BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Prucek R, Tuček J, Kilianová M, Panáček A, Kvítek L, Filip J, Kolář M, Tománková K, Zbořil R. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 2011;32:4704-13. [PMID: 21507482 DOI: 10.1016/j.biomaterials.2011.03.039] [Cited by in Crossref: 225] [Cited by in F6Publishing: 187] [Article Influence: 20.5] [Reference Citation Analysis]
Number Citing Articles
1 Qu J, Ren C, Dong Y, Chang Y, Zhou M, Chen X. Facile synthesis of multifunctional graphene oxide/AgNPs-Fe3O4 nanocomposite: A highly integrated catalysts. Chemical Engineering Journal 2012;211-212:412-20. [DOI: 10.1016/j.cej.2012.09.096] [Cited by in Crossref: 42] [Cited by in F6Publishing: 28] [Article Influence: 4.2] [Reference Citation Analysis]
2 Wang H, Shen J, Cao G, Gai Z, Hong K, Debata PR, Banerjee P, Zhou S. Multifunctional PEG encapsulated Fe3O4@silver hybrid nanoparticles: antibacterial activity, cell imaging and combined photothermo/chemo-therapy. J Mater Chem B 2013;1:6225. [DOI: 10.1039/c3tb21055c] [Cited by in Crossref: 44] [Cited by in F6Publishing: 31] [Article Influence: 4.9] [Reference Citation Analysis]
3 Hussein-Al-Ali SH, El Zowalaty ME, Kura AU, Geilich B, Fakurazi S, Webster TJ, Hussein MZ. Antimicrobial and controlled release studies of a novel nystatin conjugated iron oxide nanocomposite. Biomed Res Int 2014;2014:651831. [PMID: 24900976 DOI: 10.1155/2014/651831] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 3.5] [Reference Citation Analysis]
4 Zhang C, Chen M, Wang G, Fang W, Ye C, Hu H, Fa Z, Yi J, Liao WQ. Pd@Ag Nanosheets in Combination with Amphotericin B Exert a Potent Anti-Cryptococcal Fungicidal Effect. PLoS One 2016;11:e0157000. [PMID: 27271376 DOI: 10.1371/journal.pone.0157000] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
5 Muniz-miranda M, Gellini C, Giorgetti E, Margheri G. Bifunctional Fe3O4/Ag nanoparticles obtained by two-step laser ablation in pure water. Journal of Colloid and Interface Science 2017;489:100-5. [DOI: 10.1016/j.jcis.2016.08.040] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
6 Wang J, Li C, Zhuang H, Zhang J. Photocatalytic degradation of methylene blue and inactivation of Gram-negative bacteria by TiO2 nanoparticles in aqueous suspension. Food Control 2013;34:372-7. [DOI: 10.1016/j.foodcont.2013.04.046] [Cited by in Crossref: 56] [Cited by in F6Publishing: 37] [Article Influence: 6.2] [Reference Citation Analysis]
7 Chen C, Xia DL, Guo LY, Chen YP, Li XD, Wang YF, Zhang D, Wang YY, Zhang YX, He H, Gu HY. Extracorporeal magnetic approach to reduce the unwanted side-effects and improve antibacterial activity of Ag/Fe3 O4 nanocomposites in rat. J Biomed Mater Res B Appl Biomater 2018;106:2029-36. [PMID: 29076251 DOI: 10.1002/jbm.b.33998] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
8 Premanand G, Shanmugam N, Kannadasan N, Sathishkumar K, Viruthagiri G. Nelumbo nucifera leaf extract mediated synthesis of silver nanoparticles and their antimicrobial properties against some human pathogens. Appl Nanosci 2016;6:409-15. [DOI: 10.1007/s13204-015-0442-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
9 Ahmad F, Taj MB, Ramzan M, Raheel A, Shabbir S, Imran M, Iqbal HMN. Flacourtia indica based biogenic nanoparticles: development, characterization, and bioactivity against wound associated pathogens. Mater Res Express 2020;7:015026. [DOI: 10.1088/2053-1591/ab6123] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Wang C, Rong Z, Wang J, Jiang N, Pang Y, Xiao R, Wang S. Seed-mediated synthesis of high-performance silver-coated magnetic nanoparticles and their use as effective SERS substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016;506:393-401. [DOI: 10.1016/j.colsurfa.2016.05.103] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
11 Setyawati MI, Yuan X, Xie J, Leong DT. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials 2014;35:6707-15. [DOI: 10.1016/j.biomaterials.2014.05.007] [Cited by in Crossref: 127] [Cited by in F6Publishing: 118] [Article Influence: 15.9] [Reference Citation Analysis]
12 Giles C, Lamont-Friedrich SJ, Michl TD, Griesser HJ, Coad BR. The importance of fungal pathogens and antifungal coatings in medical device infections. Biotechnol Adv 2018;36:264-80. [PMID: 29199134 DOI: 10.1016/j.biotechadv.2017.11.010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
13 Sabry RS, Al-mosawi MI. Novel approach to fabricate polycarbonate antibacterial superhydrophobic surfaces. Journal of Adhesion Science and Technology 2017;31:2424-34. [DOI: 10.1080/01694243.2017.1303880] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Pereyra AM, Gonzalez MR, Rosato VG, Basaldella EI. A-type zeolite containing Ag+/Zn2+ as inorganic antifungal for waterborne coating formulations. Progress in Organic Coatings 2014;77:213-8. [DOI: 10.1016/j.porgcoat.2013.09.008] [Cited by in Crossref: 29] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
15 Singh J, Vishwakarma K, Ramawat N, Rai P, Singh VK, Mishra RK, Kumar V, Tripathi DK, Sharma S. Nanomaterials and microbes' interactions: a contemporary overview. 3 Biotech 2019;9:68. [PMID: 30729092 DOI: 10.1007/s13205-019-1576-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 7.7] [Reference Citation Analysis]
16 Kooti M, Saiahi S, Motamedi H. Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity. Journal of Magnetism and Magnetic Materials 2013;333:138-43. [DOI: 10.1016/j.jmmm.2012.12.038] [Cited by in Crossref: 58] [Cited by in F6Publishing: 29] [Article Influence: 6.4] [Reference Citation Analysis]
17 Moritz M, Geszke-moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chemical Engineering Journal 2013;228:596-613. [DOI: 10.1016/j.cej.2013.05.046] [Cited by in Crossref: 277] [Cited by in F6Publishing: 159] [Article Influence: 30.8] [Reference Citation Analysis]
18 Rodrigues GR, López-Abarrategui C, de la Serna Gómez I, Dias SC, Otero-González AJ, Franco OL. Antimicrobial magnetic nanoparticles based-therapies for controlling infectious diseases. Int J Pharm 2019;555:356-67. [PMID: 30453018 DOI: 10.1016/j.ijpharm.2018.11.043] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
19 Muniz-Miranda M, Muniz-Miranda F, Giorgetti E. Spectroscopic and Microscopic Analyses of Fe3O4/Au Nanoparticles Obtained by Laser Ablation in Water. Nanomaterials (Basel) 2020;10:E132. [PMID: 31936852 DOI: 10.3390/nano10010132] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Ruiz-gómez MA, Rodríguez-gattorno G, Figueroa-torres MZ, Obregón S, Tehuacanero-cuapa S, Aguilar-franco M. Role of assisting reagents on the synthesis of α-Fe2O3 by microwave-assisted hydrothermal reaction. J Mater Sci: Mater Electron 2021;32:9551-66. [DOI: 10.1007/s10854-021-05618-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Turakhia B, Chikkala S, Shah S. Novelty of Bioengineered Iron Nanoparticles in Nanocoated Surgical Cotton: A Green Chemistry. Adv Pharmacol Sci 2019;2019:9825969. [PMID: 30918519 DOI: 10.1155/2019/9825969] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Gao N, Chen Y, Jiang J. Ag@Fe 2 O 3 -GO Nanocomposites Prepared by a Phase Transfer Method with Long-Term Antibacterial Property. ACS Appl Mater Interfaces 2013;5:11307-14. [DOI: 10.1021/am403538j] [Cited by in Crossref: 69] [Cited by in F6Publishing: 48] [Article Influence: 7.7] [Reference Citation Analysis]
23 Archana KM, Rajalakshmi S, Kumar PS, Krishnaswamy VG, Rajagopal R, Kumar DT, Priya Doss CG. Effect of shape and anthocyanin capping on antibacterial activity of CuI particles. Environ Res 2021;200:111759. [PMID: 34310969 DOI: 10.1016/j.envres.2021.111759] [Reference Citation Analysis]
24 Sangeetha J, Philip J. Synthesis, characterization and antimicrobial property of Fe3O4-Cys-HNQ nanocomplex, with l-cysteine molecule as a linker. RSC Adv 2013;3:8047. [DOI: 10.1039/c3ra00005b] [Cited by in Crossref: 31] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
25 Hu XL, Shang Y, Yan KC, Sedgwick AC, Gan HQ, Chen GR, He XP, James TD, Chen D. Low-dimensional nanomaterials for antibacterial applications. J Mater Chem B 2021;9:3640-61. [PMID: 33870985 DOI: 10.1039/d1tb00033k] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
26 Alam T, Khan RAA, Ali A, Sher H, Ullah Z, Ali M. Biogenic synthesis of iron oxide nanoparticles via Skimmia laureola and their antibacterial efficacy against bacterial wilt pathogen Ralstonia solanacearum. Materials Science and Engineering: C 2019;98:101-8. [DOI: 10.1016/j.msec.2018.12.117] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 9.3] [Reference Citation Analysis]
