BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Icard P, Lincet H, Wu Z, Coquerel A, Forgez P, Alifano M, Fournel L. The key role of Warburg effect in SARS-CoV-2 replication and associated inflammatory response. Biochimie 2021;180:169-77. [PMID: 33189832 DOI: 10.1016/j.biochi.2020.11.010] [Cited by in Crossref: 51] [Cited by in F6Publishing: 40] [Article Influence: 17.0] [Reference Citation Analysis]
Number Citing Articles
1 Mohammad MG, Ashmawy NS, Al-Rawi AM, Abu-Qiyas A, Hamoda AM, Hamdy R, Dakalbab S, Arikat S, Salahat D, Madkour M, Soliman SSM. SARS-CoV-2-free residual proteins mediated phenotypic and metabolic changes in peripheral blood monocytic-derived macrophages in support of viral pathogenesis. PLoS One 2023;18:e0280592. [PMID: 36656874 DOI: 10.1371/journal.pone.0280592] [Reference Citation Analysis]
2 Nguyen HT, Do VM, Phan TT, Nguyen Huynh DT. The Potential of Ameliorating COVID-19 and Sequelae From Andrographis paniculata via Bioinformatics. Bioinform Biol Insights 2023;17:11779322221149622. [PMID: 36654765 DOI: 10.1177/11779322221149622] [Reference Citation Analysis]
3 Aydın H, Tekin YK, Korkmaz İ, Tekin G, Yurtbay S, Keleş S, Hekim N. Glutamine-Driven Metabolic Adaptation to COVID-19 Infection. Indian J Clin Biochem 2023;38:83-93. [PMID: 35431470 DOI: 10.1007/s12291-022-01037-9] [Reference Citation Analysis]
4 Jana S, Heaven MR, Stauft CB, Wang TT, Williams MC, D'Agnillo F, Alayash AI. HIF-1α-Dependent Metabolic Reprogramming, Oxidative Stress, and Bioenergetic Dysfunction in SARS-CoV-2-Infected Hamsters. Int J Mol Sci 2022;24. [PMID: 36614003 DOI: 10.3390/ijms24010558] [Reference Citation Analysis]
5 Pinto SM, Subbannayya Y, Kim H, Hagen L, Górna MW, Nieminen AI, Bjørås M, Espevik T, Kainov D, Kandasamy RK. Multi-OMICs landscape of SARS-CoV-2-induced host responses in human lung epithelial cells. iScience 2023;26:105895. [PMID: 36590899 DOI: 10.1016/j.isci.2022.105895] [Reference Citation Analysis]
6 Rössler T, Berezhnoy G, Singh Y, Cannet C, Reinsperger T, Schäfer H, Spraul M, Kneilling M, Merle U, Trautwein C. Quantitative Serum NMR Spectroscopy Stratifies COVID-19 Patients and Sheds Light on Interfaces of Host Metabolism and the Immune Response with Cytokines and Clinical Parameters. Metabolites 2022;12. [PMID: 36557315 DOI: 10.3390/metabo12121277] [Reference Citation Analysis]
7 Dey S, Murmu N, Mondal T, Saha I, Chatterjee S, Manna R, Haldar S, Dash SK, Sarkar TR, Giri B. Multifaceted entrancing role of glucose and its analogue, 2-deoxy-D-glucose in cancer cell proliferation, inflammation, and virus infection. Biomedicine & Pharmacotherapy 2022;156:113801. [DOI: 10.1016/j.biopha.2022.113801] [Reference Citation Analysis]
8 Lobato TB, Gennari-felipe M, Pauferro JRB, Correa IS, Santos BF, Dias BB, de Oliveira Borges JC, dos Santos CS, de Sousa Santos ES, de Araújo MJL, Ferreira LA, Pereira SA, Serdan TDA, Levada-pires AC, Hatanaka E, Borges L, Cury-boaventura MF, Vinolo MAR, Pithon-curi TC, Masi LN, Curi R, Hirabara SM, Gorjão R. Leukocyte metabolism in obese type 2 diabetic individuals associated with COVID-19 severity. Front Microbiol 2022;13. [DOI: 10.3389/fmicb.2022.1037469] [Reference Citation Analysis]
