BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chiappetta DA, Hocht C, Taira C, Sosnik A. Oral pharmacokinetics of the anti-HIV efavirenz encapsulated within polymeric micelles. Biomaterials 2011;32:2379-87. [DOI: 10.1016/j.biomaterials.2010.11.082] [Cited by in Crossref: 76] [Cited by in F6Publishing: 65] [Article Influence: 6.9] [Reference Citation Analysis]
Number Citing Articles
1 Wardhana YW, Hardian A, Chaerunisa AY, Suendo V, Soewandhi SN. Kinetic estimation of solid state transition during isothermal and grinding processes among efavirenz polymorphs. Heliyon 2020;6:e03876. [PMID: 32405549 DOI: 10.1016/j.heliyon.2020.e03876] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Xue Y, Sun J, Xiong S, Chai H, Xin X, Xu G, Liu T. Effect of block sequence of hyperbranched block copolymers on the aggregation behavior, drug solubilization and release property. Journal of Molecular Liquids 2019;278:320-8. [DOI: 10.1016/j.molliq.2019.01.080] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Moshe H, Davizon Y, Menaker Raskin M, Sosnik A. Novel poly(vinyl alcohol)-based amphiphilic nanogels by non-covalent boric acid crosslinking of polymeric micelles. Biomater Sci 2017;5:2295-309. [PMID: 29019482 DOI: 10.1039/c7bm00675f] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
4 Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnol 2021;15:19-27. [PMID: 34694727 DOI: 10.1049/nbt2.12018] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 García Vior MC, Marino J, Roguin LP, Sosnik A, Awruch J. Photodynamic effects of zinc(II) phthalocyanine-loaded polymeric micelles in human nasopharynx KB carcinoma cells. Photochem Photobiol 2013;89:492-500. [PMID: 22924690 DOI: 10.1111/j.1751-1097.2012.01229.x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
6 Seremeta KP, Höcht C, Taira C, Cortez Tornello PR, Abraham GA, Sosnik A. Didanosine-loaded poly(epsilon-caprolactone) microparticles by a coaxial electrohydrodynamic atomization (CEHDA) technique. J Mater Chem B 2015;3:102-11. [PMID: 32261930 DOI: 10.1039/c4tb00664j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
7 Ambhore JP, Chaudhari SR, Cheke RS, Kharkar PS. A Concise Analytical Profile of Efavirenz: Analytical Methodologies. Crit Rev Anal Chem 2021;:1-10. [PMID: 33722117 DOI: 10.1080/10408347.2021.1895711] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Parboosing R, Maguire GE, Govender P, Kruger HG. Nanotechnology and the treatment of HIV infection. Viruses 2012;4:488-520. [PMID: 22590683 DOI: 10.3390/v4040488] [Cited by in Crossref: 76] [Cited by in F6Publishing: 59] [Article Influence: 7.6] [Reference Citation Analysis]
9 Mao Y, Feng S, Li S, Zhao Q, Di D, Liu Y, Wang S. Chylomicron-pretended nano-bio self-assembling vehicle to promote lymphatic transport and GALTs target of oral drugs. Biomaterials 2019;188:173-86. [PMID: 30359884 DOI: 10.1016/j.biomaterials.2018.10.012] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
10 Sosnik A. Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing "Generally Recognized As Safe" (GRAS) nanopharmaceuticals: A review. Adv Drug Deliv Rev 2013;65:1828-51. [PMID: 24055628 DOI: 10.1016/j.addr.2013.09.002] [Cited by in Crossref: 73] [Cited by in F6Publishing: 68] [Article Influence: 8.1] [Reference Citation Analysis]
11 Patel GV, Patel VB, Pathak A, Rajput SJ. Nanosuspension of efavirenz for improved oral bioavailability: formulation optimization, in vitro, in situ and in vivo evaluation. Drug Development and Industrial Pharmacy 2013;40:80-91. [DOI: 10.3109/03639045.2012.746362] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 4.9] [Reference Citation Analysis]
12 Sosnik A, das Neves J, Sarmento B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Progress in Polymer Science 2014;39:2030-75. [DOI: 10.1016/j.progpolymsci.2014.07.010] [Cited by in Crossref: 287] [Cited by in F6Publishing: 215] [Article Influence: 35.9] [Reference Citation Analysis]
