A, Hoeller R, Seuss M, Kuttner C, Margheritelli S, Paradossi G, Fery A. On the interplay of shell structure with low- and high-frequency mechanics of multifunctional magnetic microbubbles. Soft Matter 2014;10:214-26. [PMID: 24651844 DOI: 10.1039/c3sm51560e] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 4.6] [Reference Citation Analysis]
92 Krafft MP. Perfluoroalkyl chains as tools for film surface nano-patterning and soft microbubble engineering and decoration. Journal of the Taiwan Institute of Chemical Engineers 2014;45:3069-74. [DOI: 10.1016/j.jtice.2014.06.013] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
93 Kothapalli SV, Oddo L, Paradossi G, Brodin L, Grishenkov D. Assessment of the Viscoelastic and Oscillation Properties of a Nano-engineered Multimodality Contrast Agent. Ultrasound in Medicine & Biology 2014;40:2476-87. [DOI: 10.1016/j.ultrasmedbio.2014.05.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
94 Song S, Guo H, Jiang Z, Jin Y, Zhang Z, Sun K, Dou H. Self-Assembled Fe 3 O 4 /Polymer Hybrid Microbubble with MRI/Ultrasound Dual-Imaging Enhancement. Langmuir 2014;30:10557-61. [DOI: 10.1021/la5021115] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
95 Yang P, Wang F, Luo X, Zhang Y, Guo J, Shi W, Wang C. Rational Design of Magnetic Nanorattles as Contrast Agents for Ultrasound/Magnetic Resonance Dual-Modality Imaging. ACS Appl Mater Interfaces 2014;6:12581-7. [DOI: 10.1021/am502550b] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
96 Kiessling F, Fokong S, Bzyl J, Lederle W, Palmowski M, Lammers T. Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev 2014;72:15-27. [PMID: 24316070 DOI: 10.1016/j.addr.2013.11.013] [Cited by in Crossref: 130] [Cited by in F6Publishing: 121] [Article Influence: 16.3] [Reference Citation Analysis]
97 Guo C, Jin Y, Dai Z. Multifunctional Ultrasound Contrast Agents for Imaging Guided Photothermal Therapy. Bioconjugate Chem 2014;25:840-54. [DOI: 10.1021/bc500092h] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 4.5] [Reference Citation Analysis]
98 Zhang L, Dong WF, Sun HB. Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale 2013;5:7664-84. [PMID: 23877222 DOI: 10.1039/c3nr01616a] [Cited by in Crossref: 166] [Cited by in F6Publishing: 169] [Article Influence: 20.8] [Reference Citation Analysis]
99 Chen ZY, Wang YX, Lin Y, Zhang JS, Yang F, Zhou QL, Liao YY. Advance of molecular imaging technology and targeted imaging agent in imaging and therapy. Biomed Res Int 2014;2014:819324. [PMID: 24689058 DOI: 10.1155/2014/819324] [Cited by in Crossref: 37] [Cited by in F6Publishing: 60] [Article Influence: 4.6] [Reference Citation Analysis]
100 Pham T, Beigie C, Park Y, Wong JY. Microbubbles as Theranostics Agents. Nano-Oncologicals 2014. [DOI: 10.1007/978-3-319-08084-0_12] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
101 Mitra I, Manna N, Manna J, Mitra M. Synthesis of Chlorophyll Entrapped Red Luminescent Silica Nanoparticles for Bioimaging Application. Procedia Materials Science 2014;6:770-4. [DOI: 10.1016/j.mspro.2014.07.093] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
102 Cheng X, Li H, Chen Y, Luo B, Liu X, Liu W, Xu H, Yang X. Ultrasound-triggered phase transition sensitive magnetic fluorescent nanodroplets as a multimodal imaging contrast agent in rat and mouse model. PLoS One. 2013;8:e85003. [PMID: 24391983 DOI: 10.1371/journal.pone.0085003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