9 Kuk MU, Ga YJ, Kim YJ, Park JY, Song ES, Lee H, Lee YH, Ko G, Kim JK, Yeh JY, Kwon HW, Byun Y, Park JT. Metabolic reprogramming as a novel therapeutic target for Coxsackievirus B3. Anim Cells Syst (Seoul) 2022;26:275-82. [PMID: 36605593 DOI: 10.1080/19768354.2022.2141318] [Reference Citation Analysis]
10 Denaro CA, Haloush YI, Hsiao SY, Orgera JJ, Osorio T, Riggs LM, Sassaman JW, Williams SA, Monte Carlo AR 3rd, Da Costa RT, Grigoriev A, Solesio ME. COVID-19 and neurodegeneration: The mitochondrial connection. Aging Cell 2022;21:e13727. [PMID: 36219531 DOI: 10.1111/acel.13727] [Reference Citation Analysis]
11 Bhowal C, Ghosh S, Ghatak D, De R. Pathophysiological involvement of host mitochondria in SARS-CoV-2 infection that causes COVID-19: a comprehensive evidential insight. Mol Cell Biochem 2022. [DOI: 10.1007/s11010-022-04593-z] [Reference Citation Analysis]
12 Aydemir D, Ulusu NN. The possible importance of the antioxidants and oxidative stress metabolism in the emerging monkeypox disease: An opinion paper. Front Public Health 2022;10:1001666. [PMID: 36339207 DOI: 10.3389/fpubh.2022.1001666] [Reference Citation Analysis]
13 Thirupathi A, Gu Y, Radak Z, Pinho RA. Redox Status Is the Mainstay of SARS-CoV-2 and Host for Producing Therapeutic Opportunities. Antioxidants 2022;11:2061. [DOI: 10.3390/antiox11102061] [Reference Citation Analysis]
14 Suaya M, Sánchez GM, Vila A, Amante A, Cotarelo M, García Carrillo M, Blaustein M. Live and let die: signaling AKTivation and UPRegulation dynamics in SARS-CoVs infection and cancer. Cell Death Dis 2022;13:846. [PMID: 36192392 DOI: 10.1038/s41419-022-05250-5] [Reference Citation Analysis]
15 Berber E, Sumbria D, Kokkaya S. A metabolic blueprint of COVID-19 and long-term vaccine efficacy. Drug Metabolism and Personalized Therapy 2022;0. [DOI: 10.1515/dmpt-2022-0148] [Reference Citation Analysis]
16 Páez-franco JC, Maravillas-montero JL, Mejía-domínguez NR, Torres-ruiz J, Tamez-torres KM, Pérez-fragoso A, Germán-acacio JM, Ponce-de-león A, Gómez-martín D, Ulloa-aguirre A. Metabolomics analysis identifies glutamic acid and cystine imbalances in COVID-19 patients without comorbid conditions. Implications on redox homeostasis and COVID-19 pathophysiology. PLoS ONE 2022;17:e0274910. [DOI: 10.1371/journal.pone.0274910] [Reference Citation Analysis]
17 Pająk B, Zieliński R, Manning JT, Matejin S, Paessler S, Fokt I, Emmett MR, Priebe W. The Antiviral Effects of 2-Deoxy-D-glucose (2-DG), a Dual D-Glucose and D-Mannose Mimetic, against SARS-CoV-2 and Other Highly Pathogenic Viruses. Molecules 2022;27:5928. [DOI: 10.3390/molecules27185928] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Jiang Y, Zhao T, Zhou X, Xiang Y, Gutierrez‐castrellon P, Ma X. Inflammatory pathways in COVID‐19: Mechanism and therapeutic interventions. MedComm 2022;3. [DOI: 10.1002/mco2.154] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Jin Q, Li W, Yu W, Zeng M, Liu J, Xu P. Analysis and identification of potential type II helper T cell (Th2)-Related key genes and therapeutic agents for COVID-19. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.106134] [Reference Citation Analysis]
20 Qiao X, Lu Y, Xu J, Deng N, Lai W, Wu Z, Lin H, Zhang Y, Lu D. Integrative analyses of mRNA and microRNA expression profiles reveal the innate immune mechanism for the resistance to Vibrio parahaemolyticus infection in Epinephelus coioides. Front Immunol 2022;13:982973. [DOI: 10.3389/fimmu.2022.982973] [Reference Citation Analysis]
