BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Criscione JM, Le BL, Stern E, Brennan M, Rahner C, Papademetris X, Fahmy TM. Self-assembly of pH-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging. Biomaterials 2009;30:3946-55. [DOI: 10.1016/j.biomaterials.2009.04.014] [Cited by in Crossref: 108] [Cited by in F6Publishing: 93] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Xiao Y, Zhang J, Liu Y, Huang Z, Wang B, Zhang Y, Yu X. Cross-linked polymers with fluorinated bridges for efficient gene delivery. J Mater Chem B 2017;5:8542-53. [DOI: 10.1039/c7tb02158e] [Cited by in Crossref: 17] [Article Influence: 3.4] [Reference Citation Analysis]
2 Liu G, Li X, Xiong S, Li L, Chu PK, Yeung KWK, Wu S, Xu Z. Fluorine-containing pH-responsive core/shell microgel particles: preparation, characterization, and their applications in controlled drug release. Colloid Polym Sci 2012;290:349-57. [DOI: 10.1007/s00396-011-2558-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
3 Harvey P, Kuprov I, Parker D. Lanthanide Complexes as Paramagnetic Probes for 19F Magnetic Resonance. Eur J Inorg Chem 2012;2012:2015-22. [DOI: 10.1002/ejic.201100894] [Cited by in Crossref: 63] [Cited by in F6Publishing: 37] [Article Influence: 5.7] [Reference Citation Analysis]
4 He D, Lin H, Yu Y, Shi L, Tu J. Precisely Defined Polymers for Efficient Gene Delivery. Top Curr Chem (Z) 2018;376. [DOI: 10.1007/s41061-017-0183-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
5 Gao W, Chan JM, Farokhzad OC. pH-Responsive nanoparticles for drug delivery. Mol Pharm 2010;7:1913-20. [PMID: 20836539 DOI: 10.1021/mp100253e] [Cited by in Crossref: 650] [Cited by in F6Publishing: 569] [Article Influence: 54.2] [Reference Citation Analysis]
6 Laskar P, Somani S, Campbell SJ, Mullin M, Keating P, Tate RJ, Irving C, Leung HY, Dufès C. Camptothecin-based dendrimersomes for gene delivery and redox-responsive drug delivery to cancer cells. Nanoscale 2019;11:20058-71. [PMID: 31612185 DOI: 10.1039/c9nr07254c] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
7 Lu H, Zhang Q, He S, Liu S, Xie Z, Li X, Huang Y. Reduction-Sensitive Fluorinated-Pt(IV) Universal Transfection Nanoplatform Facilitating CT45-Targeted CRISPR/dCas9 Activation for Synergistic and Individualized Treatment of Ovarian Cancer. Small 2021;17:e2102494. [PMID: 34510754 DOI: 10.1002/smll.202102494] [Reference Citation Analysis]
8 Luo K, Liu G, He B, Wu Y, Gong Q, Song B, Ai H, Gu Z. Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes. Biomaterials 2011;32:2575-85. [DOI: 10.1016/j.biomaterials.2010.12.049] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 4.7] [Reference Citation Analysis]
9 Tirotta I, Dichiarante V, Pigliacelli C, Cavallo G, Terraneo G, Bombelli FB, Metrangolo P, Resnati G. (19)F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem Rev 2015;115:1106-29. [PMID: 25329814 DOI: 10.1021/cr500286d] [Cited by in Crossref: 249] [Cited by in F6Publishing: 209] [Article Influence: 31.1] [Reference Citation Analysis]
10 Karimi M, Eslami M, Sahandi-Zangabad P, Mirab F, Farajisafiloo N, Shafaei Z, Ghosh D, Bozorgomid M, Dashkhaneh F, Hamblin MR. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:696-716. [PMID: 26762467 DOI: 10.1002/wnan.1389] [Cited by in Crossref: 97] [Cited by in F6Publishing: 78] [Article Influence: 16.2] [Reference Citation Analysis]
11 Wang Z, Niu G, Chen X. Polymeric materials for theranostic applications. Pharm Res 2014;31:1358-76. [PMID: 23765400 DOI: 10.1007/s11095-013-1103-7] [Cited by in Crossref: 64] [Cited by in F6Publishing: 58] [Article Influence: 7.1] [Reference Citation Analysis]
12 Karatasos K, Tanis I. Simulation of a Symmetric Binary Mixture of Charged Dendrimers Under Varying Electrostatic Interactions: Static and Dynamic Aspects. Macromolecules 2011;44:6605-14. [DOI: 10.1021/ma2013282] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
