BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Roguin LP, Chiarante N, García Vior MC, Marino J. Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy. Int J Biochem Cell Biol 2019;114:105575. [PMID: 31362060 DOI: 10.1016/j.biocel.2019.105575] [Cited by in Crossref: 38] [Cited by in F6Publishing: 54] [Article Influence: 12.7] [Reference Citation Analysis]
Number Citing Articles
1 Nene LC, Buthelezi K, Prinsloo E, Nyokong T. The in vitro photo-sonodynamic combinatorial therapy activity of cationic and zwitterionic phthalocyanines on MCF-7 and HeLa cancer cell lines. Journal of Photochemistry and Photobiology A: Chemistry 2022;432:114116. [DOI: 10.1016/j.jphotochem.2022.114116] [Reference Citation Analysis]
2 Abrahamse H, Hamblin MR, George S. Structure and functions of Aggregation-Induced Emission-Photosensitizers in anticancer and antimicrobial theranostics. Front Chem 2022;10:984268. [DOI: 10.3389/fchem.2022.984268] [Reference Citation Analysis]
3 Demirbaş Ü, Pişkin M, Durmuş M, Kantekin H. Metal or metal-free phthalocyanines containing morpholine substituents: synthesis, spectroscopic and photophysicochemical properties. Journal of Coordination Chemistry. [DOI: 10.1080/00958972.2022.2102906] [Reference Citation Analysis]
4 Dantas KCF, Rosário JDS, Silva-caldeira PP. Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics 2022;14:1506. [DOI: 10.3390/pharmaceutics14071506] [Reference Citation Analysis]
5 Burtsev ID, Egorov AE, Kostyukov AA, Shibaeva AV, Klimovich MA, Kosov AD, Seliverstov MY, Dubinina TV, Markova AA, Kuzmin VA. Photochemical Properties of Octaphenyl-Substituted Erbium Phthalocyanine. Russ J Phys Chem B 2022;16:109-17. [DOI: 10.1134/s1990793122010195] [Reference Citation Analysis]
6 Ağırtaş MS, Solğun DG, Yıldıko U. Synthesis, theoretical DFT analysis, photophysical and photochemical properties of a new zinc phthalocyanine compound. Inorganic and Nano-Metal Chemistry. [DOI: 10.1080/24701556.2022.2034005] [Reference Citation Analysis]
7 de Oliveira de Siqueira LB, dos Santos Matos AP, Feuser PE, Machado-de-ávila RA, Santos-oliveira R, Ricci-júnior E. Encapsulation of photosensitizer in niosomes for promotion of antitumor and antimicrobial photodynamic therapy. Journal of Drug Delivery Science and Technology 2022;68:103031. [DOI: 10.1016/j.jddst.2021.103031] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Yurttaş AG, Sevim AM, Çınar K, Atmaca GY, Erdoğmuş A, Gül A. The effects of zinc(II)phthalocyanine photosensitizers on biological activities of epitheloid cervix carcinoma cells and precise determination of absorbed fluence at a specific wavelength. Dyes and Pigments 2022;198:110012. [DOI: 10.1016/j.dyepig.2021.110012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
9 Gourdon L, Cariou K, Gasser G. Phototherapeutic anticancer strategies with first-row transition metal complexes: a critical review. Chem Soc Rev 2022. [PMID: 35048929 DOI: 10.1039/d1cs00609f] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
10 Nalçaoğlu A, Sarı C, Değirmencioğlu İ, Eyüpoğlu FC. Novel piperazine-substituted silicon phthalocyanines exert anti-cancer effects against breast cancer cells. Photodiagnosis and Photodynamic Therapy 2022. [DOI: 10.1016/j.pdpdt.2022.102734] [Reference Citation Analysis]
11 Obata M, Ishihara E, Hirohara S. Effect of tertiary amino groups in the hydrophobic segment of an amphiphilic block copolymer on zinc phthalocyanine encapsulation and photodynamic activity. RSC Adv 2022;12:18144-53. [DOI: 10.1039/d2ra02224a] [Reference Citation Analysis]
12 Zheng BD, Ye J, Huang YY, Xiao MT. Phthalocyanine-based photoacoustic contrast agents for imaging and theranostics. Biomater Sci 2021;9:7811-25. [PMID: 34755723 DOI: 10.1039/d1bm01435h] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
13 Günsel A, Yazar B, Taslimi P, Erden Y, Taskin-Tok T, Pişkin H, Bilgiçli AT, Yarasir MN, Gülçin İ. Novel tetrakis-phthalocyanines bearing pyrimidine derivative: crystal XRD analysis, enzyme inhibition, molecular docking, and anticancer effects. J Biomol Struct Dyn 2021;:1-14. [PMID: 34806542 DOI: 10.1080/07391102.2021.2004923] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Yang YL, Lin K, Yang L. Progress in Nanocarriers Codelivery System to Enhance the Anticancer Effect of Photodynamic Therapy. Pharmaceutics 2021;13:1951. [PMID: 34834367 DOI: 10.3390/pharmaceutics13111951] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