21 Mercado-Gómez M, Prieto-Fernández E, Goikoetxea-Usandizaga N, Vila-Vecilla L, Azkargorta M, Bravo M, Serrano-Maciá M, Egia-Mendikute L, Rodríguez-Agudo R, Lachiondo-Ortega S, Lee SY, Eguileor Giné A, Gil-Pitarch C, González-Recio I, Simón J, Petrov P, Jover R, Martínez-Cruz LA, Ereño-Orbea J, Delgado TC, Elortza F, Jiménez-Barbero J, Nogueiras R, Prevot V, Palazon A, Martínez-Chantar ML. The spike of SARS-CoV-2 promotes metabolic rewiring in hepatocytes. Commun Biol 2022;5:827. [PMID: 35978143 DOI: 10.1038/s42003-022-03789-9] [Reference Citation Analysis]
22 Amorim MJB, Gomes SIL, Bicho RCS, Scott-Fordsmand JJ. On virus and nanomaterials - Lessons learned from the innate immune system - ACE activation in the invertebrate model Enchytraeus crypticus. J Hazard Mater 2022;436:129173. [PMID: 35739709 DOI: 10.1016/j.jhazmat.2022.129173] [Reference Citation Analysis]
23 Pouysségur J, Marchiq 1st, Parks SK, Durivault J, Ždralević M, Vucetic M. 'Warburg effect' controls tumor growth, bacterial, viral infections and immunity - Genetic deconstruction and therapeutic perspectives. Semin Cancer Biol 2022:S1044-579X(22)00175-4. [PMID: 35820598 DOI: 10.1016/j.semcancer.2022.07.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
24 Bononi G, Masoni S, Di Bussolo V, Tuccinardi T, Granchi C, Minutolo F. Historical perspective of tumor glycolysis: A century with Otto Warburg. Semin Cancer Biol 2022:S1044-579X(22)00162-6. [PMID: 35809880 DOI: 10.1016/j.semcancer.2022.07.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Correia BSB, Ferreira VG, Piagge PMFD, Almeida MB, Assunção NA, Raimundo JRS, Fonseca FLA, Carrilho E, Cardoso DR. 1H qNMR-Based Metabolomics Discrimination of Covid-19 Severity. J Proteome Res 2022. [PMID: 35674498 DOI: 10.1021/acs.jproteome.1c00977] [Reference Citation Analysis]
26 Pannaraj PS, da Costa-Martins AG, Cerini C, Li F, Wong SS, Singh Y, Urbanski AH, Gonzalez-Dias P, Yang J, Webby RJ, Nakaya HI, Aldrovandi GM. Molecular alterations in human milk in simulated maternal nasal mucosal infection with live attenuated influenza vaccination. Mucosal Immunol 2022. [PMID: 35739193 DOI: 10.1038/s41385-022-00537-4] [Reference Citation Analysis]
27 Pérez-torres I, Soto ME, Guarner-lans V, Manzano-pech L, Soria-castro E. The Possible Role of Glucose-6-Phosphate Dehydrogenase in the SARS-CoV-2 Infection. Cells 2022;11:1982. [DOI: 10.3390/cells11131982] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Meewan I, Kattoula J, Kattoula JY, Skinner D, Fajtová P, Giardini MA, Woodworth B, McKerrow JH, Lage de Siqueira-Neto J, O'Donoghue AJ, Abagyan R. Discovery of Triple Inhibitors of Both SARS-CoV-2 Proteases and Human Cathepsin L. Pharmaceuticals (Basel) 2022;15:744. [PMID: 35745663 DOI: 10.3390/ph15060744] [Reference Citation Analysis]
29 Kulkarni P, Padmanabhan S. A novel property of hexokinase inhibition by Favipiravir and proposed advantages over Molnupiravir and 2 Deoxy D glucose in treating COVID-19. Biotechnol Lett 2022. [PMID: 35608787 DOI: 10.1007/s10529-022-03259-6] [Reference Citation Analysis]
