BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Giuliani MC, Jourlin-Castelli C, Leroy G, Hachani A, Giudici-Orticoni MT. Characterization of a new periplasmic single-domain rhodanese encoded by a sulfur-regulated gene in a hyperthermophilic bacterium Aquifex aeolicus. Biochimie 2010;92:388-97. [PMID: 20060433 DOI: 10.1016/j.biochi.2009.12.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
Number Citing Articles
1 Chng SS, Dutton RJ, Denoncin K, Vertommen D, Collet JF, Kadokura H, Beckwith J. Overexpression of the rhodanese PspE, a single cysteine-containing protein, restores disulphide bond formation to an Escherichia coli strain lacking DsbA. Mol Microbiol 2012;85:996-1006. [PMID: 22809289 DOI: 10.1111/j.1365-2958.2012.08157.x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
2 Aussignargues C, Giuliani MC, Infossi P, Lojou E, Guiral M, Giudici-Orticoni MT, Ilbert M. Rhodanese functions as sulfur supplier for key enzymes in sulfur energy metabolism. J Biol Chem 2012;287:19936-48. [PMID: 22496367 DOI: 10.1074/jbc.M111.324863] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
3 Tamazawa S, Yamamoto K, Takasaki K, Mitani Y, Hanada S, Kamagata Y, Tamaki H. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring. Microbes Environ 2016;31:194-8. [PMID: 27297893 DOI: 10.1264/jsme2.ME16013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
4 Zhou J, Wang Z, Huang Z, Lu C, Han Z, Zhang J, Jiang H, Ge C, Yang J. Expression of sulfur uptake assimilation-related genes in response to cadmium, bensulfuron-methyl and their co-contamination in rice roots. J Environ Sci (China) 2014;26:650-61. [PMID: 25079279 DOI: 10.1016/S1001-0742(13)60446-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Weissgerber T, Dobler N, Polen T, Latus J, Stockdreher Y, Dahl C. Genome-wide transcriptional profiling of the purple sulfur bacterium Allochromatium vinosum DSM 180T during growth on different reduced sulfur compounds. J Bacteriol 2013;195:4231-45. [PMID: 23873913 DOI: 10.1128/JB.00154-13] [Cited by in Crossref: 21] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
6 Florentino AP, Pereira IAC, Boeren S, van den Born M, Stams AJM, Sánchez-Andrea I. Insight into the sulfur metabolism of Desulfurella amilsii by differential proteomics. Environ Microbiol 2019;21:209-25. [PMID: 30307104 DOI: 10.1111/1462-2920.14442] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
7 Tanabe TS, Leimkühler S, Dahl C. The functional diversity of the prokaryotic sulfur carrier protein TusA. Elsevier; 2019. pp. 233-77. [DOI: 10.1016/bs.ampbs.2019.07.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
8 Guiral M, Prunetti L, Aussignargues C, Ciaccafava A, Infossi P, Ilbert M, Lojou E, Giudici-Orticoni MT. The hyperthermophilic bacterium Aquifex aeolicus: from respiratory pathways to extremely resistant enzymes and biotechnological applications. Adv Microb Physiol 2012;61:125-94. [PMID: 23046953 DOI: 10.1016/B978-0-12-394423-8.00004-4] [Cited by in Crossref: 25] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
9 Braakman R, Smith E. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium. PLoS One 2014;9:e87950. [PMID: 24516572 DOI: 10.1371/journal.pone.0087950] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]