27 Khan AU, Rahman AU, Yuan Q, Ahmad A, Khan ZUH, Mahnashi MH, Alyami BA, Alqahtani YS, Ullah S, Wirman AP. Facile and eco-benign fabrication of Ag/Fe2O3 nanocomposite using Algaia Monozyga leaves extract and its’ efficient biocidal and photocatalytic applications. Photodiagnosis and Photodynamic Therapy 2020;32:101970. [DOI: 10.1016/j.pdpdt.2020.101970] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Regiel-futyra A, Dąbrowski JM, Mazuryk O, Śpiewak K, Kyzioł A, Pucelik B, Brindell M, Stochel G. Bioinorganic antimicrobial strategies in the resistance era. Coordination Chemistry Reviews 2017;351:76-117. [DOI: 10.1016/j.ccr.2017.05.005] [Cited by in Crossref: 68] [Cited by in F6Publishing: 39] [Article Influence: 13.6] [Reference Citation Analysis]
29 Ghaffari-moghaddam M, Eslahi H. Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arabian Journal of Chemistry 2014;7:846-55. [DOI: 10.1016/j.arabjc.2013.11.011] [Cited by in Crossref: 95] [Cited by in F6Publishing: 44] [Article Influence: 11.9] [Reference Citation Analysis]
30 Huy LT, Tam LT, Van Son T, Cuong ND, Nam MH, Vinh LK, Huy TQ, Ngo D, Phan VN, Le A. Photochemical Decoration of Silver Nanocrystals on Magnetic MnFe2O4 Nanoparticles and Their Applications in Antibacterial Agents and SERS-Based Detection. Journal of Elec Materi 2017;46:3412-21. [DOI: 10.1007/s11664-016-5267-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
31 Ye S, Shao K, Li Z, Guo N, Zuo Y, Li Q, Lu Z, Chen L, He Q, Han H. Antiviral Activity of Graphene Oxide: How Sharp Edged Structure and Charge Matter. ACS Appl Mater Interfaces 2015;7:21571-9. [DOI: 10.1021/acsami.5b06876] [Cited by in Crossref: 154] [Cited by in F6Publishing: 129] [Article Influence: 22.0] [Reference Citation Analysis]
32 Ahmad W, Shams S, Ahmad A, Wei Y, Yuan Q, Khan AU, Khan MS, Ur Rahman A, Iqbal M. Synthesis of selenium–silver nanostructures with enhanced antibacterial, photocatalytic and antioxidant activities. Appl Nanosci 2020;10:1191-204. [DOI: 10.1007/s13204-019-01213-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
33 Kumar S, Alka, Tarun, Saxena J, Bansal C, Kumari P. Visible light-assisted photodegradation by silver tungstate-modified magnetite nanocomposite material for enhanced mineralization of organic water contaminants. Appl Nanosci 2020;10:1555-69. [DOI: 10.1007/s13204-019-01230-y] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
34 Nejdl L, Kudr J, Cihalova K, Chudobova D, Zurek M, Zalud L, Kopecny L, Burian F, Ruttkay-nedecky B, Krizkova S, Konecna M, Hynek D, Kopel P, Prasek J, Adam V, Kizek R. Remote-controlled robotic platform ORPHEUS as a new tool for detection of bacteria in the environment: Microfluidics and Miniaturization. ELECTROPHORESIS 2014;35:2333-45. [DOI: 10.1002/elps.201300576] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
35 Al-Asfar A, Zaheer Z, Aazam ES. Eco-friendly green synthesis of Ag@Fe bimetallic nanoparticles: Antioxidant, antimicrobial and photocatalytic degradation of bromothymol blue. J Photochem Photobiol B 2018;185:143-52. [PMID: 29906655 DOI: 10.1016/j.jphotobiol.2018.05.028] [Cited by in Crossref: 45] [Cited by in F6Publishing: 28] [Article Influence: 11.3] [Reference Citation Analysis]
36 Cao H, Liu X. Plasma-Sprayed Ceramic Coatings for Osseointegration. Int J Appl Ceram Technol 2013;10:1-10. [DOI: 10.1111/j.1744-7402.2012.02770.x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
37 Thakur P, Thakur A, Yadav K. Optical Properties of (Fe2O3)1−x/(Cr2O3)x (Where x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) Nanocomposites. In: Jain VK, Rattan S, Verma A, editors. Recent Trends in Materials and Devices. Cham: Springer International Publishing; 2017. pp. 145-55. [DOI: 10.1007/978-3-319-29096-6_19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
38 Sarkar D, Khare D, Kaushal A, Acharya C, Bahadur J, Prakash J, Donthula H, Dasgupta K. Green and scalable synthesis of nanosilver loaded silica microparticles by spray-drying: application as antibacterial agent, catalyst and SERS substrate. Appl Nanosci 2019;9:1925-37. [DOI: 10.1007/s13204-019-01031-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
39 Kobeissi JM, Hassan GF, Karam P. Silver-Modified Cross-Linked Polyvinylpyrrolidone and Its Antibacterial Activity. ACS Appl Bio Mater 2018;1:1864-70. [DOI: 10.1021/acsabm.8b00377] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
40 George L, Bavya M, Rohan KV, Srivastava R. A therapeutic polyelectrolyte–vitamin C nanoparticulate system in polyvinyl alcohol–alginate hydrogel: An approach to treat skin and soft tissue infections caused by Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces 2017;160:315-24. [DOI: 10.1016/j.colsurfb.2017.09.030] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
41 Song C, Chang Y, Cheng L, Xu Y, Chen X, Zhang L, Zhong L, Dai L. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites. Materials Science and Engineering: C 2014;36:146-51. [DOI: 10.1016/j.msec.2013.11.042] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
42 Kokilavani S, Al-kheraif AA, Thomas AM, Syed A, Elgorban AM, Raju LL, Das A, Khan SS. Novel NiS/Ag2MoO4 heterostructure nanocomposite: Synthesis, characterization and superior antibacterial and enhanced photocatalytic activity. Physica E: Low-dimensional Systems and Nanostructures 2021;133:114767. [DOI: 10.1016/j.physe.2021.114767] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
43 Bernard V, Zobač O, Sopoušek J, Mornstein V. AgCu Bimetallic Nanoparticles under Effect of Low Intensity Ultrasound: The Cell Viability Study In Vitro. Journal of Cancer Research 2014;2014:1-6. [DOI: 10.1155/2014/971769] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
44 Cui J, Yang Y, Zheng M, Liu Y, Xiao Y, Lei B, Chen W. Facile fabrication of graphene oxide loaded with silver nanoparticles as antifungal materials. Mater Res Express 2014;1:045007. [DOI: 10.1088/2053-1591/1/4/045007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
45 Nor YA, Zhou L, Meka AK, Xu C, Niu Y, Zhang H, Mitter N, Mahony D, Yu C. Engineering Iron Oxide Hollow Nanospheres to Enhance Antimicrobial Property: Understanding the Cytotoxic Origin in Organic Rich Environment. Adv Funct Mater 2016;26:5408-18. [DOI: 10.1002/adfm.201601459] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 6.5] [Reference Citation Analysis]
46 Trang VT, Tam LT, Van Quy N, Huy TQ, Thuy NT, Tri DQ, Cuong ND, Tuan PA, Van Tuan H, Le A, Phan VN. Functional Iron Oxide–Silver Hetero-Nanocomposites: Controlled Synthesis and Antibacterial Activity. Journal of Elec Materi 2017;46:3381-9. [DOI: 10.1007/s11664-017-5314-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
47 Qais FA, Khan MSA, Ahmad I, Althubiani AS. Potential of Nanoparticles in Combating Candida Infections. LDDD 2019;16:478-91. [DOI: 10.2174/1570180815666181015145224] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
48 Bankapur A, Krishnamurthy RS, Zachariah E, Santhosh C, Chougule B, Praveen B, Valiathan M, Mathur D. Micro-Raman spectroscopy of silver nanoparticle induced stress on optically-trapped stem cells. PLoS One 2012;7:e35075. [PMID: 22514708 DOI: 10.1371/journal.pone.0035075] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
49 Jana TK, Pal A, Mandal AK, Sarwar S, Chakrabarti P, Chatterjee K. Photocatalytic and Antibacterial Performance of α-Fe 2 O 3 Nanostructures. ChemistrySelect 2017;2:3068-77. [DOI: 10.1002/slct.201700294] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
50 Dallas P, Sharma VK, Zboril R. Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci 2011;166:119-35. [PMID: 21683320 DOI: 10.1016/j.cis.2011.05.008] [Cited by in Crossref: 471] [Cited by in F6Publishing: 384] [Article Influence: 42.8] [Reference Citation Analysis]
51 Quirós J, Gonzalo S, Jalvo B, Boltes K, Perdigón-Melón JA, Rosal R. Electrospun cellulose acetate composites containing supported metal nanoparticles for antifungal membranes. Sci Total Environ 2016;563-564:912-20. [PMID: 26524992 DOI: 10.1016/j.scitotenv.2015.10.072] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
52 Zhang L, Dong WF, Sun HB. Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale 2013;5:7664-84. [PMID: 23877222 DOI: 10.1039/c3nr01616a] [Cited by in Crossref: 144] [Cited by in F6Publishing: 106] [Article Influence: 18.0] [Reference Citation Analysis]
53 Vazquez-Muñoz R, Bogdanchikova N, Huerta-Saquero A. Beyond the Nanomaterials Approach: Influence of Culture Conditions on the Stability and Antimicrobial Activity of Silver Nanoparticles. ACS Omega 2020;5:28441-51. [PMID: 33195894 DOI: 10.1021/acsomega.0c02007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
54 Hola K, Markova Z, Zoppellaro G, Tucek J, Zboril R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol Adv 2015;33:1162-76. [PMID: 25689073 DOI: 10.1016/j.biotechadv.2015.02.003] [Cited by in Crossref: 210] [Cited by in F6Publishing: 148] [Article Influence: 30.0] [Reference Citation Analysis]
