BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Skjånes K, Lindblad P, Muller J. BioCO2 - a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol Eng 2007;24:405-13. [PMID: 17662653 DOI: 10.1016/j.bioeng.2007.06.002] [Cited by in Crossref: 128] [Cited by in F6Publishing: 89] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Anyanwu R, Rodriguez C, Durrant A, Olabi A. Optimisation of Tray Drier Microalgae Dewatering Techniques Using Response Surface Methodology. Energies 2018;11:2327. [DOI: 10.3390/en11092327] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
2 Chen Y, Xu C, Vaidyanathan S. Microalgae: a robust "green bio-bridge" between energy and environment. Crit Rev Biotechnol 2018;38:351-68. [PMID: 28764567 DOI: 10.1080/07388551.2017.1355774] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 4.6] [Reference Citation Analysis]
3 Van Den Hende S, Vervaeren H, Boon N. Flue gas compounds and microalgae: (Bio-)chemical interactions leading to biotechnological opportunities. Biotechnology Advances 2012;30:1405-24. [DOI: 10.1016/j.biotechadv.2012.02.015] [Cited by in Crossref: 208] [Cited by in F6Publishing: 150] [Article Influence: 20.8] [Reference Citation Analysis]
4 Zhou W, Li Y, Gao Y, Zhao H. Nutrients removal and recovery from saline wastewater by Spirulina platensis. Bioresource Technology 2017;245:10-7. [DOI: 10.1016/j.biortech.2017.08.160] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
5 Shi B, Wideman G, Wang JH. A New Approach of BioCO2 Fixation by Thermoplastic Processing of Microalgae. J Polym Environ 2012;20:124-31. [DOI: 10.1007/s10924-011-0329-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
6 Rosenberg JN, Mathias A, Korth K, Betenbaugh MJ, Oyler GA. Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: A technical appraisal and economic feasibility evaluation. Biomass and Bioenergy 2011;35:3865-76. [DOI: 10.1016/j.biombioe.2011.05.014] [Cited by in Crossref: 88] [Cited by in F6Publishing: 62] [Article Influence: 8.0] [Reference Citation Analysis]
7 Ho S, Lu W, Chang J. Photobioreactor strategies for improving the CO2 fixation efficiency of indigenous Scenedesmus obliquus CNW-N: Statistical optimization of CO2 feeding, illumination, and operation mode. Bioresource Technology 2012;105:106-13. [DOI: 10.1016/j.biortech.2011.11.091] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 4.4] [Reference Citation Analysis]
8 Zhao S, Ding Y, Liao Q, Zhu X, Huang Y. Experimental and theoretical study on dissolution of a single mixed gas bubble in a microalgae suspension. RSC Adv 2015;5:32615-25. [DOI: 10.1039/c5ra03905c] [Cited by in Crossref: 18] [Article Influence: 2.6] [Reference Citation Analysis]
9 Yadav RR, Krishnamurthi K, Mudliar SN, Devi SS, Naoghare PK, Bafana A, Chakrabarti T. Carbonic anhydrase mediated carbon dioxide sequestration: promises, challenges and future prospects. J Basic Microbiol 2014;54:472-81. [PMID: 24740638 DOI: 10.1002/jobm.201300849] [Cited by in Crossref: 29] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
10 Hu J, Wang L, Zhang S, Fu X, Le Y. Matching Different Inorganic Compounds as Mixture of Electron Donors to Improve CO 2 Fixation by Nonphotosynthetic Microbial Community without Hydrogen. Environ Sci Technol 2010;44:6364-70. [DOI: 10.1021/es1002499] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
11 Heckbert S, Costanza R, Poloczanska E, Richardson A. Climate Regulation as a Service from Estuarine and Coastal Ecosystems. Treatise on Estuarine and Coastal Science. Elsevier; 2011. pp. 199-216. [DOI: 10.1016/b978-0-12-374711-2.01211-0] [Cited by in Crossref: 4] [Article Influence: 0.4] [Reference Citation Analysis]