15 Trindade AC, de Castro PARR, Pinto BCDS, Ambrósio JAR, de Oliveira Junior BM, Beltrame Junior M, Gonçalves EP, Pinto JG, Ferreira-Strixino J, Simioni AR. Gelatin nanoparticles via template polymerization for drug delivery system to photoprocess application in cells. J Biomater Sci Polym Ed 2021;:1-18. [PMID: 34705614 DOI: 10.1080/09205063.2021.1998819] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
16 Shang L, Zhou X, Zhang J, Shi Y, Zhong L. Metal Nanoparticles for Photodynamic Therapy: A Potential Treatment for Breast Cancer. Molecules 2021;26:6532. [PMID: 34770941 DOI: 10.3390/molecules26216532] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
17 Nene LC, Nyokong T. Photo-sonodynamic combination activity of cationic morpholino-phthalocyanines conjugated to nitrogen and nitrogen-sulfur doped graphene quantum dots against MCF-7 breast cancer cell line in vitro. Photodiagnosis Photodyn Ther 2021;36:102573. [PMID: 34628070 DOI: 10.1016/j.pdpdt.2021.102573] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
18 Mısır MN, Mısır G, Bekircan O, Kantekin H, Öztürk D, Durmuş M. Sulfur bridged new metal-free and metallo phthalocyanines carrying 1,2,4-triazole rings and their photophysicochemical properties. Polyhedron 2021;207:115361. [DOI: 10.1016/j.poly.2021.115361] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Pellei M, Del Bello F, Porchia M, Santini C. Zinc coordination complexes as anticancer agents. Coordination Chemistry Reviews 2021;445:214088. [DOI: 10.1016/j.ccr.2021.214088] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
20 Lara P, Huis In 't Veld RV, Jorquera-Cordero C, Chan AB, Ossendorp F, Cruz LJ. Zinc-Phthalocyanine-Loaded Extracellular Vesicles Increase Efficacy and Selectivity of Photodynamic Therapy in Co-Culture and Preclinical Models of Colon Cancer. Pharmaceutics 2021;13:1547. [PMID: 34683840 DOI: 10.3390/pharmaceutics13101547] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
21 Simelane NWN, Kruger CA, Abrahamse H. Targeted Nanoparticle Photodynamic Diagnosis and Therapy of Colorectal Cancer. Int J Mol Sci 2021;22:9779. [PMID: 34575942 DOI: 10.3390/ijms22189779] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Luo T, Nash GT, Xu Z, Jiang X, Liu J, Lin W. Nanoscale Metal-Organic Framework Confines Zinc-Phthalocyanine Photosensitizers for Enhanced Photodynamic Therapy. J Am Chem Soc 2021;143:13519-24. [PMID: 34424712 DOI: 10.1021/jacs.1c07379] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
23 Suárez-garcía S, Solórzano R, Alibés R, Busqué F, Novio F, Ruiz-molina D. Antitumour activity of coordination polymer nanoparticles. Coordination Chemistry Reviews 2021;441:213977. [DOI: 10.1016/j.ccr.2021.213977] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
24 Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coordination Chemistry Reviews 2021;441:213975. [DOI: 10.1016/j.ccr.2021.213975] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
25 Zheng Y, Ye J, Li Z, Chen H, Gao Y. Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology-based efficacy-enhancing strategies. Acta Pharm Sin B 2021;11:2197-219. [PMID: 34522584 DOI: 10.1016/j.apsb.2020.12.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 10.0] [Reference Citation Analysis]
26 Lange N, Szlasa W, Saczko J, Chwiłkowska A. Potential of Cyanine Derived Dyes in Photodynamic Therapy. Pharmaceutics 2021;13:818. [PMID: 34072719 DOI: 10.3390/pharmaceutics13060818] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
27 Schmidt AM, Calvete MJF. Phthalocyanines: An Old Dog Can Still Have New (Photo)Tricks! Molecules 2021;26:2823. [PMID: 34068708 DOI: 10.3390/molecules26092823] [Cited by in Crossref: 1] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
28 Harmandar K, Saglam MF, Sengul IF, Ekineker G, Balcik-ercin P, Göksel M, Atilla D. Novel triazole containing zinc(II)phthalocyanine Schiff bases: Determination of photophysical and photochemical properties for photodynamic cancer therapy. Inorganica Chimica Acta 2021;519:120286. [DOI: 10.1016/j.ica.2021.120286] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