30 Qi X, Yan Q, Shang Y, Zhao R, Ding X, Gao S, Li W, Lu C. A viral interferon regulatory factor degrades RNA-binding protein hnRNP Q1 to enhance aerobic glycolysis via recruiting E3 ubiquitin ligase KLHL3 and decaying GDPD1 mRNA. Cell Death Differ 2022. [DOI: 10.1038/s41418-022-01011-1] [Reference Citation Analysis]
31 Yang L, Xiong H, Li X, Li Y, Zhou H, Lin X, Chan TF, Li R, Lai KP, Chen X. Network Pharmacology and Comparative Transcriptome Reveals Biotargets and Mechanisms of Curcumol Treating Lung Adenocarcinoma Patients With COVID-19. Front Nutr 2022;9:870370. [DOI: 10.3389/fnut.2022.870370] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Shao MM, Shi M, Du J, Pei XB, Gu BB, Yi FS. Metabolic Landscape of Bronchoalveolar Lavage Fluid in Coronavirus Disease 2019 at Single Cell Resolution. Front Immunol 2022;13:829760. [PMID: 35350779 DOI: 10.3389/fimmu.2022.829760] [Reference Citation Analysis]
33 Yang K, Holt M, Fan M, Lam V, Yang Y, Ha T, Williams DL, Li C, Wang X. Cardiovascular Dysfunction in COVID-19: Association Between Endothelial Cell Injury and Lactate. Front Immunol 2022;13:868679. [PMID: 35401579 DOI: 10.3389/fimmu.2022.868679] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Sardu C, Marfella R, Prattichizzo F, La Grotta R, Paolisso G, Ceriello A. Effect of Hyperglycemia on COVID-19 Outcomes: Vaccination Efficacy, Disease Severity, and Molecular Mechanisms. JCM 2022;11:1564. [DOI: 10.3390/jcm11061564] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
35 Wang J, Chang H, Qiao Y, Sun H, Li X, Yuan S, Zhang S, Shan C. Angiotensin converting enzyme 2 (ACE2): Virus accomplice or host defender.. [DOI: 10.1101/2022.03.06.483197] [Reference Citation Analysis]
36 Zurita‐lizza CC, Doreski PA. Potential reversal of pulmonary vasoplegia by inhaled ibuprofenate in COVID‐19 pneumonia. Clinical and Translational Dis 2022;2. [DOI: 10.1002/ctd2.31] [Reference Citation Analysis]
37 Lee SR, Roh JY, Ryu J, Shin H, Hong E. Activation of TCA cycle restrains virus-metabolic hijacking and viral replication in mouse hepatitis virus-infected cells. Cell Biosci 2022;12. [DOI: 10.1186/s13578-021-00740-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
38 Foo J, Bellot G, Pervaiz S, Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends in Microbiology 2022. [DOI: 10.1016/j.tim.2021.12.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 19.0] [Reference Citation Analysis]
39 Qin J, Guo C, Yang L, Liang X, Jiao A, Lai KP, Yang B. Bioinformatics and in-silico findings reveal medical features and pharmacological targets of biochanin A against colorectal cancer and COVID-19. Bioengineered 2021;12:12461-9. [PMID: 34931923 DOI: 10.1080/21655979.2021.2005876] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Abu-Eid R, Ward FJ. Targeting the PI3K/Akt/mTOR pathway: A therapeutic strategy in COVID-19 patients. Immunol Lett 2021;240:1-8. [PMID: 34562551 DOI: 10.1016/j.imlet.2021.09.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
41 Reiter RJ, Sharma R, Rosales-Corral S, Manucha W, Chuffa LGA, Zuccari DAPC. Melatonin and Pathological Cell Interactions: Mitochondrial Glucose Processing in Cancer Cells. Int J Mol Sci 2021;22:12494. [PMID: 34830375 DOI: 10.3390/ijms222212494] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