12 Reijnders L. Microalgal and Terrestrial Transport Biofuels to Displace Fossil Fuels. Energies 2009;2:48-56. [DOI: 10.3390/en20100048] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
13 Ho SH, Chen CY, Lee DJ, Chang JS. Perspectives on microalgal CO₂-emission mitigation systems--a review. Biotechnol Adv 2011;29:189-98. [PMID: 21094248 DOI: 10.1016/j.biotechadv.2010.11.001] [Cited by in Crossref: 367] [Cited by in F6Publishing: 231] [Article Influence: 30.6] [Reference Citation Analysis]
14 Zabed HM, Akter S, Yun J, Zhang G, Awad FN, Qi X, Sahu J. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renewable and Sustainable Energy Reviews 2019;105:105-28. [DOI: 10.1016/j.rser.2019.01.048] [Cited by in Crossref: 125] [Cited by in F6Publishing: 60] [Article Influence: 41.7] [Reference Citation Analysis]
15 Pathania R, Srivastava S. Synechococcus elongatus BDU 130192, an Attractive Cyanobacterium for Feedstock Applications: Response to Culture Conditions. Bioenerg Res 2021;14:954-63. [DOI: 10.1007/s12155-020-10207-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Lal A, Das D. Biomass production and identification of suitable harvesting technique for Chlorella sp. MJ 11/11 and Synechocystis PCC 6803. 3 Biotech 2016;6:41. [PMID: 28330109 DOI: 10.1007/s13205-015-0360-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
17 González-López CV, Acién Fernández FG, Fernández-Sevilla JM, Sánchez Fernández JF, Molina Grima E. Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms. Biotechnol Bioeng 2012;109:1637-50. [PMID: 22252403 DOI: 10.1002/bit.24446] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
18 Yahya L, Harun R, Abdullah LC. Screening of native microalgae species for carbon fixation at the vicinity of Malaysian coal-fired power plant. Sci Rep 2020;10:22355. [PMID: 33339883 DOI: 10.1038/s41598-020-79316-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
19 García-cubero R, Moreno-fernández J, García-gonzález M. Modelling growth and CO2 fixation by Scenedesmus vacuolatus in continuous culture. Algal Research 2017;24:333-9. [DOI: 10.1016/j.algal.2017.04.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
20 Takht Ravanchi M, Sahebdelfar S. Carbon dioxide capture and utilization in petrochemical industry: potentials and challenges. Appl Petrochem Res 2014;4:63-77. [DOI: 10.1007/s13203-014-0050-5] [Cited by in Crossref: 64] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
21 Satyanarayana KG, Mariano AB, Vargas JVC. A review on microalgae, a versatile source for sustainable energy and materials. Int J Energy Res 2011;35:291-311. [DOI: 10.1002/er.1695] [Cited by in Crossref: 151] [Cited by in F6Publishing: 77] [Article Influence: 13.7] [Reference Citation Analysis]
22 Zhang L, Zhao Z, Gong J. Nanostructured Materials for Heterogeneous Electrocatalytic CO 2 Reduction and their Related Reaction Mechanisms. Angew Chem Int Ed 2017;56:11326-53. [DOI: 10.1002/anie.201612214] [Cited by in Crossref: 501] [Cited by in F6Publishing: 339] [Article Influence: 100.2] [Reference Citation Analysis]
23 Dasgupta CN, Suseela M, Mandotra S, Kumar P, Pandey MK, Toppo K, Lone J. Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production. Applied Energy 2015;146:202-8. [DOI: 10.1016/j.apenergy.2015.01.070] [Cited by in Crossref: 29] [Cited by in F6Publishing: 15] [Article Influence: 4.1] [Reference Citation Analysis]
24 Pierre AC. Enzymatic Carbon Dioxide Capture. ISRN Chemical Engineering 2012;2012:1-22. [DOI: 10.5402/2012/753687] [Cited by in Crossref: 35] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
25 Basu S, Roy AS, Mohanty K, Ghoshal AK. Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresource Technology 2013;143:369-77. [DOI: 10.1016/j.biortech.2013.06.010] [Cited by in Crossref: 68] [Cited by in F6Publishing: 52] [Article Influence: 7.6] [Reference Citation Analysis]