55 Abdelhamid HN, Talib A, Wu H. Facile synthesis of water soluble silver ferrite (AgFeO 2 ) nanoparticles and their biological application as antibacterial agents. RSC Adv 2015;5:34594-602. [DOI: 10.1039/c4ra14461a] [Cited by in Crossref: 50] [Cited by in F6Publishing: 1] [Article Influence: 7.1] [Reference Citation Analysis]
56 Baikousi M, Bourlinos AB, Douvalis A, Bakas T, Anagnostopoulos DF, Tuček J, Šafářová K, Zboril R, Karakassides MA. Synthesis and Characterization of γ-Fe 2 O 3 /Carbon Hybrids and Their Application in Removal of Hexavalent Chromium Ions from Aqueous Solutions. Langmuir 2012;28:3918-30. [DOI: 10.1021/la204006d] [Cited by in Crossref: 124] [Cited by in F6Publishing: 104] [Article Influence: 12.4] [Reference Citation Analysis]
57 Sun T, Hao H, Hao WT, Yi SM, Li XP, Li JR. Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts. Nanoscale Res Lett 2014;9:98. [PMID: 24572014 DOI: 10.1186/1556-276X-9-98] [Cited by in Crossref: 23] [Cited by in F6Publishing: 3] [Article Influence: 2.9] [Reference Citation Analysis]
58 Yin N, Zhang Y, Yun Z, Liu Q, Qu G, Zhou Q, Hu L, Jiang G. Silver nanoparticle exposure induces rat motor dysfunction through decrease in expression of calcium channel protein in cerebellum. Toxicology Letters 2015;237:112-20. [DOI: 10.1016/j.toxlet.2015.06.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
59 Shi B, Luan D, Wang S, Zhao L, Tao L, Yuan Q, Wang X. Borneol-grafted cellulose for antifungal adhesion and fungal growth inhibition. RSC Adv 2015;5:51947-52. [DOI: 10.1039/c5ra07894f] [Cited by in Crossref: 19] [Article Influence: 2.7] [Reference Citation Analysis]
60 Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S, B V, Bhadra MP, Sreedhar B, Patra CR. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 2014;4:316-35. [PMID: 24505239 DOI: 10.7150/thno.7819] [Cited by in Crossref: 314] [Cited by in F6Publishing: 244] [Article Influence: 39.3] [Reference Citation Analysis]
61 Huang X, Deng X, Zhu H, Qi W, Wu D. Ag@Fe2O3-graphene oxide nanocomposite as a novel redox probe for electrochemical immunosensor for alpha-fetoprotein detection. J Solid State Electrochem 2019;23:335-43. [DOI: 10.1007/s10008-018-4139-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
62 Di Corato R, Palumberi D, Marotta R, Scotto M, Carregal-romero S, Riveragil P, Parak WJ, Pellegrino T. Magnetic Nanobeads Decorated with Silver Nanoparticles as Cytotoxic Agents and Photothermal Probes. Small 2012;8:2731-42. [DOI: 10.1002/smll.201200230] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 4.5] [Reference Citation Analysis]
63 Velazco‐medel MA, Camacho‐cruz LA, Lugo‐gonzález JC, Bucio E. Antifungal polymers for medical applications. Med Devices Sens 2021;4. [DOI: 10.1002/mds3.10134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
64 Wu Z, Meng Z, Wu Q, Zeng D, Guo Z, Yao J, Bian Y, Gu Y, Cheng S, Peng L, Zhao Y. Biomimetic and osteogenic 3D silk fibroin composite scaffolds with nano MgO and mineralized hydroxyapatite for bone regeneration. J Tissue Eng 2020;11:2041731420967791. [PMID: 33294153 DOI: 10.1177/2041731420967791] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
65 Ahmad V, Jamal QMS, Shukla AK, Alam J, Imran A, Abaza UM. Bacilli as Biological Nano-factories Intended for Synthesis of Silver Nanoparticles and Its Application in Human Welfare. J Clust Sci 2017;28:1775-802. [DOI: 10.1007/s10876-017-1206-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
66 Surendhiran D, Sirajunnisa A, Tamilselvam K. Silver–magnetic nanocomposites for water purification. Environ Chem Lett 2017;15:367-86. [DOI: 10.1007/s10311-017-0635-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 3.4] [Reference Citation Analysis]
67 Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar P. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf B Biointerfaces 2012;96:50-5. [PMID: 22521682 DOI: 10.1016/j.colsurfb.2012.03.021] [Cited by in Crossref: 103] [Cited by in F6Publishing: 80] [Article Influence: 10.3] [Reference Citation Analysis]
68 Prucek R, Panáček A, Gajdová Ž, Večeřová R, Kvítek L, Gallo J, Kolář M. Specific detection of Staphylococcus aureus infection and marker for Alzheimer disease by surface enhanced Raman spectroscopy using silver and gold nanoparticle-coated magnetic polystyrene beads. Sci Rep 2021;11:6240. [PMID: 33737512 DOI: 10.1038/s41598-021-84793-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Ji Z, Shen X, Yang J, Zhu G, Chen K. A novel reduced graphene oxide/Ag/CeO2 ternary nanocomposite: Green synthesis and catalytic properties. Applied Catalysis B: Environmental 2014;144:454-61. [DOI: 10.1016/j.apcatb.2013.07.052] [Cited by in Crossref: 98] [Cited by in F6Publishing: 76] [Article Influence: 12.3] [Reference Citation Analysis]
70 Das RK, Das M. Study of silver nanoparticle/polyvinyl alcohol nanocomposite. Int J Plast Technol 2019;23:101-9. [DOI: 10.1007/s12588-019-09229-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Li N, Ji Z, Chen L, Shen X, Zhang Y, Cheng S, Zhou H. Anchoring of Ag nanoparticles on Fe3O4 modified polydopamine sub-micrometer spheres with enhanced catalytic activity. Applied Surface Science 2018;462:1-7. [DOI: 10.1016/j.apsusc.2018.07.204] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
72 Sangave PC, Matkar NM, Suvarna V. Antimicrobial Activity of Metallic Nanoparticles Using Prokaryotic Model Organisms. In: Siddhardha B, Dyavaiah M, Kasinathan K, editors. Model Organisms to Study Biological Activities and Toxicity of Nanoparticles. Singapore: Springer; 2020. pp. 59-81. [DOI: 10.1007/978-981-15-1702-0_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
73 Rahdar A, Beyzaei H, Saadat M, Yu X, Trant JF. Synthesis, physical characterization, and antifungal and antibacterial activities of oleic acid capped nanomagnetite and cobalt-doped nanomagnetite. Can J Chem 2020;98:34-9. [DOI: 10.1139/cjc-2019-0268] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
74 Marková Z, Šišková KM, Filip J, Čuda J, Kolář M, Šafářová K, Medřík I, Zbořil R. Air Stable Magnetic Bimetallic Fe–Ag Nanoparticles for Advanced Antimicrobial Treatment and Phosphorus Removal. Environ Sci Technol 2013;47:5285-93. [DOI: 10.1021/es304693g] [Cited by in Crossref: 77] [Cited by in F6Publishing: 47] [Article Influence: 8.6] [Reference Citation Analysis]
75 Fazly Bazzaz BS, Khameneh B, Jalili-Behabadi MM, Malaekeh-Nikouei B, Mohajeri SA. Preparation, characterization and antimicrobial study of a hydrogel (soft contact lens) material impregnated with silver nanoparticles. Cont Lens Anterior Eye 2014;37:149-52. [PMID: 24121010 DOI: 10.1016/j.clae.2013.09.008] [Cited by in Crossref: 55] [Cited by in F6Publishing: 43] [Article Influence: 6.1] [Reference Citation Analysis]
76 Song Y, Jiang H, Wang B, Kong Y, Chen J. Silver-Incorporated Mussel-Inspired Polydopamine Coatings on Mesoporous Silica as an Efficient Nanocatalyst and Antimicrobial Agent. ACS Appl Mater Interfaces 2018;10:1792-801. [DOI: 10.1021/acsami.7b18136] [Cited by in Crossref: 72] [Cited by in F6Publishing: 55] [Article Influence: 18.0] [Reference Citation Analysis]
77 Kassem A, Ayoub GM, Malaeb L. Antibacterial activity of chitosan nano-composites and carbon nanotubes: A review. Sci Total Environ 2019;668:566-76. [PMID: 30856567 DOI: 10.1016/j.scitotenv.2019.02.446] [Cited by in Crossref: 48] [Cited by in F6Publishing: 27] [Article Influence: 16.0] [Reference Citation Analysis]
78 Basu P, Mukherjee K, Khamrui S, Mukherjee S, Ahmed M, Acharya K, Banerjee D, Nambissan PMG, Chatterjee K. Oxygen, nitrogen co-doped molybdenum disulphide nanoflowers for an excellent antifungal activity. Mater Adv 2020;1:1726-38. [DOI: 10.1039/d0ma00343c] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
79 Joshi MK, Pant HR, Kim HJ, Kim JH, Kim CS. One-pot synthesis of Ag-iron oxide/reduced graphene oxide nanocomposite via hydrothermal treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014;446:102-8. [DOI: 10.1016/j.colsurfa.2014.01.058] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
80 El Zowalaty ME, Hussein Al Ali SH, Husseiny MI, Geilich BM, Webster TJ, Hussein MZ. The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities. Int J Nanomedicine 2015;10:3269-74. [PMID: 25995633 DOI: 10.2147/IJN.S74469] [Cited by in Crossref: 38] [Cited by in F6Publishing: 14] [Article Influence: 5.4] [Reference Citation Analysis]