13 Talal J, Abutbul-ionita I, Schlachet I, Danino D, Sosnik A. Amphiphilic Nanoparticle-in-Nanoparticle Drug Delivery Systems Exhibiting Cross-Linked Inorganic Rate-Controlling Domains. Chem Mater 2017;29:873-85. [DOI: 10.1021/acs.chemmater.6b04922] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
14 Endres S, Karaev E, Hanio S, Schlauersbach J, Kraft C, Rasmussen T, Luxenhofer R, Böttcher B, Meinel L, Pöppler AC. Concentration and composition dependent aggregation of Pluronic- and Poly-(2-oxazolin)-Efavirenz formulations in biorelevant media. J Colloid Interface Sci 2022;606:1179-92. [PMID: 34487937 DOI: 10.1016/j.jcis.2021.08.040] [Reference Citation Analysis]
15 Sosnik A, Carcaboso AM. Nanomedicines in the future of pediatric therapy. Adv Drug Deliv Rev 2014;73:140-61. [PMID: 24819219 DOI: 10.1016/j.addr.2014.05.004] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
16 Kushnirov Melnitzer V, Sosnik A. Hybrid Titanium Oxide/Polymer Amphiphilic Nanomaterials with Controlled Size for Drug Encapsulation and Delivery. Adv Funct Mater 2020;30:1806146. [DOI: 10.1002/adfm.201806146] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
17 Madan JR, Dere SG, Awasthi R, Dua K. Efavirenz Loaded Mixed Polymeric Micelles: Formulation, Optimization, and In Vitro Characterization. Assay Drug Dev Technol 2021;19:322-34. [PMID: 34129373 DOI: 10.1089/adt.2021.027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Chiappetta DA, Facorro G, de Celis ER, Sosnik A. Synergistic encapsulation of the anti-HIV agent efavirenz within mixed poloxamine/poloxamer polymeric micelles. Nanomedicine 2011;7:624-37. [PMID: 21371572 DOI: 10.1016/j.nano.2011.01.017] [Cited by in Crossref: 68] [Cited by in F6Publishing: 58] [Article Influence: 6.2] [Reference Citation Analysis]
19 Wang L, Chiang C, Liang H, Wu H, Feng W, Quinney SK, Li J, Li L. How to Choose In Vitro Systems to Predict In Vivo Drug Clearance: A System Pharmacology Perspective. Biomed Res Int 2015;2015:857327. [PMID: 26539530 DOI: 10.1155/2015/857327] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
20 Islam N, Irfan M, Khan SU, Syed HK, Iqbal MS, Khan IU, Mahdy A, Raafat M, Hossain MA, Inam S, Munir R, Ishtiaq M. Poloxamer-188 and d-α-Tocopheryl Polyethylene Glycol Succinate (TPGS-1000) Mixed Micelles Integrated Orodispersible Sublingual Films to Improve Oral Bioavailability of Ebastine; In Vitro and In Vivo Characterization. Pharmaceutics 2021;13:54. [PMID: 33406587 DOI: 10.3390/pharmaceutics13010054] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Das MK, Sarma A, Chakraborty T. Nano-ART and NeuroAIDS. Drug Deliv Transl Res 2016;6:452-72. [PMID: 27137528 DOI: 10.1007/s13346-016-0293-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
22 Halamish HM, Trousil J, Rak D, Knudsen KD, Pavlova E, Nyström B, Štěpánek P, Sosnik A. Self-assembly and nanostructure of poly(vinyl alcohol)-graft-poly(methyl methacrylate) amphiphilic nanoparticles. Journal of Colloid and Interface Science 2019;553:512-23. [DOI: 10.1016/j.jcis.2019.06.047] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
23 Martin B, Garrait G, Beyssac E, Goudouneche D, Perez E, Franceschi S. Organogel Nanoparticles as a New Way to Improve Oral Bioavailability of Poorly Soluble Compounds. Pharm Res 2020;37:92. [PMID: 32394200 DOI: 10.1007/s11095-020-02808-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Kumar L, Verma S, Prasad DN, Bhardwaj A, Vaidya B, Jain AK. Nanotechnology: a magic bullet for HIV AIDS treatment. Artif Cells Nanomed Biotechnol 2015;43:71-86. [PMID: 24564348 DOI: 10.3109/21691401.2014.883400] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