13 Luo K, Liu G, She W, Wang Q, Wang G, He B, Ai H, Gong Q, Song B, Gu Z. Gadolinium-labeled peptide dendrimers with controlled structures as potential magnetic resonance imaging contrast agents. Biomaterials 2011;32:7951-60. [DOI: 10.1016/j.biomaterials.2011.07.006] [Cited by in Crossref: 83] [Cited by in F6Publishing: 74] [Article Influence: 7.5] [Reference Citation Analysis]
14 Xu X, Jian Y, Li Y, Zhang X, Tu Z, Gu Z. Bio-Inspired Supramolecular Hybrid Dendrimers Self-Assembled from Low-Generation Peptide Dendrons for Highly Efficient Gene Delivery and Biological Tracking. ACS Nano 2014;8:9255-64. [DOI: 10.1021/nn503118f] [Cited by in Crossref: 75] [Cited by in F6Publishing: 66] [Article Influence: 9.4] [Reference Citation Analysis]
15 Shao S, Si J, Tang J, Sui M, Shen Y. Jellyfish-Shaped Amphiphilic Dendrimers: Synthesis and Formation of Extremely Uniform Aggregates. Macromolecules 2014;47:916-21. [DOI: 10.1021/ma4025619] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
16 Munkhbat O, Canakci M, Zheng S, Hu W, Osborne B, Bogdanov AA, Thayumanavan S. 19F MRI of Polymer Nanogels Aided by Improved Segmental Mobility of Embedded Fluorine Moieties. Biomacromolecules 2019;20:790-800. [PMID: 30563327 DOI: 10.1021/acs.biomac.8b01383] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
17 Xiao YP, Zhang J, Liu YH, Zhang JH, Yu QY, Huang Z, Yu XQ. Low molecular weight PEI-based fluorinated polymers for efficient gene delivery. Eur J Med Chem 2019;162:602-11. [PMID: 30472606 DOI: 10.1016/j.ejmech.2018.11.041] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
18 Wang M, Liu H, Li L, Cheng Y. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat Commun 2014;5:3053. [PMID: 24407172 DOI: 10.1038/ncomms4053] [Cited by in Crossref: 226] [Cited by in F6Publishing: 208] [Article Influence: 32.3] [Reference Citation Analysis]
19 Wang H, Huang Q, Chang H, Xiao J, Cheng Y. Stimuli-responsive dendrimers in drug delivery. Biomater Sci 2016;4:375-90. [PMID: 26806314 DOI: 10.1039/c5bm00532a] [Cited by in Crossref: 112] [Cited by in F6Publishing: 23] [Article Influence: 22.4] [Reference Citation Analysis]
20 Holmes AM, Scurr DJ, Heylings JR, Wan KW, Moss GP. Dendrimer pre-treatment enhances the skin permeation of chlorhexidine digluconate: Characterisation by in vitro percutaneous absorption studies and Time-of-Flight Secondary Ion Mass Spectrometry. Eur J Pharm Sci 2017;104:90-101. [PMID: 28363491 DOI: 10.1016/j.ejps.2017.03.034] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
21 Mali A, Kaijzel EL, Lamb HJ, Cruz LJ. 19F-nanoparticles: Platform for in vivo delivery of fluorinated biomaterials for 19F-MRI. J Control Release 2021;338:870-89. [PMID: 34492234 DOI: 10.1016/j.jconrel.2021.09.001] [Reference Citation Analysis]
22 Wang H, Wang Y, Wang Y, Hu J, Li T, Liu H, Zhang Q, Cheng Y. Self-Assembled Fluorodendrimers Combine the Features of Lipid and Polymeric Vectors in Gene Delivery. Angew Chem 2015;127:11813-7. [DOI: 10.1002/ange.201501461] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
23 Agrawal U, Gupta M, Jadon RS, Sharma R, Vyas SP. Multifunctional nanomedicines: potentials and prospects. Drug Deliv Transl Res 2013;3:479-97. [PMID: 25788355 DOI: 10.1007/s13346-012-0123-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
24 Reichert S, Calderón M, Licha K, Haag R. Multivalent Dendritic Architectures for Theranostics. In: Svenson S, Prud'homme RK, editors. Multifunctional Nanoparticles for Drug Delivery Applications. Boston: Springer US; 2012. pp. 315-44. [DOI: 10.1007/978-1-4614-2305-8_15] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
25 Fu C, Yu Y, Xu X, Wang Q, Chang Y, Zhang C, Zhao J, Peng H, Whittaker AK. Functional polymers as metal-free magnetic resonance imaging contrast agents. Progress in Polymer Science 2020;108:101286. [DOI: 10.1016/j.progpolymsci.2020.101286] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