81 Manna J, Begum G, Kumar KP, Misra S, Rana RK. Enabling Antibacterial Coating via Bioinspired Mineralization of Nanostructured ZnO on Fabrics under Mild Conditions. ACS Appl Mater Interfaces 2013;5:4457-63. [DOI: 10.1021/am400933n] [Cited by in Crossref: 50] [Cited by in F6Publishing: 38] [Article Influence: 5.6] [Reference Citation Analysis]
82 Durmus NG, Webster TJ. Eradicating antibiotic-resistant biofilms with silver-conjugated superparamagnetic iron oxide nanoparticles. Adv Healthc Mater 2013;2:165-71. [PMID: 23184367 DOI: 10.1002/adhm.201200215] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 4.4] [Reference Citation Analysis]
83 Kooti M, Kharazi P, Motamedi H. Preparation and Antibacterial Activity of Three-component NiFe2O4@PANI@Ag Nanocomposite. Journal of Materials Science & Technology 2014;30:656-60. [DOI: 10.1016/j.jmst.2013.12.007] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
84 Sharma M, Madras G, Bose S. PVDF membranes containing hybrid nanoparticles for adsorbing cationic dyes: physical insights and mechanism. Mater Res Express 2016;3:075303. [DOI: 10.1088/2053-1591/3/7/075303] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
85 Wang C, Zhang K, Zhou Z, Li Q, Shao L, Hao RZ, Xiao R, Wang S. Vancomycin-modified Fe3O4@SiO2@Ag microflowers as effective antimicrobial agents. Int J Nanomedicine 2017;12:3077-94. [PMID: 28450783 DOI: 10.2147/IJN.S132570] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 3.8] [Reference Citation Analysis]
86 Xing Y, Ma F, Peng M, Ma X, Zhang Y, Cui Y. Bifunctional sodium tartrate as stabilizer and reductant for the facile synthesis of Fe3O4/Ag nanocomposites with catalytic activity. Journal of Magnetism and Magnetic Materials 2019;471:133-41. [DOI: 10.1016/j.jmmm.2018.09.068] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
87 Madan H, Sharma S, Udayabhanu, Suresh D, Vidya Y, Nagabhushana H, Rajanaik H, Anantharaju K, Prashantha S, Sadananda Maiya P. Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: Their antibacterial, antioxidant, photoluminescent and photocatalytic properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2016;152:404-16. [DOI: 10.1016/j.saa.2015.07.067] [Cited by in Crossref: 94] [Cited by in F6Publishing: 48] [Article Influence: 15.7] [Reference Citation Analysis]
88 Jana TK, Jana SK, Kumar A, De K, Maiti R, Mandal AK, Chatterjee T, Chatterjee BK, Chakrabarti P, Chatterjee K. The antibacterial and anticancer properties of zinc oxide coated iron oxide nanotextured composites. Colloids Surf B Biointerfaces 2019;177:512-9. [PMID: 30818244 DOI: 10.1016/j.colsurfb.2019.02.041] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
89 Gnaneshwar PV, Sudakaran SV, Abisegapriyan S, Sherine J, Ramakrishna S, Rahim MHA, Yusoff MM, Jose R, Venugopal JR. Ramification of zinc oxide doped hydroxyapatite biocomposites for the mineralization of osteoblasts. Materials Science and Engineering: C 2019;96:337-46. [DOI: 10.1016/j.msec.2018.11.033] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 8.3] [Reference Citation Analysis]
90 Perera YR, Hill RA, Fitzkee NC. Protein Interactions with Nanoparticle Surfaces: Highlighting Solution NMR Techniques. Isr J Chem 2019;59:962-79. [PMID: 34045771 DOI: 10.1002/ijch.201900080] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
91 Fialova D, Kremplova M, Melichar L, Kopel P, Hynek D, Adam V, Kizek R. Interaction of Heavy Metal Ions with Carbon and Iron Based Particles. Materials (Basel) 2014;7:2242-56. [PMID: 28788566 DOI: 10.3390/ma7032242] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
92 Roca RA, Sczancoski JC, Nogueira IC, Fabbro MT, Alves HC, Gracia L, Santos LPS, de Sousa CP, Andrés J, Luz GE, Longo E, Cavalcante LS. Facet-dependent photocatalytic and antibacterial properties of α-Ag 2 WO 4 crystals: combining experimental data and theoretical insights. Catal Sci Technol 2015;5:4091-107. [DOI: 10.1039/c5cy00331h] [Cited by in Crossref: 100] [Article Influence: 14.3] [Reference Citation Analysis]
93 Chang M, Lin WS, Xiao W, Chen YN. Antibacterial Effects of Magnetically-Controlled Ag/Fe₃O₄ Nanoparticles. Materials (Basel) 2018;11:E659. [PMID: 29695121 DOI: 10.3390/ma11050659] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
94 Hebbar RS, Isloor AM, Ananda K, Abdullah MS, Ismail AF. Fabrication of a novel hollow fiber membrane decorated with functionalized Fe 2 O 3 nanoparticles: towards sustainable water treatment and biofouling control. New J Chem 2017;41:4197-211. [DOI: 10.1039/c7nj00221a] [Cited by in Crossref: 13] [Article Influence: 2.6] [Reference Citation Analysis]
95 Atiyah AA, Haider AJ, Dhahi RM. Cytotoxicity properties of functionalised carbon nanotubes on pathogenic bacteria. IET Nanobiotechnol 2019;13:597-601. [PMID: 31432792 DOI: 10.1049/iet-nbt.2018.5394] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
96 Bhushan M, Muthukamalam S, Sudharani S, Viswanath AK. Synthesis of α-Fe 2−x Ag x O 3 nanocrystals and study of their optical, magnetic and antibacterial properties. RSC Adv 2015;5:32006-14. [DOI: 10.1039/c4ra17259k] [Cited by in Crossref: 9] [Article Influence: 1.3] [Reference Citation Analysis]
97 Bai Y, Lu Y, Liu J. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4–AgBr composite. Journal of Hazardous Materials 2016;307:26-35. [DOI: 10.1016/j.jhazmat.2015.12.052] [Cited by in Crossref: 89] [Cited by in F6Publishing: 55] [Article Influence: 14.8] [Reference Citation Analysis]
98 Kulkarni S, Jadhav M, Raikar P, Barretto DA, Vootla SK, Raikar US. Green synthesized multifunctional Ag@Fe 2 O 3 nanocomposites for effective antibacterial, antifungal and anticancer properties. New J Chem 2017;41:9513-20. [DOI: 10.1039/c7nj01849e] [Cited by in Crossref: 18] [Article Influence: 3.6] [Reference Citation Analysis]
99 Vazquez-Muñoz R, Avalos-Borja M, Castro-Longoria E. Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PLoS One 2014;9:e108876. [PMID: 25290909 DOI: 10.1371/journal.pone.0108876] [Cited by in Crossref: 72] [Cited by in F6Publishing: 65] [Article Influence: 9.0] [Reference Citation Analysis]
100 Donadelli JA, Rivas Aiello MB, Aparicio F, Moreno MS, Morales MG, Pajares A, Arce VB, Mártire DO. Comparison of the (photo)catalytic efficiency of Ag/Fe nanocomposites prepared by polyol synthesis and laser ablation. J Nanopart Res 2022;24. [DOI: 10.1007/s11051-022-05446-y] [Reference Citation Analysis]
101 Zhang B, Zhu J, Gu H, Deng S. Biodistribution and Acute Toxicity of Intravenous Multifunctional 125 I-Radiolabeled Fe 3 O 4 -Ag Heterodimer Nanoparticles in Mice. Journal of Nanomaterials 2018;2018:1-6. [DOI: 10.1155/2018/3150351] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
102 Jalali SAH, Allafchian AR. Assessment of antibacterial properties of novel silver nanocomposite. Journal of the Taiwan Institute of Chemical Engineers 2016;59:506-13. [DOI: 10.1016/j.jtice.2015.08.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
103 Kumar S, Singh M, Halder D, Mitra A. Mechanistic study of antibacterial activity of biologically synthesized silver nanocolloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014;449:82-6. [DOI: 10.1016/j.colsurfa.2014.02.027] [Cited by in Crossref: 37] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
104 Brennan SA, Ní Fhoghlú C, Devitt BM, O'Mahony FJ, Brabazon D, Walsh A. Silver nanoparticles and their orthopaedic applications. Bone Joint J 2015;97-B:582-9. [PMID: 25922449 DOI: 10.1302/0301-620X.97B5.33336] [Cited by in Crossref: 80] [Cited by in F6Publishing: 38] [Article Influence: 11.4] [Reference Citation Analysis]
105 Mukherjee M, De S. Reduction of microbial contamination from drinking water using an iron oxide nanoparticle-impregnated ultrafiltration mixed matrix membrane: preparation, characterization and antimicrobial properties. Environ Sci : Water Res Technol 2015;1:204-17. [DOI: 10.1039/c4ew00094c] [Cited by in Crossref: 12] [Article Influence: 1.7] [Reference Citation Analysis]
106 Le A, Le TT, Nguyen VQ, Tran HH, Dang DA, Tran QH, Vu DL. Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections. Adv Nat Sci: Nanosci Nanotechnol 2012;3:045007. [DOI: 10.1088/2043-6262/3/4/045007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
107 Ali A, Shah T, Ullah R, Zhou P, Guo M, Ovais M, Tan Z, Rui Y. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front Chem 2021;9:629054. [PMID: 34327190 DOI: 10.3389/fchem.2021.629054] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
108 Khan JA, Qasim M, Singh BR, Khan W, Das D, Naqvi AH. Polyaniline/CoFe2O4 nanocomposite inhibits the growth of Candida albicans 077 by ROS production. Comptes Rendus Chimie 2014;17:91-102. [DOI: 10.1016/j.crci.2013.08.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 1.9] [Reference Citation Analysis]