26 Monjed MK, Achour B, Robson GD, Pittman JK. Improved saccharification of Chlorella vulgaris biomass by fungal secreted enzymes for bioethanol production. Algal Research 2021;58:102402. [DOI: 10.1016/j.algal.2021.102402] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Zhou K, Chaemchuen S, Verpoort F. Alternative materials in technologies for Biogas upgrading via CO2 capture. Renewable and Sustainable Energy Reviews 2017;79:1414-41. [DOI: 10.1016/j.rser.2017.05.198] [Cited by in Crossref: 71] [Cited by in F6Publishing: 30] [Article Influence: 14.2] [Reference Citation Analysis]
28 Butkutė B, Liaudanskienė I, Jankauskienė Z, Gruzdevienė E, Cesevičienė J, Amalevičiūtė K. Features of Carbon Stock in the Biomass of Industrial Hemp and Stinging Nettle. In: Sayigh A, editor. Renewable Energy in the Service of Mankind Vol I. Cham: Springer International Publishing; 2015. pp. 17-29. [DOI: 10.1007/978-3-319-17777-9_2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
29 Sankar V, Daniel DK, Krastanov A. Carbon Dioxide Fixation by Chlorella Minutissima Batch Cultures in a Stirred Tank Bioreactor. Biotechnology & Biotechnological Equipment 2014;25:2468-76. [DOI: 10.5504/bbeq.2011.0058] [Cited by in Crossref: 16] [Article Influence: 2.0] [Reference Citation Analysis]
30 De Schamphelaire L, Verstraete W. Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 2009;103:296-304. [PMID: 19180645 DOI: 10.1002/bit.22257] [Cited by in Crossref: 161] [Cited by in F6Publishing: 121] [Article Influence: 12.4] [Reference Citation Analysis]
31 Mortensen LM, Gislerød HR. The growth of Chlamydomonas reinhardtii as influenced by high CO2 and low O2 in flue gas from a silicomanganese smelter. J Appl Phycol 2015;27:633-8. [PMID: 25866444 DOI: 10.1007/s10811-014-0357-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
32 Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R, Sethunathan N. The Impacts of Environmental Pollutants on Microalgae and Cyanobacteria. Critical Reviews in Environmental Science and Technology 2010;40:699-821. [DOI: 10.1080/10643380802471068] [Cited by in Crossref: 64] [Cited by in F6Publishing: 34] [Article Influence: 5.3] [Reference Citation Analysis]
33 Ho SH, Li PJ, Liu CC, Chang JS. Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour Technol 2013;145:142-9. [PMID: 23566474 DOI: 10.1016/j.biortech.2013.02.119] [Cited by in Crossref: 89] [Cited by in F6Publishing: 66] [Article Influence: 9.9] [Reference Citation Analysis]
34 Pires J, Martins F, Alvim-ferraz M, Simões M. Recent developments on carbon capture and storage: An overview. Chemical Engineering Research and Design 2011;89:1446-60. [DOI: 10.1016/j.cherd.2011.01.028] [Cited by in Crossref: 437] [Cited by in F6Publishing: 253] [Article Influence: 39.7] [Reference Citation Analysis]
35 Venkata Subhash G, Rajvanshi M, Navish Kumar B, Govindachary S, Prasad V, Dasgupta S. Carbon streaming in microalgae: extraction and analysis methods for high value compounds. Bioresource Technology 2017;244:1304-16. [DOI: 10.1016/j.biortech.2017.07.024] [Cited by in Crossref: 34] [Cited by in F6Publishing: 22] [Article Influence: 6.8] [Reference Citation Analysis]
36 Patel B, Tamburic B, Zemichael FW, Dechatiwongse P, Hellgardt K. Algal Biofuels: A Credible Prospective? ISRN Renewable Energy 2012;2012:1-14. [DOI: 10.5402/2012/631574] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
37 Pires J, Alvim-ferraz M, Martins F, Simões M. Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept. Renewable and Sustainable Energy Reviews 2012;16:3043-53. [DOI: 10.1016/j.rser.2012.02.055] [Cited by in Crossref: 265] [Cited by in F6Publishing: 178] [Article Influence: 26.5] [Reference Citation Analysis]