26 Francis R, Joy N, Sivadas A, Gopalan GP, Baby DK. Stimuli-Responsive Polymers: Biomedical Applications. In: Francis R, Sakthi Kumar D, editors. Biomedical Applications of Polymeric Materials and Composites. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. pp. 233-59. [DOI: 10.1002/9783527690916.ch9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
27 Jiang L, Zhou S, Zhang X, Wu W, Jiang X. Dendrimer-based nanoparticles in cancer chemotherapy and gene therapy. Sci China Mater 2018;61:1404-19. [DOI: 10.1007/s40843-018-9242-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
28 Wilharm RK, Ramakrishnam Raju MV, Hoefler JC, Platas-Iglesias C, Pierre VC. Exploiting the Fluxionality of Lanthanide Complexes in the Design of Paramagnetic Fluorine Probes. Inorg Chem 2022. [PMID: 35196450 DOI: 10.1021/acs.inorgchem.1c03908] [Reference Citation Analysis]
29 Pigliacelli C, Maiolo D, Nonappa, Haataja JS, Amenitsch H, Michelet C, Sánchez Moreno P, Tirotta I, Metrangolo P, Baldelli Bombelli F. Efficient Encapsulation of Fluorinated Drugs in the Confined Space of Water-Dispersible Fluorous Supraparticles. Angew Chem Int Ed Engl 2017;56:16186-90. [PMID: 29105938 DOI: 10.1002/anie.201710230] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
30 Du L, Helsper S, Nosratabad NA, Wang W, Fadool DA, Amiens C, Grant S, Mattoussi H. A Multifunctional Contrast Agent for 19F-Based Magnetic Resonance Imaging. Bioconjug Chem 2022. [PMID: 35446553 DOI: 10.1021/acs.bioconjchem.2c00116] [Reference Citation Analysis]
31 Fan Y, Li C, Cao H, Li F, Chen D. The intranuclear release of a potential anticancer drug from small nanoparticles that are derived from intracellular dissociation of large nanoparticles. Biomaterials 2012;33:4220-8. [DOI: 10.1016/j.biomaterials.2012.02.038] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 3.9] [Reference Citation Analysis]
32 Hu G, Tang J, Bai X, Xu S, Wang L. Superfluorinated copper sulfide nanoprobes for simultaneous 19F magnetic resonance imaging and photothermal ablation. Nano Res 2016;9:1630-8. [DOI: 10.1007/s12274-016-1057-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
33 Diou O, Tsapis N, Fattal E. Targeted nanotheranostics for personalized cancer therapy. Expert Opinion on Drug Delivery 2012;9:1475-87. [DOI: 10.1517/17425247.2012.736486] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
34 Yang J, Zhang J, Liu Y, Shi Z, Han H, Li Q. Phenylboronic acid-modified polyamidoamine-mediated delivery of short GC rich DNA for hepatocarcinoma gene therapy. Biomater Sci 2019;7:3348-58. [DOI: 10.1039/c9bm00394k] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
35 Ganesh VA, Baji A, Ramakrishna S. Smart functional polymers – a new route towards creating a sustainable environment. RSC Adv 2014;4:53352-64. [DOI: 10.1039/c4ra10631h] [Cited by in Crossref: 54] [Cited by in F6Publishing: 2] [Article Influence: 6.8] [Reference Citation Analysis]
36 Yang X, Grailer JJ, Pilla S, Steeber DA, Gong S. Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy. Bioconjug Chem 2010;21:496-504. [PMID: 20163170 DOI: 10.1021/bc900422j] [Cited by in Crossref: 173] [Cited by in F6Publishing: 165] [Article Influence: 14.4] [Reference Citation Analysis]
37 Liu X, Yuan Y, Bo S, Li Y, Yang Z, Zhou X, Chen S, Jiang Z. Monitoring Fluorinated Dendrimer-Based Self-Assembled Drug-Delivery Systems with 19 F Magnetic Resonance: Monitoring Fluorinated Dendrimer-Based Self-Assembled Drug-Delivery Systems with 19 F Magnetic Resonance. Eur J Org Chem 2017;2017:4461-8. [DOI: 10.1002/ejoc.201700566] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