109 Gallo J, Holinka M, Moucha CS. Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci. 2014;15:13849-13880. [PMID: 25116685 DOI: 10.3390/ijms150813849] [Cited by in Crossref: 190] [Cited by in F6Publishing: 151] [Article Influence: 23.8] [Reference Citation Analysis]
110 Kooti M, Kharazi P, Motamedi H. Preparation, characterization, and antibacterial activity of CoFe2O4/polyaniline/Ag nanocomposite. Journal of the Taiwan Institute of Chemical Engineers 2014;45:2698-704. [DOI: 10.1016/j.jtice.2014.04.006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 4.1] [Reference Citation Analysis]
111 Zhou Z, Wang J, Xue W, Zou Y, Liu G, Tian Z. Development of shipboard automatic flow injection analysis-Surface-enhanced Raman spectroscopy instrument toward onsite detection of trace polycyclic aromatic hydrocarbons in water environment. Rev Sci Instrum 2021;92:104102. [PMID: 34717398 DOI: 10.1063/5.0043038] [Reference Citation Analysis]
112 Duan S, Wu R, Xiong Y, Ren H, Lei C, Zhao Y, Zhang X, Xu F. Multifunctional antimicrobial materials: From rational design to biomedical applications. Progress in Materials Science 2022;125:100887. [DOI: 10.1016/j.pmatsci.2021.100887] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
113 Panáček A, Balzerová A, Prucek R, Ranc V, Večeřová R, Husičková V, Pechoušek J, Filip J, Zbořil R, Kvítek L. Preparation, characterization and antimicrobial efficiency of Ag/PDDA-diatomite nanocomposite. Colloids Surf B Biointerfaces 2013;110:191-8. [PMID: 23732794 DOI: 10.1016/j.colsurfb.2013.04.031] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
114 Pawar O, Deshpande N, Dagade S, Waghmode S, Nigam Joshi P. Green synthesis of silver nanoparticles from purple acid phosphatase apoenzyme isolated from a new source Limonia acidissima. Journal of Experimental Nanoscience 2015;11:28-37. [DOI: 10.1080/17458080.2015.1025300] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 2.9] [Reference Citation Analysis]
115 Hosny NM, Sherif YE. Synthesis, optical band gap and anti-rheumatic activity of Fe2O3 nanocrystals via solid state decomposition of 4-aminophenol precursor. Chemical Data Collections 2022;37:100813. [DOI: 10.1016/j.cdc.2021.100813] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
116 Zhang Y, Zhu P, Li G, Wang W, Chen L, Lu DD, Sun R, Zhou F, Wong C. Highly stable and re-dispersible nano Cu hydrosols with sensitively size-dependent catalytic and antibacterial activities. Nanoscale 2015;7:13775-83. [DOI: 10.1039/c5nr03414k] [Cited by in Crossref: 28] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
117 Yang Y, Ren S, Zhang X, Yu Y, Liu C, Yang J, Miao L. Safety and efficacy of PLGA(Ag-Fe3O4)-coated dental implants in inhibiting bacteria adherence and osteogenic inducement under a magnetic field. Int J Nanomedicine 2018;13:3751-62. [PMID: 29988768 DOI: 10.2147/IJN.S159860] [Cited by in Crossref: 25] [Cited by in F6Publishing: 8] [Article Influence: 6.3] [Reference Citation Analysis]
118 Kaur P, Thakur R, Malwal H, Manuja A, Chaudhury A. Biosynthesis of biocompatible and recyclable silver/iron and gold/iron core-shell nanoparticles for water purification technology. Biocatalysis and Agricultural Biotechnology 2018;14:189-97. [DOI: 10.1016/j.bcab.2018.03.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 4.8] [Reference Citation Analysis]
119 Seabra AB, Pelegrino MT, Haddad PS. Antimicrobial Applications of Superparamagnetic Iron Oxide Nanoparticles. Nanostructures for Antimicrobial Therapy. Elsevier; 2017. pp. 531-50. [DOI: 10.1016/b978-0-323-46152-8.00024-x] [Cited by in Crossref: 8] [Article Influence: 1.6] [Reference Citation Analysis]
120 Marková Z, Šišková K, Filip J, Šafářová K, Prucek R, Panáček A, Kolář M, Zbořil R. Chitosan-based synthesis of magnetically-driven nanocomposites with biogenic magnetite core, controlled silver size, and high antimicrobial activity. Green Chem 2012;14:2550. [DOI: 10.1039/c2gc35545k] [Cited by in Crossref: 74] [Cited by in F6Publishing: 52] [Article Influence: 7.4] [Reference Citation Analysis]
121 Ebrahimi N, Rasoul-amini S, Ebrahiminezhad A, Ghasemi Y, Gholami A, Seradj H. Comparative Study on Characteristics and Cytotoxicity of Bifunctional Magnetic-Silver Nanostructures: Synthesized Using Three Different Reducing Agents. Acta Metall Sin (Engl Lett ) 2016;29:326-34. [DOI: 10.1007/s40195-016-0399-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
122 Prashanth P, Raveendra R, Hari Krishna R, Ananda S, Bhagya N, Nagabhushana B, Lingaraju K, Raja Naika H. Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al 2 O 3 nanoparticles. Journal of Asian Ceramic Societies 2018;3:345-51. [DOI: 10.1016/j.jascer.2015.07.001] [Cited by in Crossref: 66] [Cited by in F6Publishing: 17] [Article Influence: 16.5] [Reference Citation Analysis]
123 Tade RS, More MP, Chatap VK, Patil PO, Deshmukh PK. Fabrication and In vitro drug release characteristics of magnetic nanocellulose fiber composites for efficient delivery of nystatin. Mater Res Express 2018;5:116102. [DOI: 10.1088/2053-1591/aadd2b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
124 Chen L, Razavi FS, Mumin A, Guo X, Sham T, Zhang J. Multifunctional nanoparticles for rapid bacterial capture, detection, and decontamination. RSC Adv 2013;3:2390. [DOI: 10.1039/c2ra22286h] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
125 Amarjargal A, Tijing LD, Im I, Kim CS. Simultaneous preparation of Ag/Fe3O4 core–shell nanocomposites with enhanced magnetic moment and strong antibacterial and catalytic properties. Chemical Engineering Journal 2013;226:243-54. [DOI: 10.1016/j.cej.2013.04.054] [Cited by in Crossref: 99] [Cited by in F6Publishing: 65] [Article Influence: 11.0] [Reference Citation Analysis]
126 Ansari Z, Dhara S, Bandyopadhyay B, Saha A, Sen K. Spectral anion sensing and γ-radiation induced magnetic modifications of polyphenol generated Ag-nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 2016;156:98-104. [PMID: 26654966 DOI: 10.1016/j.saa.2015.11.029] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
127 Karak N. Silver Nanomaterials and Their Polymer Nanocomposites. Nanomaterials and Polymer Nanocomposites. Elsevier; 2019. pp. 47-89. [DOI: 10.1016/b978-0-12-814615-6.00002-3] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
128 Cao H, Qiao Y, Liu X, Lu T, Cui T, Meng F, Chu PK. Electron storage mediated dark antibacterial action of bound silver nanoparticles: smaller is not always better. Acta Biomater 2013;9:5100-10. [PMID: 23085265 DOI: 10.1016/j.actbio.2012.10.017] [Cited by in Crossref: 97] [Cited by in F6Publishing: 89] [Article Influence: 10.8] [Reference Citation Analysis]
129 Wang H, Zheng X, Chen J, Wang D, Wang Q, Xue T, Liu C, Jin Z, Cui X, Zheng W. Transformation from Silver Nanoprisms to Nanodecahedra in a Temperature-Controlled Photomediated Synthesis. J Phys Chem C 2012;116:24268-73. [DOI: 10.1021/jp304941b] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
130 Haham H, Natan M, Gutman O, Kolitz-domb M, Banin E, Margel S. Engineering of Superparamagnetic Core–Shell Iron Oxide/ N -Chloramine Nanoparticles for Water Purification. ACS Appl Mater Interfaces 2016;8:18488-95. [DOI: 10.1021/acsami.6b05806] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
131 Krehula S, Musić S. Formation of AgFeO2, α-FeOOH, and Ag2O from mixed Fe(NO3)3–AgNO3 solutions at high pH. Journal of Molecular Structure 2013;1044:221-30. [DOI: 10.1016/j.molstruc.2012.11.012] [Cited by in Crossref: 18] [Article Influence: 2.0] [Reference Citation Analysis]
132 Zheng K, Setyawati MI, Leong DT, Xie J. Antimicrobial silver nanomaterials. Coordination Chemistry Reviews 2018;357:1-17. [DOI: 10.1016/j.ccr.2017.11.019] [Cited by in Crossref: 288] [Cited by in F6Publishing: 160] [Article Influence: 72.0] [Reference Citation Analysis]
133 Salari S, Sadat Seddighi N, Ghasemi Nejad Almani P. Evaluation of biofilm formation ability in different Candida strains and anti-biofilm effects of Fe3O4-NPs compared with Fluconazole: an in vitro study. J Mycol Med 2018;28:23-8. [PMID: 29519624 DOI: 10.1016/j.mycmed.2018.02.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
134 Kilianová M, Prucek R, Filip J, Kolařík J, Kvítek L, Panáček A, Tuček J, Zbořil R. Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment. Chemosphere 2013;93:2690-7. [DOI: 10.1016/j.chemosphere.2013.08.071] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 5.7] [Reference Citation Analysis]
135 Golkhatmi FM, Bahramian B, Mamarabadi M. Application of surface modified nano ferrite nickel in catalytic reaction (epoxidation of alkenes) and investigation on its antibacterial and antifungal activities. Materials Science and Engineering: C 2017;78:1-11. [DOI: 10.1016/j.msec.2017.04.025] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