42 Sfera A, Osorio C, Rahman L, Zapata-Martín Del Campo CM, Maldonado JC, Jafri N, Cummings MA, Maurer S, Kozlakidis Z. PTSD as an Endothelial Disease: Insights From COVID-19. Front Cell Neurosci 2021;15:770387. [PMID: 34776871 DOI: 10.3389/fncel.2021.770387] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Meewan I, Kattoula J, Kattoula JY, Skinner D, Fajtová P, Giardini MA, Woodworth B, Mckerrow JH, de Siqueira-neto JL, O’donoghue AJ, Abagyan R. Discovery of Potent Triple Inhibitors of Both SARS-CoV-2 Proteases and Human Cathepsin L.. [DOI: 10.1101/2021.10.19.465036] [Reference Citation Analysis]
44 Kleinehr J, Wilden JJ, Boergeling Y, Ludwig S, Hrincius ER. Metabolic Modifications by Common Respiratory Viruses and Their Potential as New Antiviral Targets. Viruses 2021;13:2068. [PMID: 34696497 DOI: 10.3390/v13102068] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Krishnan S, Nordqvist H, Ambikan AT, Gupta S, Sperk M, Svensson-Akusjärvi S, Mikaeloff F, Benfeitas R, Saccon E, Ponnan SM, Rodriguez JE, Nikouyan N, Odeh A, Ahlén G, Asghar M, Sällberg M, Vesterbacka J, Nowak P, Végvári Á, Sönnerborg A, Treutiger CJ, Neogi U. Metabolic Perturbation Associated With COVID-19 Disease Severity and SARS-CoV-2 Replication. Mol Cell Proteomics 2021;20:100159. [PMID: 34619366 DOI: 10.1016/j.mcpro.2021.100159] [Cited by in Crossref: 28] [Cited by in F6Publishing: 34] [Article Influence: 14.0] [Reference Citation Analysis]
46 Santos AF, Póvoa P, Paixão P, Mendonça A, Taborda-Barata L. Changes in Glycolytic Pathway in SARS-COV 2 Infection and Their Importance in Understanding the Severity of COVID-19. Front Chem 2021;9:685196. [PMID: 34568275 DOI: 10.3389/fchem.2021.685196] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
47 Icard P, Simula L, Rei J, Fournel L, De Pauw V, Alifano M. On the footsteps of Hippocrates, Sanctorius and Harvey to better understand the influence of cold on the occurrence of COVID-19 in European countries in 2020. Biochimie 2021;191:164-71. [PMID: 34555456 DOI: 10.1016/j.biochi.2021.09.009] [Reference Citation Analysis]
48 Mahajan S, Choudhary S, Kumar P, Tomar S. Antiviral strategies targeting host factors and mechanisms obliging +ssRNA viral pathogens. Bioorg Med Chem 2021;46:116356. [PMID: 34416512 DOI: 10.1016/j.bmc.2021.116356] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
49 Yang Q, Lin F, Wang Y, Zeng M, Luo M. Long Noncoding RNAs as Emerging Regulators of COVID-19. Front Immunol 2021;12:700184. [PMID: 34408749 DOI: 10.3389/fimmu.2021.700184] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
50 Soldevila B, Puig-Domingo M, Marazuela M. Basic mechanisms of SARS-CoV-2 infection. What endocrine systems could be implicated? Rev Endocr Metab Disord 2021. [PMID: 34333732 DOI: 10.1007/s11154-021-09678-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
51 Azad AKM, Fatima S, Capraro A, Waters SA, Vafaee F. Integrative resource for network-based investigation of COVID-19 combinatoric drug repositioning and mechanism of action. Patterns (N Y) 2021;:100325. [PMID: 34278363 DOI: 10.1016/j.patter.2021.100325] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Barreda-Manso MA, Nieto-Díaz M, Soto A, Muñoz-Galdeano T, Reigada D, Maza RM. In Silico and In Vitro Analyses Validate Human MicroRNAs Targeting the SARS-CoV-2 3'-UTR. Int J Mol Sci 2021;22:6094. [PMID: 34198800 DOI: 10.3390/ijms22116094] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