25 Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opinion on Drug Delivery 2017;15:93-114. [DOI: 10.1080/17425247.2017.1360863] [Cited by in Crossref: 59] [Cited by in F6Publishing: 47] [Article Influence: 11.8] [Reference Citation Analysis]
26 Sosnik A, Augustine R. Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them. Adv Drug Deliv Rev 2016;103:105-20. [PMID: 26772138 DOI: 10.1016/j.addr.2015.12.022] [Cited by in Crossref: 59] [Cited by in F6Publishing: 49] [Article Influence: 9.8] [Reference Citation Analysis]
27 Senapati PC, Sahoo SK, Sahu AN. Mixed surfactant based (SNEDDS) self-nanoemulsifying drug delivery system presenting efavirenz for enhancement of oral bioavailability. Biomed Pharmacother 2016;80:42-51. [PMID: 27133038 DOI: 10.1016/j.biopha.2016.02.039] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
28 Moretton MA, Taira C, Flor S, Bernabeu E, Lucangioli S, Höcht C, Chiappetta DA. Novel nelfinavir mesylate loaded d-α-tocopheryl polyethylene glycol 1000 succinate micelles for enhanced pediatric anti HIV therapy: In vitro characterization and in vivo evaluation. Colloids Surf B Biointerfaces 2014;123:302-10. [PMID: 25270729 DOI: 10.1016/j.colsurfb.2014.09.031] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
29 Sosnik A. Drug self-assembly: A phenomenon at the nanometer scale with major impact in the structure–biological properties relationship and the treatment of disease. Progress in Materials Science 2016;82:39-82. [DOI: 10.1016/j.pmatsci.2016.03.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
30 Katata L, Tshweu L, Naidoo S, Kalombo L, Swai H. Design and formulation of nano-sized spray dried efavirenz-part I: influence of formulation parameters. J Nanopart Res 2012;14. [DOI: 10.1007/s11051-012-1247-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
31 Xue Y, Sun J, Wu Z, Liu T, Xin X, Xu G. Synthesis, aggregation behavior, and simvastatin solubilization by block polyethers with different structures. Colloid Polym Sci 2018;296:1225-33. [DOI: 10.1007/s00396-018-4341-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Vieira ACC, Ferreira Fontes DA, Chaves LL, Alves LDS, de Freitas Neto JL, de La Roca Soares MF, Soares-sobrinho JL, Rolim LA, Rolim-neto PJ. Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of Efavirenz. Carbohydrate Polymers 2015;130:133-40. [DOI: 10.1016/j.carbpol.2015.04.050] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
33 Tshweu L, Katata L, Kalombo L, Chiappetta DA, Hocht C, Sosnik A, Swai H. Enhanced oral bioavailability of the antiretroviral efavirenz encapsulated in poly(epsilon-caprolactone) nanoparticles by a spray-drying method. Nanomedicine (Lond) 2014;9:1821-33. [PMID: 24364871 DOI: 10.2217/nnm.13.167] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
34 Toscanini MA, Limeres MJ, Garrido AV, Cagel M, Bernabeu E, Moretton MA, Chiappetta DA, Cuestas ML. Polymeric micelles and nanomedicines: Shaping the future of next generation therapeutic strategies for infectious diseases. Journal of Drug Delivery Science and Technology 2021;66:102927. [DOI: 10.1016/j.jddst.2021.102927] [Reference Citation Analysis]
35 Simões SM, Figueiras AR, Veiga F, Concheiro A, Alvarez-Lorenzo C. Polymeric micelles for oral drug administration enabling locoregional and systemic treatments. Expert Opin Drug Deliv 2015;12:297-318. [PMID: 25227130 DOI: 10.1517/17425247.2015.960841] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 6.9] [Reference Citation Analysis]
36 Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand K, Dua K, Khatik GL, Gowthamarajan K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release 2021;334:64-95. [PMID: 33887283 DOI: 10.1016/j.jconrel.2021.04.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
37 Xu H, Yang P, Ma H, Yin W, Wu X, Wang H, Xu D, Zhang X. Amphiphilic block copolymers-based mixed micelles for noninvasive drug delivery. Drug Delivery 2016;23:3063-71. [DOI: 10.3109/10717544.2016.1149743] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