38 González López CV, Acién Fernández FG, Fernández Sevilla JM, Sánchez Fernández JF, Cerón García MC, Molina Grima E. Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresour Technol 2009;100:5904-10. [PMID: 19647999 DOI: 10.1016/j.biortech.2009.04.070] [Cited by in Crossref: 113] [Cited by in F6Publishing: 93] [Article Influence: 8.7] [Reference Citation Analysis]
39 Cuellar-bermudez SP, Garcia-perez JS, Rittmann BE, Parra-saldivar R. Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. Journal of Cleaner Production 2015;98:53-65. [DOI: 10.1016/j.jclepro.2014.03.034] [Cited by in Crossref: 161] [Cited by in F6Publishing: 97] [Article Influence: 23.0] [Reference Citation Analysis]
40 Huang G, Chen F, Kuang Y, He H, Qin A. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review. Appl Biochem Biotechnol 2016;178:1220-38. [DOI: 10.1007/s12010-015-1940-4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
41 Zhang L, Zhao Z, Gong J. Nanostrukturierte Materialien für die elektrokatalytische CO 2 -Reduktion und ihre Reaktionsmechanismen. Angew Chem 2017;129:11482-511. [DOI: 10.1002/ange.201612214] [Cited by in Crossref: 82] [Cited by in F6Publishing: 63] [Article Influence: 16.4] [Reference Citation Analysis]
42 Mortensen LM, Gislerød HR. The growth of Chlorella sorokiniana as influenced by CO2, light, and flue gases. J Appl Phycol 2016;28:813-20. [DOI: 10.1007/s10811-015-0649-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
43 Kumar A, Yuan X, Sahu AK, Dewulf J, Ergas SJ, Van Langenhove H. A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. J Chem Technol Biotechnol 2010;85:387-94. [DOI: 10.1002/jctb.2332] [Cited by in Crossref: 76] [Cited by in F6Publishing: 54] [Article Influence: 6.3] [Reference Citation Analysis]
44 Tahir A, Rukminasari N, Yaqin K, Lukman M. Increasing CO2 concentration impact upon nutrient absorption and removal efficiency of supra intensive shrimp pond wastewater by marine microalgae Tetraselmis chui. Int J Phytoremediation 2021;23:64-71. [PMID: 32662344 DOI: 10.1080/15226514.2020.1791051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Sun S, Ge Z, Zhao Y, Hu C, Zhang H, Ping L. Performance of CO2 concentrations on nutrient removal and biogas upgrading by integrating microalgal strains cultivation with activated sludge. Energy 2016;97:229-37. [DOI: 10.1016/j.energy.2015.12.126] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
46 Mondal M, Goswami S, Ghosh A, Oinam G, Tiwari ON, Das P, Gayen K, Mandal MK, Halder GN. Production of biodiesel from microalgae through biological carbon capture: a review. 3 Biotech 2017;7:99. [PMID: 28560639 DOI: 10.1007/s13205-017-0727-4] [Cited by in Crossref: 79] [Cited by in F6Publishing: 50] [Article Influence: 15.8] [Reference Citation Analysis]
47 Wiesberg IL, Brigagão GV, de Medeiros JL, de Queiroz Fernandes Araújo O. Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal and economic performance under carbon taxation. Journal of Environmental Management 2017;203:988-98. [DOI: 10.1016/j.jenvman.2017.03.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
48 Nayak BK, Das D. Improvement of carbon dioxide biofixation in a photobioreactor using Anabaena sp. PCC 7120. Process Biochemistry 2013;48:1126-32. [DOI: 10.1016/j.procbio.2013.05.015] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
49 Abomohra AE, Jin W, Tu R, Han S, Eid M, Eladel H. Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives. Renewable and Sustainable Energy Reviews 2016;64:596-606. [DOI: 10.1016/j.rser.2016.06.056] [Cited by in Crossref: 97] [Cited by in F6Publishing: 66] [Article Influence: 16.2] [Reference Citation Analysis]