38 Laskar P, Dufès C. Emergence of cationic polyamine dendrimersomes: design, stimuli sensitivity and potential biomedical applications. Nanoscale Adv 2021;3:6007-26. [PMID: 34765868 DOI: 10.1039/d1na00536g] [Reference Citation Analysis]
39 Guo C, Xu S, Arshad A, Wang L. A pH-responsive nanoprobe for turn-on 19 F-magnetic resonance imaging. Chem Commun 2018;54:9853-6. [DOI: 10.1039/c8cc06129g] [Cited by in Crossref: 23] [Cited by in F6Publishing: 7] [Article Influence: 5.8] [Reference Citation Analysis]
40 Mignani S, Rodrigues J, Tomas H, Caminade A, Laurent R, Shi X, Majoral J. Recent therapeutic applications of the theranostic principle with dendrimers in oncology. Sci China Mater 2018;61:1367-86. [DOI: 10.1007/s40843-018-9244-5] [Reference Citation Analysis]
41 Pourjavadi A, Mazaheri Tehrani Z, Jokar S. Chitosan based supramolecular polypseudorotaxane as a pH-responsive polymer and their hybridization with mesoporous silica-coated magnetic graphene oxide for triggered anticancer drug delivery. Polymer 2015;76:52-61. [DOI: 10.1016/j.polymer.2015.08.050] [Cited by in Crossref: 37] [Cited by in F6Publishing: 25] [Article Influence: 5.3] [Reference Citation Analysis]
42 Chen G, Wang K, Wu P, Wang Y, Zhou Z, Yin L, Sun M, Oupický D. Development of fluorinated polyplex nanoemulsions for improved small interfering RNA delivery and cancer therapy. Nano Res 2018;11:3746-61. [DOI: 10.1007/s12274-017-1946-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
43 Wang K, Peng H, Thurecht KJ, Puttick S, Whittaker AK. Multifunctional hyperbranched polymers for CT/ 19 F MRI bimodal molecular imaging. Polym Chem 2016;7:1059-69. [DOI: 10.1039/c5py01707f] [Cited by in Crossref: 19] [Article Influence: 3.2] [Reference Citation Analysis]
44 Lv J, Chang H, Wang Y, Wang M, Xiao J, Zhang Q, Cheng Y. Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery. J Mater Chem B 2015;3:642-50. [PMID: 32262347 DOI: 10.1039/c4tb01447b] [Cited by in Crossref: 38] [Cited by in F6Publishing: 4] [Article Influence: 4.8] [Reference Citation Analysis]
45 Chen G, Wang K, Hu Q, Ding L, Yu F, Zhou Z, Zhou Y, Li J, Sun M, Oupický D. Combining Fluorination and Bioreducibility for Improved siRNA Polyplex Delivery. ACS Appl Mater Interfaces 2017;9:4457-66. [PMID: 28135066 DOI: 10.1021/acsami.6b14184] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 7.4] [Reference Citation Analysis]
46 Gulzar A, Gai S, Yang P, Li C, Ansari MB, Lin J. Stimuli responsive drug delivery application of polymer and silica in biomedicine. J Mater Chem B 2015;3:8599-622. [DOI: 10.1039/c5tb00757g] [Cited by in Crossref: 73] [Cited by in F6Publishing: 6] [Article Influence: 10.4] [Reference Citation Analysis]
47 Yan H, He L, Zhao W, Li J, Xiao Y, Yang R, Tan W. Poly β-Cyclodextrin/TPdye Nanomicelle-based Two-Photon Nanoprobe for Caspase-3 Activation Imaging in Live Cells and Tissues. Anal Chem 2014;86:11440-50. [DOI: 10.1021/ac503546r] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
48 Wang M, Cheng Y. The effect of fluorination on the transfection efficacy of surface-engineered dendrimers. Biomaterials 2014;35:6603-13. [DOI: 10.1016/j.biomaterials.2014.04.065] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 6.9] [Reference Citation Analysis]
49 Chaubey P, Momin M, Sawarkar S. Significance of Ligand-Anchored Polymers for Drug Targeting in the Treatment of Colonic Disorders. Front Pharmacol 2019;10:1628. [PMID: 32161536 DOI: 10.3389/fphar.2019.01628] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
50 Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 2012;64:866-84. [PMID: 22349241 DOI: 10.1016/j.addr.2012.01.020] [Cited by in Crossref: 789] [Cited by in F6Publishing: 687] [Article Influence: 78.9] [Reference Citation Analysis]
51 Baoum AA. The fluorination effect on the transfection efficacy of cell penetrating peptide complexes. Plasmid 2022. [DOI: 10.1016/j.plasmid.2022.102619] [Reference Citation Analysis]