38 Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015;7:691-707. [PMID: 25683687 DOI: 10.1002/wnan.1332] [Cited by in Crossref: 115] [Cited by in F6Publishing: 93] [Article Influence: 16.4] [Reference Citation Analysis]
39 Monroe M, Flexner C, Cui H. Harnessing nanostructured systems for improved treatment and prevention of HIV disease. Bioeng Transl Med 2018;3:102-23. [PMID: 30065966 DOI: 10.1002/btm2.10096] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
40 Shah S, Chougule MB, Kotha AK, Kashikar R, Godugu C, Raghuvanshi RS, Singh SB, Srivastava S. Nanomedicine based approaches for combating viral infections. J Control Release 2021;338:80-104. [PMID: 34375690 DOI: 10.1016/j.jconrel.2021.08.011] [Reference Citation Analysis]
41 Trinh HM, Joseph M, Cholkar K, Mitra R, Mitra AK. Nanomicelles in Diagnosis and Drug Delivery∗. Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. Elsevier; 2017. pp. 45-58. [DOI: 10.1016/b978-0-323-42978-8.00003-6] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
42 Aderibigbe BA. Polymeric therapeutic delivery systems for the treatment of infectious diseases. Ther Deliv 2017;8:557-76. [PMID: 28633590 DOI: 10.4155/tde-2017-0008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
43 Wegmann M, Parola L, Bertera FM, Taira CA, Cagel M, Buontempo F, Bernabeu E, Höcht C, Chiappetta DA, Moretton MA. Novel carvedilol paediatric nanomicelle formulation: in-vitro characterization and in-vivo evaluation. Journal of Pharmacy and Pharmacology 2017;69:544-53. [DOI: 10.1111/jphp.12605] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
44 Sosnik A, Menaker Raskin M. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnol Adv 2015;33:1380-92. [PMID: 25597531 DOI: 10.1016/j.biotechadv.2015.01.003] [Cited by in Crossref: 82] [Cited by in F6Publishing: 63] [Article Influence: 11.7] [Reference Citation Analysis]
45 Moretton MA, Hocht C, Taira C, Sosnik A. Rifampicin-loaded ‘flower-like’ polymeric micelles for enhanced oral bioavailability in an extemporaneous liquid fixed-dose combination with isoniazid. Nanomedicine 2014;9:1635-50. [DOI: 10.2217/nnm.13.154] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
46 McDonald TO, Giardiello M, Martin P, Siccardi M, Liptrott NJ, Smith D, Roberts P, Curley P, Schipani A, Khoo SH, Long J, Foster AJ, Rannard SP, Owen A. Antiretroviral solid drug nanoparticles with enhanced oral bioavailability: production, characterization, and in vitro-in vivo correlation. Adv Healthc Mater 2014;3:400-11. [PMID: 23997027 DOI: 10.1002/adhm.201300280] [Cited by in Crossref: 65] [Cited by in F6Publishing: 56] [Article Influence: 8.1] [Reference Citation Analysis]
47 Ju R, Mu L, Li X, Li C, Cheng Z, Lu W. Development of functional docetaxel nanomicelles for treatment of brain glioma. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:1180-90. [DOI: 10.1080/21691401.2018.1446971] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
48 Glisoni RJ, Sosnik A. Novel Poly(Ethylene Oxide)- b -Poly(Propylene Oxide) Copolymer-Glucose Conjugate by the Microwave-Assisted Ring Opening of a Sugar Lactone: Novel Poly(Ethylene Oxide)- b -Poly(Propylene Oxide) …. Macromol Biosci 2014;14:1639-51. [DOI: 10.1002/mabi.201400235] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
49 Singh A, Majumdar S, Deng W, Mohammed N, Chittiboyina A, Raman V, Shah S, Repka M. Development and characterization of taste masked Efavirenz pellets utilizing hot melt extrusion. Journal of Drug Delivery Science and Technology 2013;23:157-63. [DOI: 10.1016/s1773-2247(13)50024-4] [Cited by in Crossref: 7] [Article Influence: 0.8] [Reference Citation Analysis]