103 Huang H, Hu S, Hung S, Chiang C, Liu H, Chiu T, Lai H, Chen Y, Chen S. SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy. Journal of Controlled Release 2013;172:118-27. [DOI: 10.1016/j.jconrel.2013.07.029] [Cited by in Crossref: 70] [Cited by in F6Publishing: 75] [Article Influence: 7.8] [Reference Citation Analysis]
104 Yang F, Gu Z, Jin X, Wang H, Gu N. Magnetic microbubble: A biomedical platform co-constructed from magnetics and acoustics. Chinese Phys B 2013;22:104301. [DOI: 10.1088/1674-1056/22/10/104301] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
105 Romero-Aburto R, Narayanan TN, Nagaoka Y, Hasumura T, Mitcham TM, Fukuda T, Cox PJ, Bouchard RR, Maekawa T, Kumar DS, Torti SV, Mani SA, Ajayan PM. Fluorinated graphene oxide; a new multimodal material for biological applications. Adv Mater 2013;25:5632-7. [PMID: 24038195 DOI: 10.1002/adma201301804] [Cited by in Crossref: 143] [Cited by in F6Publishing: 143] [Article Influence: 15.9] [Reference Citation Analysis]
106 Mullin LB, Phillips LC, Dayton PA. Nanoparticle delivery enhancement with acoustically activated microbubbles. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60:65-77. [PMID: 23287914 DOI: 10.1109/tuffc.2013.2538] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
107 Geers B, Dewitte H, De Smedt SC, Lentacker I. Crucial factors and emerging concepts in ultrasound-triggered drug delivery. J Control Release 2012;164:248-55. [PMID: 23320295 DOI: 10.1016/j.jconrel.2012.08.014] [Cited by in Crossref: 94] [Cited by in F6Publishing: 98] [Article Influence: 10.4] [Reference Citation Analysis]
108 Fan C, Ting C, Lin H, Wang C, Liu H, Yen T, Yeh C. SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials 2013;34:3706-15. [DOI: 10.1016/j.biomaterials.2013.01.099] [Cited by in Crossref: 168] [Cited by in F6Publishing: 181] [Article Influence: 18.7] [Reference Citation Analysis]
109 Zhao YZ, Du LN, Lu CT, Jin YG, Ge SP. Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomedicine 2013;8:1621-33. [PMID: 23637531 DOI: 10.2147/IJN.S43589] [Cited by in Crossref: 19] [Cited by in F6Publishing: 36] [Article Influence: 2.1] [Reference Citation Analysis]
110 Zhao Y, Lu C, Li X, Cai J. Ultrasound-mediated strategies in opening brain barriers for drug brain delivery. Expert Opinion on Drug Delivery 2013;10:987-1001. [DOI: 10.1517/17425247.2013.787987] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
111 Liu TY, Wu MY, Lin MH, Yang FY. A novel ultrasound-triggered drug vehicle with multimodal imaging functionality. Acta Biomater 2013;9:5453-63. [PMID: 23201019 DOI: 10.1016/j.actbio.2012.11.023] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
112 Nguyen PN, Nikolova G, Polavarapu P, Waton G, Phuoc LT, Pourroy G, Krafft MP. Compressible multi-scale magnetic constructs: decorating the outer surface of self-assembled microbubbles with iron oxide nanoparticles. RSC Adv 2013;3:7743. [DOI: 10.1039/c3ra40908b] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
113 Wheatley M, Cochran M. Ultrasound contrast agents. Journal of Drug Delivery Science and Technology 2013;23:57-72. [DOI: 10.1016/s1773-2247(13)50007-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
114 Wang CH, Kang ST, Yeh CK. Superparamagnetic iron oxide and drug complex-embedded acoustic droplets for ultrasound targeted theranosis. Biomaterials 2013;34:1852-61. [PMID: 23219326 DOI: 10.1016/j.biomaterials.2012.11.037] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 3.5] [Reference Citation Analysis]
115 Lin T, Lin F, Lin J. In vitro characterization of magnetic electrospun IDA-grafted chitosan nanofiber composite for hyperthermic tumor cell treatment. Journal of Biomaterials Science, Polymer Edition 2012;24:1152-63. [DOI: 10.1080/09205063.2012.743061] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