52 Saul P, Mamone S, Glöggler S. Nuclear singlet multimers (NUSIMERs) with long-lived singlet states. Chem Sci 2019;10:413-7. [PMID: 30746089 DOI: 10.1039/c8sc02831a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
53 Knight JC, Edwards PG, Paisey SJ. Fluorinated contrast agents for magnetic resonance imaging; a review of recent developments. RSC Adv 2011;1:1415. [DOI: 10.1039/c1ra00627d] [Cited by in Crossref: 70] [Cited by in F6Publishing: 47] [Article Influence: 6.4] [Reference Citation Analysis]
54 Wang K, Peng H, Thurecht KJ, Puttick S, Whittaker AK. pH-responsive star polymer nanoparticles: potential 19F MRI contrast agents for tumour-selective imaging. Polym Chem 2013;4:4480. [DOI: 10.1039/c3py00654a] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 5.9] [Reference Citation Analysis]
55 Zhang Y, Wang L, Zhang Z, Zhang Y, Tuo X. Synthesis and simultaneous self-assembly of multiblock fluorinated polyurethane in iniferter polymerization. J Polym Sci A Polym Chem 2013;51:2161-70. [DOI: 10.1002/pola.26619] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
56 Srinivas M, Heerschap A, Ahrens ET, Figdor CG, de Vries IJ. (19)F MRI for quantitative in vivo cell tracking. Trends Biotechnol 2010;28:363-70. [PMID: 20427096 DOI: 10.1016/j.tibtech.2010.04.002] [Cited by in Crossref: 199] [Cited by in F6Publishing: 174] [Article Influence: 16.6] [Reference Citation Analysis]
57 Laskar P, Somani S, Altwaijry N, Mullin M, Bowering D, Warzecha M, Keating P, Tate RJ, Leung HY, Dufès C. Redox-sensitive, cholesterol-bearing PEGylated poly(propylene imine)-based dendrimersomes for drug and gene delivery to cancer cells. Nanoscale 2018;10:22830-47. [PMID: 30488937 DOI: 10.1039/c8nr08141g] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
58 Han H, Yang J, Wang Y, Chen W, Chen J, Yang Y, Li Q. Nucleobase-modified polyamidoamine-mediated miR-23b delivery to inhibit the proliferation and migration of lung cancer. Biomater Sci 2017;5:2268-75. [DOI: 10.1039/c7bm00599g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
59 Nurmi L, Peng H, Seppälä J, Haddleton DM, Blakey I, Whittaker AK. Synthesis and evaluation of partly fluorinated polyelectrolytes as components in 19F MRI-detectable nanoparticles. Polym Chem 2010;1:1039. [DOI: 10.1039/c0py00035c] [Cited by in Crossref: 39] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
60 Ray S, Li Z, Hsu CH, Hwang LP, Lin YC, Chou PT, Lin YY. Dendrimer- and copolymer-based nanoparticles for magnetic resonance cancer theranostics. Theranostics 2018;8:6322-49. [PMID: 30613300 DOI: 10.7150/thno.27828] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
61 Kim S, Seong K, Kim O, Kim S, Seo H, Lee M, Khang G, Lee D. Polyoxalate nanoparticles as a biodegradable and biocompatible drug delivery vehicle. Biomacromolecules 2010;11:555-60. [PMID: 20112991 DOI: 10.1021/bm901409k] [Cited by in Crossref: 61] [Cited by in F6Publishing: 51] [Article Influence: 5.1] [Reference Citation Analysis]
62 Yu YB. Fluorinated dendrimers as imaging agents for 19 F MRI . WIREs Nanomed Nanobiotechnol 2013;5:646-61. [DOI: 10.1002/wnan.1239] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
63 Ghosh S, Dutta M, Ray K, Fujita D, Bandyopadhyay A. A simultaneous one pot synthesis of two fractal structures via swapping two fractal reaction kinetic states. Phys Chem Chem Phys 2016;18:14772-5. [PMID: 27166589 DOI: 10.1039/c6cp00447d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
64 Chen G, Xu Y, Wu P, Wang K. Self-assembled PEI nanomicelles with a fluorinated core for improved siRNA delivery. Journal of Drug Delivery Science and Technology 2020;55:101403. [DOI: 10.1016/j.jddst.2019.101403] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