50 Wang Z, Adhikari S, Valdez P, Shakya R, Laird C. Upgrading of hydrothermal liquefaction biocrude from algae grown in municipal wastewater. Fuel Processing Technology 2016;142:147-56. [DOI: 10.1016/j.fuproc.2015.10.015] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
51 Leu J, Lin T, Selvamani MJP, Chen H, Liang J, Pan K. Characterization of a novel thermophilic cyanobacterial strain from Taian hot springs in Taiwan for high CO2 mitigation and C-phycocyanin extraction. Process Biochemistry 2013;48:41-8. [DOI: 10.1016/j.procbio.2012.09.019] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
52 Fernández JFS, González-lópez CV, Fernández FGA, Sevilla JMF, Grima EM. Utilization of Anabaena sp. in CO2 removal processes: Modelling of biomass, exopolysaccharides productivities and CO2 fixation rate. Appl Microbiol Biotechnol 2012;94:613-24. [DOI: 10.1007/s00253-011-3683-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
53 Valluri S, Claremboux V, Kawatra S. Opportunities and challenges in CO2 utilization. J Environ Sci (China) 2022;113:322-44. [PMID: 34963541 DOI: 10.1016/j.jes.2021.05.043] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Tang D, Han W, Li P, Miao X, Zhong J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology 2011;102:3071-6. [DOI: 10.1016/j.biortech.2010.10.047] [Cited by in Crossref: 475] [Cited by in F6Publishing: 368] [Article Influence: 43.2] [Reference Citation Analysis]
55 Shi B, Bunyard C, Palfery D. Plant polymer biodegradation in relation to global carbon management. Carbohydrate Polymers 2010;82:401-4. [DOI: 10.1016/j.carbpol.2010.04.066] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
56 Maróti G, Rákhely G, Maróti J, Dorogházi E, Klement E, Medzihradszky KF, Kovács KL. Specificity and selectivity of HypC chaperonins and endopeptidases in the molecular assembly machinery of [NiFe] hydrogenases of Thiocapsa roseopersicina. International Journal of Hydrogen Energy 2010;35:3358-70. [DOI: 10.1016/j.ijhydene.2009.10.059] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
57 Berberoglu H, Gomez PS, Pilon L. Radiation characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. used for fixation and biofuel production. Journal of Quantitative Spectroscopy and Radiative Transfer 2009;110:1879-93. [DOI: 10.1016/j.jqsrt.2009.04.005] [Cited by in Crossref: 53] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
58 Raeesossadati M, Ahmadzadeh H, Mchenry M, Moheimani N. CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature. Algal Research 2014;6:78-85. [DOI: 10.1016/j.algal.2014.09.007] [Cited by in Crossref: 68] [Cited by in F6Publishing: 41] [Article Influence: 8.5] [Reference Citation Analysis]
59 Hussian AEM. The Role of Microalgae in Renewable Energy Production: Challenges and Opportunities. In: Türkoğlu M, Önal U, Ismen A, editors. Marine Ecology - Biotic and Abiotic Interactions. InTech; 2018. [DOI: 10.5772/intechopen.73573] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
60 Ghorbani A, Rahimpour HR, Ghasemi Y, Zoughi S, Rahimpour MR. A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran. Renewable and Sustainable Energy Reviews 2014;35:73-100. [DOI: 10.1016/j.rser.2014.03.013] [Cited by in Crossref: 30] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
61 Mccauley JI, Labeeuw L, Jaramillo-madrid AC, Nguyen LN, Nghiem LD, Chaves AV, Ralph PJ. Management of Enteric Methanogenesis in Ruminants by Algal-Derived Feed Additives. Curr Pollution Rep 2020;6:188-205. [DOI: 10.1007/s40726-020-00151-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