116 Feshitan JA, Boss MA, Borden MA. Magnetic resonance properties of Gd(III)-bound lipid-coated microbubbles and their cavitation fragments. Langmuir 2012;28:15336-43. [PMID: 23045962 DOI: 10.1021/la303283y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
117 Huang L, Lin X, Tang Y, Yang R, Li AH, Ye JC, Chen K, Wang P, Shen HY. Quantitative assessment of spinal cord perfusion by using contrast-enhanced ultrasound in a porcine model with acute spinal cord contusion. Spinal Cord 2013;51:196-201. [PMID: 23045300 DOI: 10.1038/sc.2012.111] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
118 Wang C, Yeh C. Superparamagnetic iron oxide/drug complex-embedded droplets for Bi-model imaging and enhanced targeted therapy. 2012 IEEE International Ultrasonics Symposium 2012. [DOI: 10.1109/ultsym.2012.0578] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
119 Alves KGB, Andrade CAS, Campello SL, de Souza RE, de Melo CP. Magnetite/Polypyrrole Hybrid Nanocomposites as a Promising Magnetic Resonance Imaging Contrast Material. J Appl Polym Sci 2013;128:3170-6. [DOI: 10.1002/app.38481] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
120 Lin TC, Lin FH, Lin JC. In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. Acta Biomater 2012;8:2704-11. [PMID: 22484694 DOI: 10.1016/j.actbio.2012.03.045] [Cited by in Crossref: 99] [Cited by in F6Publishing: 100] [Article Influence: 9.9] [Reference Citation Analysis]
121 Lin CA, Chuang WK, Huang ZY, Kang ST, Chang CY, Chen CT, Li JL, Li JK, Wang HH, Kung FC, Shen JL, Chan WH, Yeh CK, Yeh HI, Lai WF, Chang WH. Rapid transformation of protein-caged nanomaterials into microbubbles as bimodal imaging agents. ACS Nano 2012;6:5111-21. [PMID: 22607131 DOI: 10.1021/nn300768d] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.9] [Reference Citation Analysis]
122 Li L, Wei Q, Li HB, Wen S, Teng GJ. Evaluation of microbubbles as contrast agents for ultrasonography and magnetic resonance imaging. PLoS One 2012;7:e34644. [PMID: 22506039 DOI: 10.1371/journal.pone.0034644] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
123 Cai X, Yang F, Gu N. Applications of magnetic microbubbles for theranostics. Theranostics 2012;2:103-12. [PMID: 22287990 DOI: 10.7150/thno.3464] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 4.7] [Reference Citation Analysis]
124 Huang Y, He S, Cao W, Cai K, Liang X. Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale 2012;4:6135. [DOI: 10.1039/c2nr31715j] [Cited by in Crossref: 159] [Cited by in F6Publishing: 170] [Article Influence: 15.9] [Reference Citation Analysis]
125 Raftis JB, Mills NL, Duffin R. Cardiovascular System. Adverse Effects of Engineered Nanomaterials 2012. [DOI: 10.1016/b978-0-12-386940-1.00008-8] [Reference Citation Analysis]
126 Mitra RN, Doshi M, Zhang X, Tyus JC, Bengtsson N, Fletcher S, Page BD, Turkson J, Gesquiere AJ, Gunning PT, Walter GA, Santra S. An activatable multimodal/multifunctional nanoprobe for direct imaging of intracellular drug delivery. Biomaterials 2012;33:1500-8. [PMID: 22078810 DOI: 10.1016/j.biomaterials.2011.10.068] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 4.1] [Reference Citation Analysis]
127 Feshitan JA, Vlachos F, Sirsi SR, Konofagou EE, Borden MA. Theranostic Gd(III)-lipid microbubbles for MRI-guided focused ultrasound surgery. Biomaterials 2012;33:247-55. [PMID: 21993236 DOI: 10.1016/j.biomaterials.2011.09.026] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 4.1] [Reference Citation Analysis]