65 She W, Luo K, Zhang C, Wang G, Geng Y, Li L, He B, Gu Z. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron–doxorubicin conjugates for cancer therapy. Biomaterials 2013;34:1613-23. [DOI: 10.1016/j.biomaterials.2012.11.007] [Cited by in Crossref: 183] [Cited by in F6Publishing: 173] [Article Influence: 20.3] [Reference Citation Analysis]
66 Huang D, He B, Mi P. Calcium phosphate nanocarriers for drug delivery to tumors: imaging, therapy and theranostics. Biomater Sci 2019;7:3942-60. [PMID: 31414096 DOI: 10.1039/c9bm00831d] [Cited by in Crossref: 25] [Cited by in F6Publishing: 5] [Article Influence: 8.3] [Reference Citation Analysis]
67 Preslar AT, Lilley LM, Sato K, Zhang S, Chia ZK, Stupp SI, Meade TJ. Calcium-Induced Morphological Transitions in Peptide Amphiphiles Detected by 19F-Magnetic Resonance Imaging. ACS Appl Mater Interfaces 2017;9:39890-4. [PMID: 28915004 DOI: 10.1021/acsami.7b07828] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
68 Pourjavadi A, Tehrani ZM, Bennett C. PEG-co-Polyvinyl Pyridine Coated Magnetic Mesoporous Silica Nanoparticles for pH-Responsive Controlled Release of Doxorubicin. International Journal of Polymeric Materials and Polymeric Biomaterials 2015;64:570-7. [DOI: 10.1080/00914037.2014.996706] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 2.1] [Reference Citation Analysis]
69 Rai DB, Pooja D, Kulhari H. Dendrimers in gene delivery. Pharmaceutical Applications of Dendrimers. Elsevier; 2020. pp. 211-31. [DOI: 10.1016/b978-0-12-814527-2.00009-3] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
70 Wang K, Peng H, Thurecht KJ, Puttick S, Whittaker AK. Segmented Highly Branched Copolymers: Rationally Designed Macromolecules for Improved and Tunable 19 F MRI. Biomacromolecules 2015;16:2827-39. [DOI: 10.1021/acs.biomac.5b00800] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
71 Mignani S, Shi X, Ceña V, Rodrigues J, Tomas H, Majoral J. Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy. Journal of Controlled Release 2021;332:346-66. [DOI: 10.1016/j.jconrel.2021.03.003] [Reference Citation Analysis]
72 Mignani S, Rodrigues J, Tomas H, Caminade A, Laurent R, Shi X, Majoral J. Recent therapeutic applications of the theranostic principle with dendrimers in oncology. Sci China Mater 2018;61:1367-86. [DOI: 10.1007/s40843-018-9244-5] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
73 Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021;50:5435-67. [DOI: 10.1039/d0cs00258e] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 11.0] [Reference Citation Analysis]
74 Srivastava K, Weitz EA, Peterson KL, Marjańska M, Pierre VC. Fe- and Ln-DOTAm-F12 Are Effective Paramagnetic Fluorine Contrast Agents for MRI in Water and Blood. Inorg Chem 2017;56:1546-57. [DOI: 10.1021/acs.inorgchem.6b02631] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
75 Zhang K, Wang Y, Yu A, Zhang Y, Tang H, Zhu XX. Cholic Acid-Modified Dendritic Multimolecular Micelles and Enhancement of Anticancer Drug Therapeutic Efficacy. Bioconjugate Chem 2010;21:1596-601. [DOI: 10.1021/bc900490u] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
76 Zhu F, Xu L, Li X, Li Z, Wang J, Chen H, Li X, Gao Y. Co-delivery of gefitinib and hematoporphyrin by aptamer-modified fluorinated dendrimer for hypoxia alleviation and enhanced synergistic chemo-photodynamic therapy of NSCLC. Eur J Pharm Sci 2021;167:106004. [PMID: 34520834 DOI: 10.1016/j.ejps.2021.106004] [Reference Citation Analysis]
77 Yue X, Taraban MB, Hyland LL, Yu YB. Avoiding steric congestion in dendrimer growth through proportionate branching: a twist on da Vinci's rule of tree branching. J Org Chem 2012;77:8879-87. [PMID: 23039185 DOI: 10.1021/jo301718y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
78 Huang P, Guo W, Yang G, Song H, Wang Y, Wang C, Kong D, Wang W. Fluorine Meets Amine: Reducing Microenvironment-Induced Amino-Activatable Nanoprobes for 19F-Magnetic Resonance Imaging of Biothiols. ACS Appl Mater Interfaces 2018;10:18532-42. [PMID: 29775280 DOI: 10.1021/acsami.8b03764] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