29 Günsel A, Kalkan F, Atmaca GY, Barut B, Bilgiçli AT, Pişkin H, Özel A, Erdoğmuş A, Yarasir MN. Synthesis of water‐soluble phthalocyanines containing 1‐methyl‐1 H ‐imidazole‐2‐thiol: Investigation of DNA nuclease, α‐glucosidase inhibitory, and photo‐physicochemical properties. Appl Organomet Chem 2021;35. [DOI: 10.1002/aoc.6202] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Xiao W, Guan X, Huang B, Ye Q, Zhang T, Chen K, Peng Y, Fu F. Fluorinated dendritic silicon (IV) phthalocyanines nanoparticles: Synthesis, photoinduced intramolecular energy transfer and DNA interaction. Dyes and Pigments 2021;186:109013. [DOI: 10.1016/j.dyepig.2020.109013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
31 Sarı C, Nalçaoğlu A, Değirmencioğlu İ, Celep Eyüpoğlu F. Tumor-selective new piperazine-fragmented silicon phthalocyanines initiate cell death in breast cancer cell lines. J Photochem Photobiol B 2021;216:112143. [PMID: 33550219 DOI: 10.1016/j.jphotobiol.2021.112143] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
32 AĞirtaŞ MS, GÜngÖrdÜ SolĞun D, Yildiko Ü, Özkartal A. Design of novel substituted phthalocyanines; synthesis and fluorescence, DFT, photovoltaic properties. Turk J Chem 2020;44:1574-86. [PMID: 33488254 DOI: 10.3906/kim-2007-40] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
33 Magadla A, Babu B, Mack J, Nyokong T. Positively charged styryl pyridine substituted Zn(II) phthalocyanines for photodynamic therapy and photoantimicrobial chemotherapy: effect of the number of charges. Dalton Trans 2021;50:9129-36. [PMID: 34115081 DOI: 10.1039/d1dt01047f] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Barut B, Keleş T, Biyiklioglu Z, Yalçın CÖ. Peripheral or nonperipheral tetra‐[4‐(9 H ‐carbazol‐9‐yl)phenoxy] substituted cobalt(II), manganese(III) phthalocyanines: Synthesis, acetylcholinesterase, butyrylcholinesterase, and α‐glucosidase inhibitory effects and anticancer activities. Appl Organomet Chem 2021;35. [DOI: 10.1002/aoc.6021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
35 Harmandar K, Kaya EN, Saglam MF, Sengul IF, Atilla D. Bis-indole substituted phthalocyanines: Photophysical and photochemical properties. J Porphyrins Phthalocyanines 2021;25:66-74. [DOI: 10.1142/s1088424620500522] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Porchia M, Pellei M, Del Bello F, Santini C. Zinc Complexes with Nitrogen Donor Ligands as Anticancer Agents. Molecules 2020;25:E5814. [PMID: 33317158 DOI: 10.3390/molecules25245814] [Cited by in Crossref: 8] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
37 Kaya M, Menteşe E, Sökmen BB, Akçay HT. The determination of molecular dynamic properties of Novel 5-oxo-1,2,4-triazole phthalocyanines and investigation of their urease inhibition properties. Journal of Molecular Structure 2020;1222:128870. [DOI: 10.1016/j.molstruc.2020.128870] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Zheng BD, Li SL, Huang ZL, Zhang L, Liu H, Zheng BY, Ke MR, Huang JD. A non-aggregated zinc(II) phthalocyanine with hexadeca cations for antitumor and antibacterial photodynamic therapies. J Photochem Photobiol B 2020;213:112086. [PMID: 33232881 DOI: 10.1016/j.jphotobiol.2020.112086] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
39 Feuser PE, Cordeiro AP, de Bem Silveira G, Borges Corrêa MEA, Lock Silveira PC, Sayer C, de Araújo PHH, Machado-de-Ávila RA, Dal Bó AG. Co-encapsulation of sodium diethyldithiocarbamate (DETC) and zinc phthalocyanine (ZnPc) in liposomes promotes increases phototoxic activity against (MDA-MB 231) human breast cancer cells. Colloids Surf B Biointerfaces 2021;197:111434. [PMID: 33166932 DOI: 10.1016/j.colsurfb.2020.111434] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
40 Freire NF, Feuser PE, da Silva Abel J, Machado-de-ávila RA, Lopes Fialho R, Cabral Albuquerque E, Sayer C, Hermes de Araújo PH. Zinc phthalocyanine encapsulation via thiol-ene miniemulsion polymerization and in vitro photoxicity studies. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2020.1838517] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
41 Barut B, Yalçın CÖ, Demirbaş Ü, Akçay HT, Kantekin H, Özel A. The novel Zn(II) phthalocyanines: Synthesis, characterization, photochemical, DNA interaction and cytotoxic/phototoxic properties. Journal of Molecular Structure 2020;1218:128502. [DOI: 10.1016/j.molstruc.2020.128502] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Burtsev I, Platonova Y, Volov A, Tomilova L. Synthesis, characterization and photochemical properties of novel octakis(p–fluorophenoxy)substituted phthalocyanine and its gallium and indium complexes. Polyhedron 2020;188:114697. [DOI: 10.1016/j.poly.2020.114697] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