50 Sartori GJ, Prado LD, Rocha HVA. Efavirenz Dissolution Enhancement IV-Antisolvent Nanocrystallization by Sonication, Physical Stability, and Dissolution. AAPS PharmSciTech 2017;18:3011-20. [PMID: 28493004 DOI: 10.1208/s12249-017-0781-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
51 Sheth U, Tiwari S, Bahadur A. Preparation and characterization of anti-tubercular drugs encapsulated in polymer micelles. Journal of Drug Delivery Science and Technology 2018;48:422-8. [DOI: 10.1016/j.jddst.2018.10.021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
52 Pereira Camelo SR, Franceschi S, Perez E, Girod Fullana S, Ré MI. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug. Drug Development and Industrial Pharmacy 2016;42:985-97. [DOI: 10.3109/03639045.2015.1103746] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
53 Gorain B, Choudhury H, Patro Sisinthy S, Kesharwani P. Polymeric micelle-based drug delivery systems for tuberculosis treatment. Nanotechnology Based Approaches for Tuberculosis Treatment. Elsevier; 2020. pp. 175-91. [DOI: 10.1016/b978-0-12-819811-7.00011-4] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
54 Seremeta KP, Tur MIR, Pérez SM, Höcht C, Taira C, López Hernández OD, Sosnik A. Spray-dried didanosine-loaded polymeric particles for enhanced oral bioavailability. Colloids and Surfaces B: Biointerfaces 2014;123:515-23. [DOI: 10.1016/j.colsurfb.2014.09.055] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
55 Fasinu P, Choonara YE, Kumar P, du Toit LC, Bijukumar D, Khan RA, Pillay V. Enhancement of the Oral Bioavailability of Felodipine Employing 8-Arm-Poly(Ethylene Glycol): In Vivo, In Vitro and In Silico Evaluation. AAPS PharmSciTech 2017;18:617-28. [PMID: 27173987 DOI: 10.1208/s12249-016-0545-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
56 Roma MI, Hocht C, Chiappetta DA, Di Gennaro SS, Minoia JM, Bramuglia GF, Rubio MC, Sosnik A, Peroni RN. Tetronic® 904-containing polymeric micelles overcome the overexpression of ABCG2 in the blood-brain barrier of rats and boost the penetration of the antiretroviral efavirenz into the CNS. Nanomedicine (Lond) 2015;10:2325-37. [PMID: 26252052 DOI: 10.2217/NNM.15.77] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
57 Glisoni RJ, Quintana L SS, Molina M, Calderón M, Moglioni AG, Sosnik A. Chitosan-g-oligo(epsilon-caprolactone) polymeric micelles: microwave-assisted synthesis and physicochemical and cytocompatibility characterization. J Mater Chem B 2015;3:4853-64. [DOI: 10.1039/c5tb00594a] [Cited by in Crossref: 19] [Article Influence: 2.7] [Reference Citation Analysis]
58 Chiappetta DA, Hocht C, Opezzo JA, Sosnik A. Intranasal administration of antiretroviral-loaded micelles for anatomical targeting to the brain in HIV. Nanomedicine (Lond). 2013;8:223-237. [PMID: 23173734 DOI: 10.2217/nnm.12.104] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 6.1] [Reference Citation Analysis]
59 Moretton MA, Chiappetta DA, Sosnik A. Cryoprotection-lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles. J R Soc Interface 2012;9:487-502. [PMID: 21865255 DOI: 10.1098/rsif.2011.0414] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 3.9] [Reference Citation Analysis]
60 Gupta S, Kesarla R, Chotai N, Misra A, Omri A. Systematic Approach for the Formulation and Optimization of Solid Lipid Nanoparticles of Efavirenz by High Pressure Homogenization Using Design of Experiments for Brain Targeting and Enhanced Bioavailability. Biomed Res Int 2017;2017:5984014. [PMID: 28243600 DOI: 10.1155/2017/5984014] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 10.0] [Reference Citation Analysis]
61 Nelson AG, Zhang X, Ganapathi U, Szekely Z, Flexner CW, Owen A, Sinko PJ. Drug delivery strategies and systems for HIV/AIDS pre-exposure prophylaxis and treatment. J Control Release 2015;219:669-80. [PMID: 26315816 DOI: 10.1016/j.jconrel.2015.08.042] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