62 Daglioglu ST, Karabey B, Ozdemir G, Azbar N. CO 2 utilization via a novel anaerobic bioprocess configuration with simulated gas mixture and real stack gas samples. Environmental Technology 2019;40:742-8. [DOI: 10.1080/09593330.2017.1406537] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
63 Yang D, Syn J, Hsieh C, Huang C, Chien L. Genetically engineered hydrogenases promote biophotocatalysis-mediated H2 production in the green alga Chlorella sp. DT. International Journal of Hydrogen Energy 2019;44:2533-45. [DOI: 10.1016/j.ijhydene.2018.11.088] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
64 Wang B, Li Y, Wu N, Lan CQ. CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 2008;79:707-18. [DOI: 10.1007/s00253-008-1518-y] [Cited by in Crossref: 747] [Cited by in F6Publishing: 502] [Article Influence: 53.4] [Reference Citation Analysis]
65 de Morais MG, de Morais EG, Duarte JH, Deamici KM, Mitchell BG, Costa JAV. Biological CO2 mitigation by microalgae: technological trends, future prospects and challenges. World J Microbiol Biotechnol 2019;35. [DOI: 10.1007/s11274-019-2650-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
66 Raeesossadati MJ, Ahmadzadeh H, Mchenry MP, Moheimani NR. CO2 Environmental Bioremediation by Microalgae. In: Moheimani NR, Mchenry MP, de Boer K, Bahri PA, editors. Biomass and Biofuels from Microalgae. Cham: Springer International Publishing; 2015. pp. 117-36. [DOI: 10.1007/978-3-319-16640-7_7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
67 Singh SK, Sundaram S, Sinha S, Rahman MA, Kapur S. Recent advances in CO 2 uptake and fixation mechanism of cyanobacteria and microalgae. Critical Reviews in Environmental Science and Technology 2016;46:1297-323. [DOI: 10.1080/10643389.2016.1217911] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
68 Hu JJ, Wang L, Zhang SP, Wang YQ, Xi XF. Inhibitory effect of organic carbon on CO₂ fixing by non-photosynthetic microbial community isolated from the ocean. Bioresour Technol 2011;102:7147-53. [PMID: 21576014 DOI: 10.1016/j.biortech.2011.04.028] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.4] [Reference Citation Analysis]
69 Lee E, Pruvost J, He X, Munipalli R, Pilon L. Design tool and guidelines for outdoor photobioreactors. Chemical Engineering Science 2014;106:18-29. [DOI: 10.1016/j.ces.2013.11.014] [Cited by in Crossref: 56] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
70 Rajmohan K, Ramya C, Varjani S. Trends and advances in bioenergy production and sustainable solid waste management. Energy & Environment 2021;32:1059-85. [DOI: 10.1177/0958305x19882415] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
71 Kumar K, Banerjee D, Das D. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresource Technology 2014;152:225-33. [DOI: 10.1016/j.biortech.2013.10.098] [Cited by in Crossref: 86] [Cited by in F6Publishing: 61] [Article Influence: 10.8] [Reference Citation Analysis]
72 Nithiya E, Tamilmani J, Vasumathi K, Premalatha M. Improved CO 2 fixation with Oscillatoria sp. in response to various supply frequencies of CO 2 supply. Journal of CO2 Utilization 2017;18:198-205. [DOI: 10.1016/j.jcou.2017.01.025] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
73 Ho S, Chen C, Yeh K, Chen W, Lin C, Chang J. Characterization of photosynthetic carbon dioxide fixation ability of indigenous Scenedesmus obliquus isolates. Biochemical Engineering Journal 2010;53:57-62. [DOI: 10.1016/j.bej.2010.09.006] [Cited by in Crossref: 59] [Cited by in F6Publishing: 46] [Article Influence: 4.9] [Reference Citation Analysis]