136 Alvino L, Pacheco-Herrero M, López-Lorente ÁI, Quiñones Z, Cárdenas S, González-Sánchez ZI. Toxicity evaluation of barium ferrite nanoparticles in bacteria, yeast and nematode. Chemosphere 2020;254:126786. [PMID: 32335439 DOI: 10.1016/j.chemosphere.2020.126786] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
137 Chatzimitakos T, Kallimanis A, Avgeropoulos A, Stalikas CD. Antibacterial, Anti-Biofouling, and Antioxidant Prospects of Metal-Based Nanomaterials: Water. Clean Soil Air Water 2016;44:794-802. [DOI: 10.1002/clen.201500366] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
138 Groiss S, Selvaraj R, Varadavenkatesan T, Vinayagam R. Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. Journal of Molecular Structure 2017;1128:572-8. [DOI: 10.1016/j.molstruc.2016.09.031] [Cited by in Crossref: 88] [Cited by in F6Publishing: 35] [Article Influence: 17.6] [Reference Citation Analysis]
139 Elangovan K, Elumalai D, Anupriya S, Shenbhagaraman R, Kaleena PK, Murugesan K. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. J Photochem Photobiol B 2015;151:118-24. [PMID: 26233711 DOI: 10.1016/j.jphotobiol.2015.05.015] [Cited by in Crossref: 55] [Cited by in F6Publishing: 45] [Article Influence: 7.9] [Reference Citation Analysis]
140 Pachla A, Lendzion-bieluń Z, Moszyński D, Markowska-szczupak A, Narkiewicz U, Wróbel RJ, Guskos N, Żołnierkiewicz G. Synthesis and antibacterial properties of Fe 3 O 4 -Ag nanostructures. Polish Journal of Chemical Technology 2016;18:110-6. [DOI: 10.1515/pjct-2016-0079] [Cited by in Crossref: 13] [Article Influence: 2.2] [Reference Citation Analysis]
141 Mukherjee M, Panda SR, De S. Adhesion resistant chitosan coated iron oxide polyacrylonitrile mixed matrix membrane for disinfection of surface water: Adhesion resistant MMM for disinfection of surface water. J Chem Technol Biotechnol 2017;92:408-19. [DOI: 10.1002/jctb.5019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
142 Moradlou O, Rabiei Z, Delavari N. Antibacterial effects of carbon quantum dots@hematite nanostructures deposited on titanium against Gram-positive and Gram-negative bacteria. Journal of Photochemistry and Photobiology A: Chemistry 2019;379:144-9. [DOI: 10.1016/j.jphotochem.2019.04.047] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 4.7] [Reference Citation Analysis]
143 Singh P, Singh KR, Verma R, Singh J, Singh RP. Efficient electro-optical characteristics of bioinspired iron oxide nanoparticles synthesized by Terminalia chebula dried seed extract. Materials Letters 2022;307:131053. [DOI: 10.1016/j.matlet.2021.131053] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
144 Matharu RK, Ciric L, Edirisinghe M. Nanocomposites: suitable alternatives as antimicrobial agents. Nanotechnology 2018;29:282001. [PMID: 29620531 DOI: 10.1088/1361-6528/aabbff] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
145 Jin Y, Deng J, Yu J, Yang C, Tong M, Hou Y. Fe 5 C 2 nanoparticles: a reusable bactericidal material with photothermal effects under near-infrared irradiation. J Mater Chem B 2015;3:3993-4000. [DOI: 10.1039/c5tb00201j] [Cited by in Crossref: 26] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
146 Kaloti M, Kumar A. Synthesis of Chitosan-Mediated Silver Coated γ-Fe 2 O 3 (Ag−γ-Fe 2 O 3 @Cs) Superparamagnetic Binary Nanohybrids for Multifunctional Applications. J Phys Chem C 2016;120:17627-44. [DOI: 10.1021/acs.jpcc.6b05851] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
147 Hong W, Hsu I, Huang S, Lee C, Ko H, Tsai P, Shieh D, Huang C. Assembled growth of 3D Fe 3 O 4 @Au nanoparticles for efficient photothermal ablation and SERS detection of microorganisms. J Mater Chem B 2018;6:5689-97. [DOI: 10.1039/c8tb00599k] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 5.3] [Reference Citation Analysis]
148 Shim GI, Kim SH, Eom HW, Kim KM, Choi SY. Development of a transparent, non-cytotoxic, silver ion-exchanged glass with antimicrobial activity and low ion elution. Enzyme Microb Technol 2015;72:65-71. [PMID: 25837509 DOI: 10.1016/j.enzmictec.2015.02.008] [Cited by in Crossref: 4] [Article Influence: 0.6] [Reference Citation Analysis]
149 Theamdee P, Rutnakornpituk B, Wichai U, Nakkuntod M, Rutnakornpituk M. Recyclable silver–magnetite nanocomposite for antibacterial application. Journal of Industrial and Engineering Chemistry 2015;29:63-70. [DOI: 10.1016/j.jiec.2015.03.018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
150 Li N, Huang G, Shen X, Xiao H, Fu S. Controllable fabrication and magnetic-field assisted alignment of Fe3O4-coated Ag nanowires via a facile co-precipitation method. J Mater Chem C 2013;1:4879. [DOI: 10.1039/c3tc30270a] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
151 Kołątaj K, Ambroziak R, Kędziora M, Krajczewski J, Kudelski A. Formation of bifunctional conglomerates composed of magnetic γ-Fe2O3 nanoparticles and various noble metal nanostructures. Applied Surface Science 2019;470:970-8. [DOI: 10.1016/j.apsusc.2018.11.208] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
152 Salam MA, Obaid AY, El-shishtawy R, Mohamed SA. Synthesis of nanocomposites of polypyrrole/carbon nanotubes/silver nano particles and their application in water disinfection. RSC Adv 2017;7:16878-84. [DOI: 10.1039/c7ra01033h] [Cited by in Crossref: 26] [Article Influence: 5.2] [Reference Citation Analysis]
153 Zhu S, Fan C, Wang J, He J, Liang E, Chao M. Realization of high sensitive SERS substrates with one-pot fabrication of Ag–Fe 3 O 4 nanocomposites. Journal of Colloid and Interface Science 2015;438:116-21. [DOI: 10.1016/j.jcis.2014.09.015] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
154 Shayani Rad M, Khameneh B, Sabeti Z, Mohajeri SA, Fazly Bazzaz BS. Antibacterial Activity of Silver Nanoparticle-Loaded Soft Contact Lens Materials: The Effect of Monomer Composition. Current Eye Research 2016;41:1286-93. [DOI: 10.3109/02713683.2015.1123726] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
155 Lee WT, Wu YN, Chen YH, Wu SR, Shih TM, Li TJ, Yang LX, Yeh CS, Tsai PJ, Shieh DB. Octahedron Iron Oxide Nanocrystals Prohibited Clostridium difficile Spore Germination and Attenuated Local and Systemic Inflammation. Sci Rep 2017;7:8124. [PMID: 28811642 DOI: 10.1038/s41598-017-08387-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
156 Niska K, Zielinska E, Radomski MW, Inkielewicz-stepniak I. Metal nanoparticles in dermatology and cosmetology: Interactions with human skin cells. Chemico-Biological Interactions 2018;295:38-51. [DOI: 10.1016/j.cbi.2017.06.018] [Cited by in Crossref: 53] [Cited by in F6Publishing: 39] [Article Influence: 13.3] [Reference Citation Analysis]
157 Jiang H, Liu J, Wang J, Lu Y, Yang X. Thermal perturbation nucleation and growth of silver molybdate nanoclusters by a dynamic template route. CrystEngComm 2015;17:5511-21. [DOI: 10.1039/c5ce00039d] [Cited by in Crossref: 29] [Article Influence: 4.1] [Reference Citation Analysis]
158 Sun X, Bremner DH, Wan N, Wang X. Development of antibacterial ZnO-loaded cotton fabric based on in situ fabrication. Appl Phys A 2016;122. [DOI: 10.1007/s00339-016-0482-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
159 Niemirowicz K, Markiewicz KH, Wilczewska AZ, Car H. Magnetic nanoparticles as new diagnostic tools in medicine. Adv Med Sci 2012;57:196-207. [PMID: 23154427 DOI: 10.2478/v10039-012-0031-9] [Cited by in Crossref: 79] [Cited by in F6Publishing: 66] [Article Influence: 8.8] [Reference Citation Analysis]
160 Qasim M, Udomluck N, Chang J, Park H, Kim K. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles. Int J Nanomedicine 2018;13:235-49. [PMID: 29379284 DOI: 10.2147/IJN.S153485] [Cited by in Crossref: 56] [Cited by in F6Publishing: 13] [Article Influence: 14.0] [Reference Citation Analysis]
161 Ghaseminezhad SM, Shojaosadati SA. Evaluation of the antibacterial activity of Ag/Fe 3 O 4 nanocomposites synthesized using starch. Carbohydrate Polymers 2016;144:454-63. [DOI: 10.1016/j.carbpol.2016.03.007] [Cited by in Crossref: 38] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
162 Dinali R, Ebrahiminezhad A, Manley-harris M, Ghasemi Y, Berenjian A. Iron oxide nanoparticles in modern microbiology and biotechnology. Critical Reviews in Microbiology 2017;43:493-507. [DOI: 10.1080/1040841x.2016.1267708] [Cited by in Crossref: 78] [Cited by in F6Publishing: 20] [Article Influence: 15.6] [Reference Citation Analysis]
163 Garza-navarro MA, Aguirre-rosales JA, Llanas-vázquez EE, Moreno-cortez IE, Torres-castro A, González-gonzález V. Totally Ecofriendly Synthesis of Silver Nanoparticles from Aqueous Dissolutions of Polysaccharides. International Journal of Polymer Science 2013;2013:1-8. [DOI: 10.1155/2013/436021] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