79 Tan J, Liu W, Wang Z. Synthesis of pH-sensitive self-assembled amphiphilic graft copolymers containing 4,4,4,3,3,2-hexafluorobutyl side chains. Journal of Fluorine Chemistry 2016;189:79-87. [DOI: 10.1016/j.jfluchem.2016.08.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
80 Kojima C. Design of stimuli-responsive dendrimers. Expert Opinion on Drug Delivery 2010;7:307-19. [DOI: 10.1517/17425240903530651] [Cited by in Crossref: 80] [Cited by in F6Publishing: 66] [Article Influence: 6.7] [Reference Citation Analysis]
81 Yang J, Zhang Q, Chang H, Cheng Y. Surface-Engineered Dendrimers in Gene Delivery. Chem Rev 2015;115:5274-300. [DOI: 10.1021/cr500542t] [Cited by in Crossref: 264] [Cited by in F6Publishing: 224] [Article Influence: 37.7] [Reference Citation Analysis]
82 Bo S, Yuan Y, Chen Y, Yang Z, Chen S, Zhou X, Jiang ZX. In vivo drug tracking with 19F MRI at therapeutic dose. Chem Commun (Camb) 2018;54:3875-8. [PMID: 29594281 DOI: 10.1039/c7cc09898g] [Cited by in Crossref: 27] [Cited by in F6Publishing: 6] [Article Influence: 6.8] [Reference Citation Analysis]
83 Bajpai AK, Bajpai J, Saini R, Gupta R. Responsive Polymers in Biology and Technology. Polymer Reviews 2011;51:53-97. [DOI: 10.1080/15583724.2010.537798] [Cited by in Crossref: 61] [Cited by in F6Publishing: 44] [Article Influence: 5.5] [Reference Citation Analysis]
84 Chalmers KH, Kenwright AM, Parker D, Blamire AM. 19F-lanthanide complexes with increased sensitivity for 19F-MRI: optimization of the MR acquisition. Magn Reson Med 2011;66:931-6. [PMID: 21381109 DOI: 10.1002/mrm.22881] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 4.2] [Reference Citation Analysis]
85 Kolouchova K, Sedlacek O, Jirak D, Babuka D, Blahut J, Kotek J, Vit M, Trousil J, Konefał R, Janouskova O, Podhorska B, Slouf M, Hruby M. Self-Assembled Thermoresponsive Polymeric Nanogels for 19F MR Imaging. Biomacromolecules 2018;19:3515-24. [PMID: 30011367 DOI: 10.1021/acs.biomac.8b00812] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 6.5] [Reference Citation Analysis]
86 Preslar AT, Tantakitti F, Park K, Zhang S, Stupp SI, Meade TJ. (19)F Magnetic Resonance Imaging Signals from Peptide Amphiphile Nanostructures Are Strongly Affected by Their Shape. ACS Nano 2016;10:7376-84. [PMID: 27425636 DOI: 10.1021/acsnano.6b00267] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 5.8] [Reference Citation Analysis]
87 Wang K, Peng H, Thurecht KJ, Puttick S, Whittaker AK. Biodegradable core crosslinked star polymer nanoparticles as 19 F MRI contrast agents for selective imaging. Polym Chem 2014;5:1760-71. [DOI: 10.1039/c3py01311a] [Cited by in Crossref: 56] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
88 Eleftheriou E, Karatasos K. Modeling the formation of ordered nano-assemblies comprised by dendrimers and linear polyelectrolytes: the role of Coulombic interactions. J Chem Phys 2012;137:144905. [PMID: 23061863 DOI: 10.1063/1.4757666] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
89 Labieniec M, Watala C. Use of poly(amido)amine dendrimers in prevention of early non-enzymatic modifications of biomacromolecules. Biochimie 2010;92:1296-305. [DOI: 10.1016/j.biochi.2010.06.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
90 Pigliacelli C, Maiolo D, Nonappa, Haataja JS, Amenitsch H, Michelet C, Sánchez moreno P, Tirotta I, Metrangolo P, Baldelli bombelli F. Efficient Encapsulation of Fluorinated Drugs in the Confined Space of Water-Dispersible Fluorous Supraparticles. Angew Chem 2017;129:16404-8. [DOI: 10.1002/ange.201710230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
