BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xu Z, Cheng C, Shen J, Lan Y, Hu S, Han W, Chu PK. In vitro antimicrobial effects and mechanisms of direct current air-liquid discharge plasma on planktonic Staphylococcus aureus and Escherichia coli in liquids. Bioelectrochemistry 2018;121:125-34. [DOI: 10.1016/j.bioelechem.2018.01.012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 6.8] [Reference Citation Analysis]
Number Citing Articles
1 Šimončicová J, Kryštofová S, Medvecká V, Ďurišová K, Kaliňáková B. Technical applications of plasma treatments: current state and perspectives. Appl Microbiol Biotechnol 2019;103:5117-29. [DOI: 10.1007/s00253-019-09877-x] [Cited by in Crossref: 36] [Cited by in F6Publishing: 19] [Article Influence: 12.0] [Reference Citation Analysis]
2 Gaio V, Lopes N, Cerca N, França A. codY and pdhA Expression Is Induced in Staphylococcus epidermidis Biofilm and Planktonic Populations With Higher Proportions of Viable but Non-Culturable Cells. Front Cell Infect Microbiol 2021;11:771666. [PMID: 34869073 DOI: 10.3389/fcimb.2021.771666] [Reference Citation Analysis]
3 Guo Y, An X, Fan Z. Aramid nanofibers reinforced polyvinyl alcohol/tannic acid hydrogel with improved mechanical and antibacterial properties for potential application as wound dressing. J Mech Behav Biomed Mater 2021;118:104452. [PMID: 33756417 DOI: 10.1016/j.jmbbm.2021.104452] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Dong XY, Yang YL. A Novel Approach to Enhance Blueberry Quality During Storage Using Cold Plasma at Atmospheric Air Pressure. Food Bioprocess Technol 2019;12:1409-21. [DOI: 10.1007/s11947-019-02305-y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 8.3] [Reference Citation Analysis]
5 Piri A, Kim HR, Hwang J. Prevention of damage caused by corona discharge-generated reactive oxygen species under electrostatic aerosol-to-hydrosol sampling. J Hazard Mater 2020;384:121477. [PMID: 31704122 DOI: 10.1016/j.jhazmat.2019.121477] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
6 Adhikari B, Pangomm K, Veerana M, Mitra S, Park G. Plant Disease Control by Non-Thermal Atmospheric-Pressure Plasma. Front Plant Sci 2020;11:77. [PMID: 32117403 DOI: 10.3389/fpls.2020.00077] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
7 Lazra Y, Dubrovin I, Multanen V, Bormashenko E, Bormashenko Y, Cahan R. Effects of Atmospheric Plasma Corona Discharges on Soil Bacteria Viability. Microorganisms 2020;8:E704. [PMID: 32403235 DOI: 10.3390/microorganisms8050704] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Xi W, Guo L, Liu D, Zhou R, Wang Z, Wang W, Liu Z, Wang X, Ostrikov KK, Rong M. Upcycle hazard against other hazard: Toxic fluorides from plasma fluoropolymer etching turn novel microbial disinfectants. J Hazard Mater 2022;424:127658. [PMID: 34802825 DOI: 10.1016/j.jhazmat.2021.127658] [Reference Citation Analysis]
9 Gómez-López VM, Pataro G, Tiwari B, Gozzi M, Meireles MÁA, Wang S, Guamis B, Pan Z, Ramaswamy H, Sastry S, Kuntz F, Cullen PJ, Vidyarthi SK, Ling B, Quevedo JM, Strasser A, Vignali G, Veggi PC, Gervilla R, Kotilainen HM, Pelacci M, Viganó J, Morata A. Guidelines on reporting treatment conditions for emerging technologies in food processing. Crit Rev Food Sci Nutr 2021;:1-25. [PMID: 33764212 DOI: 10.1080/10408398.2021.1895058] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
10 Yang Y, Wang H, Zhou H, Hu Z, Shang W, Rao Y, Peng H, Zheng Y, Hu Q, Zhang R, Luo H, Rao X. Protective Effect of the Golden Staphyloxanthin Biosynthesis Pathway on Staphylococcus aureus under Cold Atmospheric Plasma Treatment. Appl Environ Microbiol 2020;86:e01998-19. [PMID: 31704682 DOI: 10.1128/AEM.01998-19] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