62 Sosnik A, Seremeta KP, Imperiale JC, Chiappetta DA. Novel formulation and drug delivery strategies for the treatment of pediatric poverty-related diseases. Expert Opin Drug Deliv. 2012;9:303-323. [PMID: 22257003 DOI: 10.1517/17425247.2012.655268] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 2.8] [Reference Citation Analysis]
63 Peroni RN, Di Gennaro SS, Hocht C, Chiappetta DA, Rubio MC, Sosnik A, Bramuglia GF. Efavirenz is a substrate and in turn modulates the expression of the efflux transporter ABCG2/BCRP in the gastrointestinal tract of the rat. Biochemical Pharmacology 2011;82:1227-33. [DOI: 10.1016/j.bcp.2011.07.081] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 3.5] [Reference Citation Analysis]
64 Kulthe SS, Choudhari YM, Inamdar NN, Mourya V. Polymeric micelles: authoritative aspects for drug delivery. Designed Monomers and Polymers 2012;15:465-521. [DOI: 10.1080/1385772x.2012.688328] [Cited by in Crossref: 92] [Article Influence: 9.2] [Reference Citation Analysis]
65 Moretton MA, Cohen L, Lepera L, Bernabeu E, Taira C, Höcht C, Chiappetta DA. Enhanced oral bioavailability of nevirapine within micellar nanocarriers compared with Viramune ®. Colloids and Surfaces B: Biointerfaces 2014;122:56-65. [DOI: 10.1016/j.colsurfb.2014.06.046] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
66 Seremeta KP, Chiappetta DA, Sosnik A. Poly(ε-caprolactone), Eudragit® RS 100 and poly(ε-caprolactone)/Eudragit® RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. Colloids Surf B Biointerfaces 2013;102:441-9. [PMID: 23010128 DOI: 10.1016/j.colsurfb.2012.06.038] [Cited by in Crossref: 68] [Cited by in F6Publishing: 57] [Article Influence: 6.8] [Reference Citation Analysis]
67 Raskin MM, Schlachet I, Sosnik A. Mucoadhesive nanogels by ionotropic crosslinking of chitosan-g-oligo(NiPAam) polymeric micelles as novel drug nanocarriers. Nanomedicine (Lond) 2016;11:217-33. [PMID: 26786232 DOI: 10.2217/nnm.15.191] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
68 Tatham LM, Rannard SP, Owen A. Nanoformulation strategies for the enhanced oral bioavailability of antiretroviral therapeutics. Ther Deliv 2015;6:469-90. [PMID: 25996045 DOI: 10.4155/tde.15.4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
69 Cagel M, Tesan FC, Bernabeu E, Salgueiro MJ, Zubillaga MB, Moretton MA, Chiappetta DA. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm 2017;113:211-28. [PMID: 28087380 DOI: 10.1016/j.ejpb.2016.12.019] [Cited by in Crossref: 157] [Cited by in F6Publishing: 131] [Article Influence: 31.4] [Reference Citation Analysis]
70 Moretton MA, Bernabeu E, Grotz E, Gonzalez L, Zubillaga M, Chiappetta DA. A glucose-targeted mixed micellar formulation outperforms Genexol in breast cancer cells. Eur J Pharm Biopharm 2017;114:305-16. [PMID: 28192249 DOI: 10.1016/j.ejpb.2017.02.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 3.2] [Reference Citation Analysis]
71 Dos Santos Martins E, Oliveira JA, Franchin TB, Silva BCU, Cândido CD, Peccinini RG. Simple and Rapid Method by Ultra High-Performance Liquid Chromatography (UHPLC) with Ultraviolet Detection for Determination of Efavirenz in Plasma: Application in a Preclinical Pharmacokinetic Study. J Chromatogr Sci 2020;57:874-80. [PMID: 31602469 DOI: 10.1093/chromsci/bmz078] [Reference Citation Analysis]
72 da Costa MA, Seiceira RC, Rodrigues CR, Hoffmeister CR, Cabral LM, Rocha HV. Efavirenz dissolution enhancement I: co-micronization. Pharmaceutics 2012;5:1-22. [PMID: 24300394 DOI: 10.3390/pharmaceutics5010001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
73 Sartori GJ, Prado LD, Rocha HVA. Efavirenz dissolution enhancement V - A combined top down/bottom up approach on nanocrystals formulation. Braz J Pharm Sci 2022;58:e18800. [DOI: 10.1590/s2175-97902022e18800] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]