43 Barut B, Demirbaş Ü. Synthesis, anti-cholinesterease, α-glucosidase inhibitory, antioxidant and DNA nuclease properties of non-peripheral triclosan substituted metal-free, copper(II), and nickel(II) phthalocyanines. Journal of Organometallic Chemistry 2020;923:121423. [DOI: 10.1016/j.jorganchem.2020.121423] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
44 Wang X, Li M, Hou Y, Li Y, Yao X, Xue C, Fei Y, Xiang Y, Cai K, Zhao Y, Luo Z. Tumor‐Microenvironment‐Activated In Situ Self‐Assembly of Sequentially Responsive Biopolymer for Targeted Photodynamic Therapy. Adv Funct Mater 2020;30:2000229. [DOI: 10.1002/adfm.202000229] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
45 Barut B, Yalçın CÖ, Demirbaş Ü, Özel A. Photochemical and in vitro phototoxic properties of Zn (II) phthalocyanine bearing piperidinium groups on different cell lines. Journal of Organometallic Chemistry 2020;921:121358. [DOI: 10.1016/j.jorganchem.2020.121358] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
46 Kollar J, Machacek M, Halaskova M, Lenco J, Kucera R, Demuth J, Rohlickova M, Hasonova K, Miletin M, Novakova V, Zimcik P. Cationic Versus Anionic Phthalocyanines for Photodynamic Therapy: What a Difference the Charge Makes. J Med Chem 2020;63:7616-32. [DOI: 10.1021/acs.jmedchem.0c00481] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
47 Ogbodu RO, Nitzsche B, Ma A, Atilla D, Gürek AG, Höpfner M. Photodynamic therapy of hepatocellular carcinoma using tetra-triethyleneoxysulfonyl zinc phthalocyanine as photosensitizer. Journal of Photochemistry and Photobiology B: Biology 2020;208:111915. [DOI: 10.1016/j.jphotobiol.2020.111915] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
48 Chiarante N, Duhalde Vega M, Valli F, Zotta E, Daghero H, Basika T, Bollati-Fogolin M, García Vior MC, Marino J, Roguin LP. In Vivo Photodynamic Therapy With a Lipophilic Zinc(II) Phthalocyanine Inhibits Colorectal Cancer and Induces a Th1/CD8 Antitumor Immune Response. Lasers Surg Med 2021;53:344-58. [PMID: 32525252 DOI: 10.1002/lsm.23284] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
49 Allegra A, Pioggia G, Tonacci A, Musolino C, Gangemi S. Oxidative Stress and Photodynamic Therapy of Skin Cancers: Mechanisms, Challenges and Promising Developments. Antioxidants (Basel) 2020;9:E448. [PMID: 32455998 DOI: 10.3390/antiox9050448] [Cited by in Crossref: 9] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
50 Valli F, García Vior MC, Roguin LP, Marino J. Crosstalk between oxidative stress-induced apoptotic and autophagic signaling pathways in Zn(II) phthalocyanine photodynamic therapy of melanoma. Free Radical Biology and Medicine 2020;152:743-54. [DOI: 10.1016/j.freeradbiomed.2020.01.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
51 Ziminov AV, Sidunets YA, Fundamensky VS, Gurzhiy VV, Ramsh SM. Synthesis, characterization, and investigation of photochemical properties of tetra-substituted zinc phthalocyanines bearing 4-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl moiety with different linker heteroatoms. Inorganica Chimica Acta 2020;501:119306. [DOI: 10.1016/j.ica.2019.119306] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Laube C, Taut JA, Kretzschmar J, Zahn S, Knolle W, Ullman S, Kahnt A, Kersting B, Abel B. Light controlled oxidation by supramolecular Zn( ii ) Schiff-base complexes. Inorg Chem Front 2020;7:4333-46. [DOI: 10.1039/d0qi00980f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Bächle F, Siemens N, Ziegler T. Glycoconjugated Phthalocyanines as Photosensitizers for PDT – Overcoming Aggregation in Solution. Eur J Org Chem 2019;2019:7089-116. [DOI: 10.1002/ejoc.201901224] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
54 Lukowiak A, Gerasymchuk Y, Wedzynska A, Tahershamsi L, Tomala R, Strek W, Piatek D, Korona-glowniak I, Speruda M, Kedziora A, Bugla-ploskonska G. Light-Activated Zirconium(IV) Phthalocyanine Derivatives Linked to Graphite Oxide Flakes and Discussion on Their Antibacterial Activity. Applied Sciences 2019;9:4447. [DOI: 10.3390/app9204447] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]