164 Soleyman R, Pourjavadi A, Masoud N, Varamesh A. Core–Shell γ- Fe2O3 / SiO2 / PCA / Ag -NPs Hybrid Nanomaterials as a New Candidate for Future Cancer Therapy. Int J Nanosci 2014;13:1450008. [DOI: 10.1142/s0219581x14500082] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
165 Jia H, Draz MS, Ruan Z. Functional Nanomaterials for the Detection and Control of Bacterial Infections. Curr Top Med Chem 2019;19:2449-75. [PMID: 31642781 DOI: 10.2174/1568026619666191023123407] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
166 Villaseñor MJ, Ríos Á. Nanomaterials for water cleaning and desalination, energy production, disinfection, agriculture and green chemistry. Environ Chem Lett 2018;16:11-34. [DOI: 10.1007/s10311-017-0656-9] [Cited by in Crossref: 34] [Cited by in F6Publishing: 17] [Article Influence: 6.8] [Reference Citation Analysis]
167 Schwartz VB, Thétiot F, Ritz S, Pütz S, Choritz L, Lappas A, Förch R, Landfester K, Jonas U. Antibacterial Surface Coatings from Zinc Oxide Nanoparticles Embedded in Poly(N-isopropylacrylamide) Hydrogel Surface Layers. Adv Funct Mater 2012;22:2376-86. [DOI: 10.1002/adfm.201102980] [Cited by in Crossref: 180] [Cited by in F6Publishing: 139] [Article Influence: 18.0] [Reference Citation Analysis]
168 Chen K, Ye W, Cai S, Huang L, Zhong T, Chen L, Wang X. Green antimicrobial coating based on quaternised chitosan/organic montmorillonite/Ag NPs nanocomposites. Journal of Experimental Nanoscience 2016;11:1360-71. [DOI: 10.1080/17458080.2016.1227095] [Cited by in Crossref: 8] [Article Influence: 1.3] [Reference Citation Analysis]
169 Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interface Sci 2014;204:15-34. [PMID: 24406050 DOI: 10.1016/j.cis.2013.12.002] [Cited by in Crossref: 266] [Cited by in F6Publishing: 224] [Article Influence: 33.3] [Reference Citation Analysis]
170 Zhang Z, Niu N, Gao X, Han F, Chen Z, Li S, Li J. A new drug carrier with oxygen generation function for modulating tumor hypoxia microenvironment in cancer chemotherapy. Colloids and Surfaces B: Biointerfaces 2019;173:335-45. [DOI: 10.1016/j.colsurfb.2018.10.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
171 Dinh NX, Chi DT, Lan NT, Lan H, Van Tuan H, Van Quy N, Phan VN, Huy TQ, Le A. Water-dispersible silver nanoparticles-decorated carbon nanomaterials: synthesis and enhanced antibacterial activity. Appl Phys A 2015;119:85-95. [DOI: 10.1007/s00339-014-8962-6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
172 Wang B, Wang F, Kong Y, Wu Z, Wang R, Song P, He Y. Polyurea-crosslinked cationic acrylate copolymer for antibacterial coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018;549:122-9. [DOI: 10.1016/j.colsurfa.2018.04.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
173 Liu J, Zhao Z, Feng H, Cui F. One-pot synthesis of Ag–Fe3O4 nanocomposites in the absence of additional reductant and its potent antibacterial properties. J Mater Chem 2012;22:13891. [DOI: 10.1039/c2jm31831h] [Cited by in Crossref: 49] [Cited by in F6Publishing: 34] [Article Influence: 4.9] [Reference Citation Analysis]
174 Lopez-Abarrategui C, Figueroa-Espi V, Lugo-Alvarez MB, Pereira CD, Garay H, Barbosa JA, Falcão R, Jiménez-Hernández L, Estévez-Hernández O, Reguera E, Franco OL, Dias SC, Otero-Gonzalez AJ. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5. Int J Nanomedicine 2016;11:3849-57. [PMID: 27563243 DOI: 10.2147/IJN.S107561] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 2.2] [Reference Citation Analysis]
175 Jung JH, Cho M, Seo TS, Lee SY. Biosynthesis and applications of iron oxide nanocomposites synthesized by recombinant Escherichia coli. Appl Microbiol Biotechnol. [DOI: 10.1007/s00253-022-11779-4] [Reference Citation Analysis]
176 Abbas HS, Krishnan A. Magnetic Nanosystems as a Therapeutic Tool to Combat Pathogenic Fungi. Adv Pharm Bull 2020;10:512-23. [PMID: 33072531 DOI: 10.34172/apb.2020.063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
177 Demarchi CA, Bella Cruz A, Ślawska-waniewska A, Nedelko N, Dłużewski P, Kaleta A, Trzciński J, Magro JD, Scapinello J, Rodrigues CA. Synthesis of Ag@Fe2O3 nanocomposite based on O-carboxymethylchitosan with antimicrobial activity. International Journal of Biological Macromolecules 2018;107:42-51. [DOI: 10.1016/j.ijbiomac.2017.08.147] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
178 Tran QH, Nguyen VQ, Le A. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci: Nanosci Nanotechnol 2013;4:033001. [DOI: 10.1088/2043-6262/4/3/033001] [Cited by in Crossref: 357] [Cited by in F6Publishing: 151] [Article Influence: 39.7] [Reference Citation Analysis]
179 Madubuonu N, Aisida SO, Ali A, Ahmad I, Zhao T, Botha S, Maaza M, Ezema FI. Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja-Moringa oleifera and their antibacterial and photocatalytic study. Journal of Photochemistry and Photobiology B: Biology 2019;199:111601. [DOI: 10.1016/j.jphotobiol.2019.111601] [Cited by in Crossref: 41] [Cited by in F6Publishing: 16] [Article Influence: 13.7] [Reference Citation Analysis]
180 Shatan AB, Venclíková K, Zasońska BA, Patsula V, Pop-georgievski O, Petrovský E, Horák D. Antibacterial Silver-Conjugated Magnetic Nanoparticles: Design, Synthesis and Bactericidal Effect. Pharm Res 2019;36. [DOI: 10.1007/s11095-019-2680-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
181 Zitka O, Cernei N, Heger Z, Matousek M, Kopel P, Kynicky J, Masarik M, Kizek R, Adam V. Microfluidic chip coupled with modified paramagnetic particles for sarcosine isolation in urine: Microfluidics and Miniaturization. ELECTROPHORESIS 2013;34:2639-47. [DOI: 10.1002/elps.201300114] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
182 Jaisai M, Baruah S, Dutta J. Paper modified with ZnO nanorods - antimicrobial studies. Beilstein J Nanotechnol 2012;3:684-91. [PMID: 23213632 DOI: 10.3762/bjnano.3.78] [Cited by in Crossref: 45] [Cited by in F6Publishing: 33] [Article Influence: 4.5] [Reference Citation Analysis]
183 Labruère R, Sona AJ, Turos E. Anti-Methicillin-Resistant Staphylococcus aureus Nanoantibiotics. Front Pharmacol 2019;10:1121. [PMID: 31636560 DOI: 10.3389/fphar.2019.01121] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
184 Das R, Rinaldi-Montes N, Alonso J, Amghouz Z, Garaio E, García JA, Gorria P, Blanco JA, Phan MH, Srikanth H. Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe3O4 Nanoflowers. ACS Appl Mater Interfaces 2016;8:25162-9. [PMID: 27589410 DOI: 10.1021/acsami.6b09942] [Cited by in Crossref: 62] [Cited by in F6Publishing: 47] [Article Influence: 10.3] [Reference Citation Analysis]
185 Zouzelka R, Cihakova P, Rihova Ambrozova J, Rathousky J. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.). Environ Sci Pollut Res 2016;23:8317-26. [DOI: 10.1007/s11356-016-6361-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
186 Ashraf N, Ahmad F, Da-Wei L, Zhou RB, Feng-Li H, Yin DC. Iron/iron oxide nanoparticles: advances in microbial fabrication, mechanism study, biomedical, and environmental applications. Crit Rev Microbiol 2019;45:278-300. [PMID: 30985230 DOI: 10.1080/1040841X.2019.1593101] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
187 Ghaseminezhad SM, Shojaosadati SA, Meyer RL. Ag/Fe3O4 nanocomposites penetrate and eradicate S. aureus biofilm in an in vitro chronic wound model. Colloids and Surfaces B: Biointerfaces 2018;163:192-200. [DOI: 10.1016/j.colsurfb.2017.12.035] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
188 Karuppuraja M, Murugesan S. Template free solvothermal synthesis of single crystal magnetic Fe 3 O 4 hollow spheres, their interaction with bovine serum albumin and antibacterial activities. Journal of Saudi Chemical Society 2018;22:569-80. [DOI: 10.1016/j.jscs.2017.10.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
189 Xu J, Xu B, Shou D, Xia X, Hu Y. Preparation and Evaluation of Vancomycin-Loaded N-trimethyl Chitosan Nanoparticles. Polymers 2015;7:1850-70. [DOI: 10.3390/polym7091488] [Cited by in Crossref: 49] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
190 Tang H, Lu A, Li L, Zhou W, Xie Z, Zhang L. Highly antibacterial materials constructed from silver molybdate nanoparticles immobilized in chitin matrix. Chemical Engineering Journal 2013;234:124-31. [DOI: 10.1016/j.cej.2013.08.096] [Cited by in Crossref: 64] [Cited by in F6Publishing: 41] [Article Influence: 7.1] [Reference Citation Analysis]
191 Khairy M, Mohamed MM, Reda S, Ibrahem A. Effect of annealing temperature and Ag contents on the catalytic activity and supercapacitor performances of Ag@Ag2O/RGO nanocomposites. Materials Science and Engineering: B 2019;242:90-103. [DOI: 10.1016/j.mseb.2019.03.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
