BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hwang KC, Lai PD, Chiang CS, Wang PJ, Yuan CJ. Neutron capture nuclei-containing carbon nanoparticles for destruction of cancer cells. Biomaterials 2010;31:8419-25. [PMID: 20701966 DOI: 10.1016/j.biomaterials.2010.07.057] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Calabrese G, Nesnas JJ, Barbu E, Fatouros D, Tsibouklis J. The formulation of polyhedral boranes for the boron neutron capture therapy of cancer. Drug Discov Today 2012;17:153-9. [PMID: 21978988 DOI: 10.1016/j.drudis.2011.09.014] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 3.2] [Reference Citation Analysis]
2 Kuthala N, Vankayala R, Li YN, Chiang CS, Hwang KC. Engineering Novel Targeted Boron-10-Enriched Theranostic Nanomedicine to Combat against Murine Brain Tumors via MR Imaging-Guided Boron Neutron Capture Therapy. Adv Mater 2017;29. [PMID: 28620939 DOI: 10.1002/adma.201700850] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 9.2] [Reference Citation Analysis]
3 Quan H, Fan L, Huang Y, Xia X, He Y, Liu S, Yu J. Hyaluronic acid-decorated carborane-TAT conjugation nanomicelles: A potential boron agent with enhanced selectivity of tumor cellular uptake. Colloids Surf B Biointerfaces 2021;204:111826. [PMID: 33984611 DOI: 10.1016/j.colsurfb.2021.111826] [Reference Citation Analysis]
4 Horiguchi Y, Kudo S, Nagasaki Y. Gd@C82 metallofullerenes for neutron capture therapy-fullerene solubilization by poly(ethylene glycol)-block-poly(2-(N, N-diethylamino)ethyl methacrylate) and resultant efficacy in vitro. Sci Technol Adv Mater 2011;12:044607. [PMID: 27877415 DOI: 10.1088/1468-6996/12/4/044607] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
5 Gao Z, Walton NI, Malugin A, Ghandehari H, Zharov I. Preparation of dopamine-modified boron nanoparticles. J Mater Chem 2012;22:877-82. [DOI: 10.1039/c1jm12655e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
6 Achilli C, Jadhav SA, Guidetti GF, Ciana A, Abbonante V, Malara A, Fagnoni M, Torti M, Balduini A, Balduini C, Minetti G. Folic acid-conjugated 4-amino-phenylboronate, a boron-containing compound designed for boron neutron capture therapy, is an unexpected agonist for human neutrophils and platelets. Chem Biol Drug Des 2014;83:532-40. [PMID: 24666508 DOI: 10.1111/cbdd.12264] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
7 Paduani C, Jena P. Super and hyperhalogen behavior in MgX n and GdX n (X = F, BF4) clusters. J Nanopart Res 2012;14. [DOI: 10.1007/s11051-012-1035-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
8 Lehner R, Wang X, Wolf M, Hunziker P. Designing switchable nanosystems for medical application. Journal of Controlled Release 2012;161:307-16. [DOI: 10.1016/j.jconrel.2012.04.040] [Cited by in Crossref: 67] [Cited by in F6Publishing: 55] [Article Influence: 6.7] [Reference Citation Analysis]
9 Paduani C. DFT study of gadolinium aluminohydrides and aluminofluorides. Chemical Physics 2013;417:1-7. [DOI: 10.1016/j.chemphys.2013.03.011] [Cited by in Crossref: 11] [Article Influence: 1.2] [Reference Citation Analysis]
10 Lehner R, Wang X, Marsch S, Hunziker P. Intelligent nanomaterials for medicine: Carrier platforms and targeting strategies in the context of clinical application. Nanomedicine: Nanotechnology, Biology and Medicine 2013;9:742-57. [DOI: 10.1016/j.nano.2013.01.012] [Cited by in Crossref: 131] [Cited by in F6Publishing: 111] [Article Influence: 14.6] [Reference Citation Analysis]
11 Vankayala R, Huang Y, Kalluru P, Chiang C, Hwang KC. First Demonstration of Gold Nanorods-Mediated Photodynamic Therapeutic Destruction of Tumors via Near Infra-Red Light Activation. Small 2014;10:1612-22. [DOI: 10.1002/smll.201302719] [Cited by in Crossref: 139] [Cited by in F6Publishing: 113] [Article Influence: 15.4] [Reference Citation Analysis]
12 Deagostino A, Protti N, Alberti D, Boggio P, Bortolussi S, Altieri S, Crich SG. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications. Future Med Chem 2016;8:899-917. [PMID: 27195428 DOI: 10.4155/fmc-2016-0022] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
13 Ho SL, Yue H, Tegafaw T, Ahmad MY, Liu S, Nam S, Chang Y, Lee GH. Gadolinium Neutron Capture Therapy (GdNCT) Agents from Molecular to Nano: Current Status and Perspectives. ACS Omega. [DOI: 10.1021/acsomega.1c06603] [Reference Citation Analysis]
14 Vankayala R, Chiang CS, Chao JI, Yuan CJ, Lin SY, Hwang KC. A general strategy to achieve ultra-high gene transfection efficiency using lipid-nanoparticle composites. Biomaterials 2014;35:8261-72. [PMID: 24973297 DOI: 10.1016/j.biomaterials.2014.06.016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
15 Dai C, Cai F, Hwang KC, Zhou Y, Zhang Z, Liu X, Ma S, Yang Y, Yao Y, Feng M, Bao X, Li G, Wei J, Jiao Y, Wei Z, Ma W, Wang R. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas. Sci China Life Sci 2013;56:163-73. [PMID: 23334699 DOI: 10.1007/s11427-012-4433-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
16 Mi P, Dewi N, Yanagie H, Kokuryo D, Suzuki M, Sakurai Y, Li Y, Aoki I, Ono K, Takahashi H, Cabral H, Nishiyama N, Kataoka K. Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy. ACS Nano 2015;9:5913-21. [DOI: 10.1021/acsnano.5b00532] [Cited by in Crossref: 85] [Cited by in F6Publishing: 75] [Article Influence: 12.1] [Reference Citation Analysis]
17 Lux F, Sancey L, Bianchi A, Crémillieux Y, Roux S, Tillement O. Gadolinium-based nanoparticles for theranostic MRI-radiosensitization. Nanomedicine (Lond) 2015;10:1801-15. [PMID: 25715316 DOI: 10.2217/nnm.15.30] [Cited by in Crossref: 66] [Cited by in F6Publishing: 55] [Article Influence: 9.4] [Reference Citation Analysis]
18 Ho SL, Cha H, Oh IT, Jung K, Kim MH, Lee YJ, Miao X, Tegafaw T, Ahmad MY, Chae KS, Chang Y, Lee GH. Magnetic resonance imaging, gadolinium neutron capture therapy, and tumor cell detection using ultrasmall Gd 2 O 3 nanoparticles coated with polyacrylic acid-rhodamine B as a multifunctional tumor theragnostic agent. RSC Adv 2018;8:12653-65. [DOI: 10.1039/c8ra00553b] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
19 Zhang Y, Wei W, Das GK, Yang Tan TT. Engineering lanthanide-based materials for nanomedicine. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2014;20:71-96. [DOI: 10.1016/j.jphotochemrev.2014.06.001] [Cited by in Crossref: 69] [Cited by in F6Publishing: 48] [Article Influence: 8.6] [Reference Citation Analysis]