11 Liu J, Yang C, Cheng C, Zhang C, Zhao J, Fu C. In vitro antimicrobial effect and mechanism of action of plasma-activated liquid on planktonic Neisseria gonorrhoeae. Bioengineered 2021;12:4605-19. [PMID: 34320914 DOI: 10.1080/21655979.2021.1955548] [Reference Citation Analysis]
12 Huang M, Zhuang H, Zhao J, Wang J, Yan W, Zhang J. Differences in cellular damage induced by dielectric barrier discharge plasma between Salmonella Typhimurium and Staphylococcus aureus. Bioelectrochemistry 2020;132:107445. [DOI: 10.1016/j.bioelechem.2019.107445] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 10.5] [Reference Citation Analysis]
13 Baek KH, Yong HI, Yoo JH, Kim JW, Byeon YS, Lim J, Yoon SY, Ryu S, Jo C. Antimicrobial effects and mechanism of plasma activated fine droplets produced from arc discharge plasma on planktonic Listeria monocytogenes and Escherichia coli O157:H7. J Phys D: Appl Phys 2020;53:124002. [DOI: 10.1088/1361-6463/ab634d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
14 Wang J, Yu Z, Xu Z, Hu S, Li Y, Xue X, Cai Q, Zhou X, Shen J, Lan Y, Cheng C. Antimicrobial mechanism and the effect of atmospheric pressure N2 plasma jet on the regeneration capacity of Staphylococcus aureus biofilm. Biofouling 2018;34:935-49. [PMID: 30477343 DOI: 10.1080/08927014.2018.1530350] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Gururani P, Bhatnagar P, Bisht B, Kumar V, Joshi NC, Tomar MS, Pathak B. Cold plasma technology: advanced and sustainable approach for wastewater treatment. Environ Sci Pollut Res Int 2021. [PMID: 34617236 DOI: 10.1007/s11356-021-16741-x] [Reference Citation Analysis]
16 Zhang H, Ma J, Shen J, Lan Y, Ding L, Qian S, Xia W, Cheng C, Chu PK. Roles of membrane protein damage and intracellular protein damage in death of bacteria induced by atmospheric-pressure air discharge plasmas. RSC Adv 2018;8:21139-49. [DOI: 10.1039/c8ra01882k] [Cited by in Crossref: 11] [Article Influence: 2.8] [Reference Citation Analysis]
17 Yoo JH, Baek KH, Heo YS, Yong HI, Jo C. Synergistic bactericidal effect of clove oil and encapsulated atmospheric pressure plasma against Escherichia coli O157:H7 and Staphylococcus aureus and its mechanism of action. Food Microbiol 2021;93:103611. [PMID: 32912582 DOI: 10.1016/j.fm.2020.103611] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
18 Cheng J, Lv X, Pan Y, Sun D. Foodborne bacterial stress responses to exogenous reactive oxygen species (ROS) induced by cold plasma treatments. Trends in Food Science & Technology 2020;103:239-47. [DOI: 10.1016/j.tifs.2020.07.022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
19 Xu Z, Zhou X, Yang W, Zhang Y, Ye Z, Hu S, Ye C, Li Y, Lan Y, Shen J, Ye X, Yang F, Cheng C. In vitro antimicrobial effects and mechanism of air plasma‐activated water on Staphylococcus aureus biofilm. Plasma Process Polym 2020;17:1900270. [DOI: 10.1002/ppap.201900270] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 5.5] [Reference Citation Analysis]
20 Zhao YM, Patange A, Sun DW, Tiwari B. Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Compr Rev Food Sci Food Saf 2020;19:3951-79. [PMID: 33337045 DOI: 10.1111/1541-4337.12644] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
21 Li H, Kang Z, Jiang E, Song R, Zhang Y, Qu G, Wang T, Jia H, Zhu L. Plasma induced efficient removal of antibiotic-resistant Escherichia coli and antibiotic resistance genes, and inhibition of gene transfer by conjugation. J Hazard Mater 2021;419:126465. [PMID: 34214852 DOI: 10.1016/j.jhazmat.2021.126465] [Reference Citation Analysis]