53 Beale DJ, Shah R, Karpe AV, Hillyer KE, McAuley AJ, Au GG, Marsh GA, Vasan SS. Metabolic Profiling from an Asymptomatic Ferret Model of SARS-CoV-2 Infection. Metabolites 2021;11:327. [PMID: 34069591 DOI: 10.3390/metabo11050327] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
54 Wehbe Z, Hammoud SH, Yassine HM, Fardoun M, El-Yazbi AF, Eid AH. Molecular and Biological Mechanisms Underlying Gender Differences in COVID-19 Severity and Mortality. Front Immunol 2021;12:659339. [PMID: 34025658 DOI: 10.3389/fimmu.2021.659339] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
55 Peter AE, Sandeep BV, Rao BG, Kalpana VL. Nanotechnology to the Rescue: Treatment Perspective for the Immune Dysregulation Observed in COVID-19. Front Nanotechnol 2021;3:644023. [DOI: 10.3389/fnano.2021.644023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Pérez de la Lastra JM, Andrés-juan C, Plou FJ, Pérez-lebeña E. Impact of Zinc, Glutathione, and Polyphenols as Antioxidants in the Immune Response against SARS-CoV-2. Processes 2021;9:506. [DOI: 10.3390/pr9030506] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
57 Krishnan S, Nordqvist H, Ambikan AT, Gupta S, Sperk M, Svensson-akusjärvi S, Mikaeloff F, Benfeitas R, Saccon E, Ponnan SM, Rodriguez JE, Nikouyan N, Odeh A, Ahlén G, Asghar M, Sällberg M, Vesterbacka J, Nowak P, Végvári Á, Sönnerborg A, Treutiger CJ, Neogi U. Implications of central carbon metabolism in SARS-CoV-2 replication and disease severity.. [DOI: 10.1101/2021.02.24.432759] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
58 Marchiano S, Hsiang TY, Khanna A, Higashi T, Whitmore LS, Bargehr J, Davaapil H, Chang J, Smith E, Ong LP, Colzani M, Reinecke H, Yang X, Pabon L, Sinha S, Najafian B, Sniadecki NJ, Bertero A, Gale M Jr, Murry CE. SARS-CoV-2 Infects Human Pluripotent Stem Cell-Derived Cardiomyocytes, Impairing Electrical and Mechanical Function. Stem Cell Reports 2021;16:478-92. [PMID: 33657418 DOI: 10.1016/j.stemcr.2021.02.008] [Cited by in Crossref: 35] [Cited by in F6Publishing: 42] [Article Influence: 17.5] [Reference Citation Analysis]
59 Kosiborod M, Berwanger O, Koch GG, Martinez F, Mukhtar O, Verma S, Chopra V, Javaheri A, Ambery P, Gasparyan SB, Buenconsejo J, Sjöström CD, Langkilde AM, Oscarsson J, Esterline R. Effects of dapagliflozin on prevention of major clinical events and recovery in patients with respiratory failure because of COVID-19: Design and rationale for the DARE-19 study. Diabetes Obes Metab 2021;23:886-96. [PMID: 33319454 DOI: 10.1111/dom.14296] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 13.5] [Reference Citation Analysis]
60 Reiter RJ, Sharma R, Rosales-Corral S. Anti-Warburg Effect of Melatonin: A Proposed Mechanism to Explain its Inhibition of Multiple Diseases. Int J Mol Sci 2021;22:E764. [PMID: 33466614 DOI: 10.3390/ijms22020764] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
61 Mercurio I, Tragni V, Busto F, De Grassi A, Pierri CL. Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: from conformational changes to novel neutralizing antibodies. Cell Mol Life Sci 2021;78:1501-22. [PMID: 32623480 DOI: 10.1007/s00018-020-03580-1] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 17.7] [Reference Citation Analysis]