74 Taheri Najafabadi A. CO 2 chemical conversion to useful products: An engineering insight to the latest advances toward sustainability: CO 2 chemical conversion to useful products. Int J Energy Res 2013;37:485-99. [DOI: 10.1002/er.3021] [Cited by in Crossref: 109] [Cited by in F6Publishing: 70] [Article Influence: 12.1] [Reference Citation Analysis]
75 Chen C, Zhao X, Yen H, Ho S, Cheng C, Lee D, Bai F, Chang J. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal 2013;78:1-10. [DOI: 10.1016/j.bej.2013.03.006] [Cited by in Crossref: 387] [Cited by in F6Publishing: 231] [Article Influence: 43.0] [Reference Citation Analysis]
76 Bhola V, Swalaha F, Ranjith Kumar R, Singh M, Bux F. Overview of the potential of microalgae for CO2 sequestration. Int J Environ Sci Technol 2014;11:2103-18. [DOI: 10.1007/s13762-013-0487-6] [Cited by in Crossref: 79] [Cited by in F6Publishing: 45] [Article Influence: 9.9] [Reference Citation Analysis]
77 Bharathiraja B, Chakravarthy M, Ranjith Kumar R, Yogendran D, Yuvaraj D, Jayamuthunagai J, Praveen Kumar R, Palani S. Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products. Renewable and Sustainable Energy Reviews 2015;47:634-53. [DOI: 10.1016/j.rser.2015.03.047] [Cited by in Crossref: 117] [Cited by in F6Publishing: 68] [Article Influence: 16.7] [Reference Citation Analysis]
78 Li Y, Wang Y, Gao Y, Zhao H, Zhou W. Seawater toilet flushing sewage treatment and nutrients recovery by marine bacterial-algal mutualistic system. Chemosphere 2018;195:70-9. [DOI: 10.1016/j.chemosphere.2017.12.076] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
79 Chen C, Kao P, Tan CH, Show PL, Cheah WY, Lee W, Ling TC, Chang J. Using an innovative pH-stat CO 2 feeding strategy to enhance cell growth and C-phycocyanin production from Spirulina platensis. Biochemical Engineering Journal 2016;112:78-85. [DOI: 10.1016/j.bej.2016.04.009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 17] [Article Influence: 5.2] [Reference Citation Analysis]
80 Skjånes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 2013;33:172-215. [PMID: 22765907 DOI: 10.3109/07388551.2012.681625] [Cited by in Crossref: 178] [Cited by in F6Publishing: 129] [Article Influence: 17.8] [Reference Citation Analysis]
81 Zhao S, Ding Y, Chen R, Liao Q, Zhu X. Dynamic behaviors of CO2 bubbles coalescing at two parallel capillary orifices in microalgae suspension. International Journal of Heat and Mass Transfer 2015;90:1001-8. [DOI: 10.1016/j.ijheatmasstransfer.2015.07.047] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 2.1] [Reference Citation Analysis]
82 Eloka-eboka AC, Inambao FL. Effects of CO 2 sequestration on lipid and biomass productivity in microalgal biomass production. Applied Energy 2017;195:1100-11. [DOI: 10.1016/j.apenergy.2017.03.071] [Cited by in Crossref: 67] [Cited by in F6Publishing: 36] [Article Influence: 13.4] [Reference Citation Analysis]
83 Chen CY, Kao AL, Tsai ZC, Chow TJ, Chang HY, Zhao XQ, Chen PT, Su HY, Chang JS. Expression of type 2 diacylglycerol acyltransferse gene DGTT1 from Chlamydomonas reinhardtii enhances lipid production in Scenedesmus obliquus. Biotechnol J 2016;11:336-44. [PMID: 26849021 DOI: 10.1002/biot.201500272] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 5.5] [Reference Citation Analysis]
84 Mortensen LM, Gislerød HR. The effect on growth of Chlamydomonas reinhardtii of flue gas from a power plant based on waste combustion. AMB Express 2014;4:49. [PMID: 25401062 DOI: 10.1186/s13568-014-0049-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
85 Chinnasamy S, Ramakrishnan B, Bhatnagar A, Das KC. Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO₂and temperature. Int J Mol Sci 2009;10:518-32. [PMID: 19333419 DOI: 10.3390/ijms10020518] [Cited by in Crossref: 145] [Cited by in F6Publishing: 98] [Article Influence: 11.2] [Reference Citation Analysis]