91 Rao NM. Cationic lipid-mediated nucleic acid delivery: beyond being cationic. Chemistry and Physics of Lipids 2010;163:245-52. [DOI: 10.1016/j.chemphyslip.2010.01.001] [Cited by in Crossref: 67] [Cited by in F6Publishing: 58] [Article Influence: 5.6] [Reference Citation Analysis]
92 Malkoch M, Malmström E, Nyström A. Dendrimers. Polymer Science: A Comprehensive Reference. Elsevier; 2012. pp. 113-76. [DOI: 10.1016/b978-0-444-53349-4.00162-x] [Cited by in Crossref: 6] [Article Influence: 0.6] [Reference Citation Analysis]
93 Dufort S, Sancey L, Coll JL. Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. Adv Drug Deliv Rev 2012;64:179-89. [PMID: 21983079 DOI: 10.1016/j.addr.2011.09.009] [Cited by in Crossref: 139] [Cited by in F6Publishing: 135] [Article Influence: 12.6] [Reference Citation Analysis]
94 Kang Y, Ha W, Liu YQ, Ma Y, Fan MM, Ding LS, Zhang S, Li BJ. pH-responsive polymer-drug conjugates as multifunctional micelles for cancer-drug delivery. Nanotechnology 2014;25:335101. [PMID: 25073730 DOI: 10.1088/0957-4484/25/33/335101] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
95 Mignani S, Shi X, Ceña V, Rodrigues J, Tomas H, Majoral J. Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy. Journal of Controlled Release 2021;332:346-66. [DOI: 10.1016/j.jconrel.2021.03.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
96 Chen G, Wang Y, Ullah A, Huai Y, Xu Y. The effects of fluoroalkyl chain length and density on siRNA delivery of bioreducible poly(amido amine)s. Eur J Pharm Sci 2020;152:105433. [PMID: 32590121 DOI: 10.1016/j.ejps.2020.105433] [Reference Citation Analysis]
97 Folgado E, Guerre M, Bijani C, Ladmiral V, Caminade A, Ameduri B, Ouali A. Well-defined poly(vinylidene fluoride) (PVDF) based-dendrimers synthesized by click chemistry: enhanced crystallinity of PVDF and increased hydrophobicity of PVDF films. Polym Chem 2016;7:5625-9. [DOI: 10.1039/c6py01167e] [Cited by in Crossref: 18] [Article Influence: 3.0] [Reference Citation Analysis]
98 Liu G, Fan W, Li L, Chu PK, Yeung KW, Wu S, Xu Z. Novel anionic fluorine-containing amphiphilic self-assembly polymer micelles for potential application in protein drug carrier. Journal of Fluorine Chemistry 2012;141:21-8. [DOI: 10.1016/j.jfluchem.2012.05.021] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
99 Peterson KL, Srivastava K, Pierre VC. Fluorinated Paramagnetic Complexes: Sensitive and Responsive Probes for Magnetic Resonance Spectroscopy and Imaging. Front Chem 2018;6:160. [PMID: 29876342 DOI: 10.3389/fchem.2018.00160] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 9.5] [Reference Citation Analysis]
100 Tao X, Yang Y, Liu S, Zheng Y, Fu J, Chen J. Poly(amidoamine) dendrimer-grafted porous hollow silica nanoparticles for enhanced intracellular photodynamic therapy. Acta Biomaterialia 2013;9:6431-8. [DOI: 10.1016/j.actbio.2013.01.028] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
101 Wang H, Wang Y, Wang Y, Hu J, Li T, Liu H, Zhang Q, Cheng Y. Self-Assembled Fluorodendrimers Combine the Features of Lipid and Polymeric Vectors in Gene Delivery. Angew Chem Int Ed Engl 2015;54:11647-51. [PMID: 26260847 DOI: 10.1002/anie.201501461] [Cited by in Crossref: 106] [Cited by in F6Publishing: 95] [Article Influence: 15.1] [Reference Citation Analysis]
102 Park H, Kim S, Kim S, Song Y, Seung K, Hong D, Khang G, Lee D. Antioxidant and anti-inflammatory activities of hydroxybenzyl alcohol releasing biodegradable polyoxalate nanoparticles. Biomacromolecules 2010;11:2103-8. [PMID: 20690717 DOI: 10.1021/bm100474w] [Cited by in Crossref: 63] [Cited by in F6Publishing: 61] [Article Influence: 5.3] [Reference Citation Analysis]
103 Gao W, Zhang Y, Zheng Y, Zhang H, Wang X, Bai L, Wu Y, Ba X. Development of a halloysite nanotube-based 19F NMR probe as a promising detection tool for H2O2. J Nanopart Res 2020;22. [DOI: 10.1007/s11051-020-05073-5] [Reference Citation Analysis]