192 Azizi-Lalabadi M, Hashemi H, Feng J, Jafari SM. Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv Colloid Interface Sci 2020;284:102250. [PMID: 32966964 DOI: 10.1016/j.cis.2020.102250] [Cited by in Crossref: 63] [Cited by in F6Publishing: 45] [Article Influence: 31.5] [Reference Citation Analysis]
193 Lai H, Xu F, Wang L. A review of the preparation and application of magnetic nanoparticles for surface-enhanced Raman scattering. J Mater Sci 2018;53:8677-98. [DOI: 10.1007/s10853-018-2095-9] [Cited by in Crossref: 35] [Cited by in F6Publishing: 22] [Article Influence: 8.8] [Reference Citation Analysis]
194 Abbasi Kajani A, Bordbar A, Zarkesh-esfahani SH, Razmjou A, Hou J. Gold/silver decorated magnetic nanostructures as theranostic agents: Synthesis, characterization and in-vitro study. Journal of Molecular Liquids 2017;247:238-45. [DOI: 10.1016/j.molliq.2017.09.119] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
195 Chen Y, Gao N, Jiang J. Surface Matters: Enhanced Bactericidal Property of Core-Shell Ag-Fe 2 O 3 Nanostructures to Their Heteromer Counterparts from One-Pot Synthesis. Small 2013. [DOI: 10.1002/smll.201300543] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
196 Li F, Yu Z, Zhao L, Xue T. Synthesis and application of homogeneous Fe 3 O 4 core/Au shell nanoparticles with strong SERS effect. RSC Adv 2016;6:10352-7. [DOI: 10.1039/c5ra27875a] [Cited by in Crossref: 18] [Article Influence: 3.0] [Reference Citation Analysis]
197 Wang T, Ma B, Jin A, Li X, Zhang X, Wang W, Cai Y. Facile loading of Ag nanoparticles onto magnetic microsphere by the aid of a tannic acid—Metal polymer layer to synthesize magnetic disinfectant with high antibacterial activity. Journal of Hazardous Materials 2018;342:392-400. [DOI: 10.1016/j.jhazmat.2017.08.047] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
198 Cao L, Wang Z, Ye Z, Zhang Y, Zhao L, Zeng Y. Interface exchange coupling induced enhancements in coercivity and maximal magnetic energy product of BaFe12O19/Co3O4 nanocomposites. Journal of Alloys and Compounds 2017;715:199-205. [DOI: 10.1016/j.jallcom.2017.04.284] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.6] [Reference Citation Analysis]
199 Hoseinzadeh A, Habibi-yangjeh A, Davari M. Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method. Progress in Natural Science: Materials International 2016;26:334-40. [DOI: 10.1016/j.pnsc.2016.06.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
200 Changanaqui Barrientos K, Alvarado Iparraguirre DE, Alarcón Cavero HA. Síntesis y caracterización de nanocompuestos Fe3 O4 /Ag: su efecto contra Enterobacter aerogenes y Enterococcus faecalis. Rev colomb quim 2019;48:33-9. [DOI: 10.15446/rev.colomb.quim.v48n2.73724] [Reference Citation Analysis]
201 Gan Z, Zhao A, Zhang M, Wang D, Guo H, Tao W, Gao Q, Mao R, Liu E. Fabrication and magnetic-induced aggregation of Fe3O4 –noble metal composites for superior SERS performances. J Nanopart Res 2013;15. [DOI: 10.1007/s11051-013-1954-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
202 Cado G, Aslam R, Séon L, Garnier T, Fabre R, Parat A, Chassepot A, Voegel J, Senger B, Schneider F, Frère Y, Jierry L, Schaaf P, Kerdjoudj H, Metz-boutigue M, Boulmedais F. Self-Defensive Biomaterial Coating Against Bacteria and Yeasts: Polysaccharide Multilayer Film with Embedded Antimicrobial Peptide. Adv Funct Mater 2013. [DOI: 10.1002/adfm.201300416] [Cited by in Crossref: 53] [Cited by in F6Publishing: 40] [Article Influence: 5.9] [Reference Citation Analysis]
203 Seddighi NS, Salari S, Izadi AR. Evaluation of antifungal effect of iron‐oxide nanoparticles against different Candida species. IET nanobiotechnol 2017;11:883-8. [DOI: 10.1049/iet-nbt.2017.0025] [Cited by in Crossref: 30] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
204 Marulasiddeshwara M, Dakshayani S, Sharath Kumar M, Chethana R, Raghavendra Kumar P, Devaraja S. Facile-one pot-green synthesis, antibacterial, antifungal, antioxidant and antiplatelet activities of lignin capped silver nanoparticles: A promising therapeutic agent. Materials Science and Engineering: C 2017;81:182-90. [DOI: 10.1016/j.msec.2017.07.054] [Cited by in Crossref: 51] [Cited by in F6Publishing: 28] [Article Influence: 10.2] [Reference Citation Analysis]
205 Martínez-Rodríguez MA, Madla-Cruz E, Urrutia-Baca VH, de la Garza-Ramos MA, González-González VA, Garza-Navarro MA. Influence of Polysaccharides' Molecular Structure on the Antibacterial Activity and Cytotoxicity of Green Synthesized Composites Based on Silver Nanoparticles and Carboxymethyl-Cellulose. Nanomaterials (Basel) 2020;10:E1164. [PMID: 32545858 DOI: 10.3390/nano10061164] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
206 Miola M, Vernè E. In situ reduction of Ag on magnetic nanoparticles with gallic acid: effect of the synthesis parameters on morphology. Nanomedicine (Lond) 2022. [PMID: 35293220 DOI: 10.2217/nnm-2021-0479] [Reference Citation Analysis]
207 Ferreyra Maillard AP, Gonçalves S, Santos NC, López de Mishima BA, Dalmasso PR, Hollmann A. Studies on interaction of green silver nanoparticles with whole bacteria by surface characterization techniques. Biochimica et Biophysica Acta (BBA) - Biomembranes 2019;1861:1086-92. [DOI: 10.1016/j.bbamem.2019.03.011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
208 Parsameher N, Rezaei S, Khodavasiy S, Salari S, Hadizade S, Kord M, Ayatollahi Mousavi SA. Effect of biogenic selenium nanoparticles on ERG11 and CDR1 gene expression in both fluconazole-resistant and -susceptible Candida albicans isolates. Curr Med Mycol 2017;3:16-20. [PMID: 29707669 DOI: 10.29252/cmm.3.3.16] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
209 Dinh NX, Quy NV, Huy TQ, Le A. Decoration of Silver Nanoparticles on Multiwalled Carbon Nanotubes: Antibacterial Mechanism and Ultrastructural Analysis. Journal of Nanomaterials 2015;2015:1-11. [DOI: 10.1155/2015/814379] [Cited by in Crossref: 32] [Cited by in F6Publishing: 11] [Article Influence: 4.6] [Reference Citation Analysis]
210 Zhang L, Zhong L, Wang Y, Wang J, Nie X, Han X. Preparation and application of antibacterial magnetic nanosilver chitosan composites. Environ Prog Sustainable Energy 2017;36:1067-73. [DOI: 10.1002/ep.12573] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
211 Devi HS, Boda MA, Shah MA, Parveen S, Wani AH. Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Processing and Synthesis 2019;8:38-45. [DOI: 10.1515/gps-2017-0145] [Cited by in Crossref: 52] [Cited by in F6Publishing: 17] [Article Influence: 17.3] [Reference Citation Analysis]
212 Hatami R, Allafchian A, Karimzadeh F, Enayati MH. Fabrication of Fe 3 O 4 /Ag‐TiO 2 magnetic nanocomposite for antibacterial applications. Micro & Nano Letters 2022;17:9-15. [DOI: 10.1049/mna2.12099] [Reference Citation Analysis]
213 Abdel-mohsen A, Hrdina R, Burgert L, Abdel-rahman RM, Hašová M, Šmejkalová D, Kolář M, Pekar M, Aly A. Antibacterial activity and cell viability of hyaluronan fiber with silver nanoparticles. Carbohydrate Polymers 2013;92:1177-87. [DOI: 10.1016/j.carbpol.2012.08.098] [Cited by in Crossref: 59] [Cited by in F6Publishing: 51] [Article Influence: 6.6] [Reference Citation Analysis]
214 Hussain Z, Thu HE, Sohail M, Khan S. Hybridization and functionalization with biological macromolecules synergistically improve biomedical efficacy of silver nanoparticles: Reconceptualization of in-vitro, in-vivo and clinical studies. Journal of Drug Delivery Science and Technology 2019;54:101169. [DOI: 10.1016/j.jddst.2019.101169] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
215 Naseer F, Zahir E, Danish EY, Gull M, Noman S, Soomro MT. Superior antibacterial activity of reduced graphene oxide upon decoration with iron oxide nanorods. Journal of Environmental Chemical Engineering 2020;8:104424. [DOI: 10.1016/j.jece.2020.104424] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
216 Hasantabar V, Lakouraj MM, Nazarzadeh Zare E, Mohseni M. Innovative magnetic tri-layered nanocomposites based on polyxanthone triazole, polypyrrole and iron oxide: synthesis, characterization and investigation of the biological activities. RSC Adv 2015;5:70186-96. [DOI: 10.1039/c5ra07309j] [Cited by in Crossref: 19] [Article Influence: 2.7] [Reference Citation Analysis]
217 Reidy B, Haase A, Luch A, Dawson KA, Lynch I. Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials (Basel) 2013;6:2295-350. [PMID: 28809275 DOI: 10.3390/ma6062295] [Cited by in Crossref: 621] [Cited by in F6Publishing: 481] [Article Influence: 69.0] [Reference Citation Analysis]