86 Xu J, Cheng J, Xin K, Xu J, Yang W. Developing a Spiral-Ascending CO 2 Dissolver to Enhance CO 2 Mass Transfer in a Horizontal Tubular Photobioreactor for Improved Microalgal Growth. ACS Sustainable Chem Eng 2020;8:18926-35. [DOI: 10.1021/acssuschemeng.0c06124] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
87 Knoshaug EP, Shi B, Shannon TG, Mleziva MM, Pienkos PT. The potential of photosynthetic aquatic species as sources of useful cellulose fibers—a review. J Appl Phycol 2013;25:1123-34. [DOI: 10.1007/s10811-012-9958-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
88 Bajhaiya AK, Dean AP, Zeef LA, Webster RE, Pittman JK. PSR1 Is a Global Transcriptional Regulator of Phosphorus Deficiency Responses and Carbon Storage Metabolism in Chlamydomonas reinhardtii. Plant Physiol 2016;170:1216-34. [PMID: 26704642 DOI: 10.1104/pp.15.01907] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 6.4] [Reference Citation Analysis]
89 Khan SA, Rashmi, Hussain MZ, Prasad S, Banerjee U. Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews 2009;13:2361-72. [DOI: 10.1016/j.rser.2009.04.005] [Cited by in Crossref: 345] [Cited by in F6Publishing: 200] [Article Influence: 26.5] [Reference Citation Analysis]
90 Chen C, Kao P, Tsai C, Lee D, Chang J. Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresource Technology 2013;145:307-12. [DOI: 10.1016/j.biortech.2013.01.054] [Cited by in Crossref: 87] [Cited by in F6Publishing: 61] [Article Influence: 9.7] [Reference Citation Analysis]
91 Costa JAV, de Morais MG. The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology 2011;102:2-9. [DOI: 10.1016/j.biortech.2010.06.014] [Cited by in Crossref: 158] [Cited by in F6Publishing: 110] [Article Influence: 14.4] [Reference Citation Analysis]
92 Centi G, Perathoner S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today 2009;148:191-205. [DOI: 10.1016/j.cattod.2009.07.075] [Cited by in Crossref: 954] [Cited by in F6Publishing: 634] [Article Influence: 73.4] [Reference Citation Analysis]
93 Pilon L, Berberoğlu H, Kandilian R. Radiation transfer in photobiological carbon dioxide fixation and fuel production by microalgae. Journal of Quantitative Spectroscopy and Radiative Transfer 2011;112:2639-60. [DOI: 10.1016/j.jqsrt.2011.07.004] [Cited by in Crossref: 116] [Cited by in F6Publishing: 68] [Article Influence: 10.5] [Reference Citation Analysis]
94 Rajkumar R, Takriff MS, Veeramuthu A. Technical insights into carbon dioxide sequestration by microalgae: A biorefinery approach towards sustainable environment. Biomass Conv Bioref . [DOI: 10.1007/s13399-022-02446-9] [Reference Citation Analysis]
95 Ma CY. Determination of the scaling characteristics of time-dependent optical properties of microalgae using electromagnetic scattering. J Phys Commun 2021;5:015016. [DOI: 10.1088/2399-6528/abdb4b] [Reference Citation Analysis]
96 Luis P, Van der Bruggen B. The role of membranes in post-combustion CO 2 capture: The role of membranes in post-combustion CO 2 capture. Greenhouse Gas Sci Technol 2013;3:318-37. [DOI: 10.1002/ghg.1365] [Cited by in Crossref: 51] [Cited by in F6Publishing: 32] [Article Influence: 5.7] [Reference Citation Analysis]
97 Roberts KP, Heaven S, Banks CJ. Comparative testing of energy yields from micro-algal biomass cultures processed via anaerobic digestion. Renewable Energy 2016;87:744-53. [DOI: 10.1016/j.renene.2015.11.009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
98 Banerjee C, Dubey KK, Shukla P. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges. Front Microbiol 2016;7:432. [PMID: 27065986 DOI: 10.3389/fmicb.2016.00432] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 6.5] [Reference Citation Analysis]