BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang X, Zhu P, Xu S, Liu Y, Jin Y, Yu S, Wei H, Li J, Zhang Q, Hasegawa T, Yao C, Yoshimura H, Wu Q, Zhao X. Antimony, a novel nerve poison, triggers neuronal autophagic death via reactive oxygen species-mediated inhibition of the protein kinase B/mammalian target of rapamycin pathway. Int J Biochem Cell Biol 2019;114:105561. [PMID: 31228582 DOI: 10.1016/j.biocel.2019.105561] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
Number Citing Articles
1 Ding W, Zhao Z, Zheng Y, Wang R, Zhang Z, Zhang Z, Wang X, Yu S, Liu L, Huang R, Zhao X, Wu Q. Exposure to short-chain chlorinated paraffins induces astrocyte activation via JAK2/STAT3 signaling pathway. Ecotoxicology and Environmental Safety 2022;248:114268. [DOI: 10.1016/j.ecoenv.2022.114268] [Reference Citation Analysis]
2 Zhang C, Jing D, Huang X, Xiao Y, Shu Z, Luo D, Duan Y, He M, Xiao S, Chen X, Huang Z, Shen M. Effects of co-exposure to multiple metals on children's behavior problems in China. Science of The Total Environment 2022;826:154062. [DOI: 10.1016/j.scitotenv.2022.154062] [Reference Citation Analysis]
3 Su L, Fang W, Zhao X, Zhu L, Gao L, Chen G. Disruption of mitochondrial redox homeostasis as a mechanism of antimony-induced reactive oxygen species and cytotoxicity. Ecotoxicol Environ Saf 2022;237:113519. [PMID: 35453021 DOI: 10.1016/j.ecoenv.2022.113519] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Yu S, Li Z, Zhang Q, Wang R, Zhao Z, Ding W, Wang F, Sun C, Tang J, Wang X, Zhang H, Huang R, Wu Q, Jiang J, Zhao X. GPX4 degradation via chaperone-mediated autophagy contributes to antimony-triggered neuronal ferroptosis. Ecotoxicol Environ Saf 2022;234:113413. [PMID: 35305351 DOI: 10.1016/j.ecoenv.2022.113413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Zhang T, Luo J, Ge H, Hao K, Wang Z, Zhang D. Relationships between urinary antimony concentrations and depressive symptoms in adults. Chemosphere 2021;:133104. [PMID: 34856240 DOI: 10.1016/j.chemosphere.2021.133104] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Zheng Y, Ding W, Zhang T, Zhao Z, Wang R, Li Z, Yu S, Li J, Zhao X, Wu Q. Antimony-induced astrocyte activation via mitogen-activated protein kinase activation-dependent CREB phosphorylation. Toxicol Lett 2021;352:9-16. [PMID: 34571074 DOI: 10.1016/j.toxlet.2021.09.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Wei Y, Ni L, Pan J, Li X, Xu B, Deng Y, Yang T, Liu W. The Roles of Oxidative Stress in Regulating Autophagy in Methylmercury-induced Neurotoxicity. Neuroscience 2021;469:175-90. [PMID: 34174372 DOI: 10.1016/j.neuroscience.2021.06.026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Wan F, Zhong G, Wu S, Jiang X, Liao J, Zhang X, Zhang H, Mehmood K, Tang Z, Hu L. Arsenic and antimony co-induced nephrotoxicity via autophagy and pyroptosis through ROS-mediated pathway in vivo and in vitro. Ecotoxicol Environ Saf 2021;221:112442. [PMID: 34166936 DOI: 10.1016/j.ecoenv.2021.112442] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
9 Shen M, Zhang C, Yi X, Guo J, Xu S, Huang Z, He M, Chen X, Luo D, Yang F. Association of multi-metals exposure with intelligence quotient score of children: A prospective cohort study. Environ Int 2021;155:106692. [PMID: 34148013 DOI: 10.1016/j.envint.2021.106692] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
10 Zhang Z, Sun X, Wang K, Yu Y, Zhang L, Zhang K, Gu J, Yuan X, Song G. Hydrogen-saturated saline mediated neuroprotection through autophagy via PI3K/AKT/mTOR pathway in early and medium stages of rotenone-induced Parkinson's disease rats. Brain Res Bull 2021;172:1-13. [PMID: 33838212 DOI: 10.1016/j.brainresbull.2021.04.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
11 Xu S, Yang Z, Zhi Y, Yu S, Zhang T, Jiang J, Tang J, He H, Lu M, Wang X, Wu Q, Zhao X. The effects of antimony on Alzheimer's disease-like pathological changes in mice brain. Science of The Total Environment 2021;760:143235. [DOI: 10.1016/j.scitotenv.2020.143235] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
12 Zhi Y, Lu C, Zhu G, Li Z, Zhu P, Liu Y, Shi W, Su L, Jiang J, Qu J, Zhao X. Positive regulation of the CREB phosphorylation via JNK-dependent pathway prevents antimony-induced neuronal apoptosis in PC12 cell and mice brain. NeuroToxicology 2020;81:101-8. [DOI: 10.1016/j.neuro.2020.09.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
13 Shi W, Tang Y, Zhi Y, Li Z, Yu S, Jiang J, Zhu J, Li J, Wang F, Su L, Zhao X. Akt inhibition-dependent downregulation of the Wnt/β-Catenin Signaling pathway contributes to antimony-induced neurotoxicity. Sci Total Environ 2020;737:140252. [PMID: 32783850 DOI: 10.1016/j.scitotenv.2020.140252] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
14 Cao W, Gong J, Zeng G, Song B, Zhang P, Li J, Fang S, Tang S, Ye J, Cai Z. Potential Interactions between Three Common Metal Oxide Nanoparticles and Antimony(III/V) Involving Their Uptake, Distribution, and Phytotoxicity to Soybean. ACS Sustainable Chem Eng 2020;8:10125-41. [DOI: 10.1021/acssuschemeng.0c02144] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
15 Wu Y, Jin Y, Sun T, Zhu P, Li J, Zhang Q, Wang X, Jiang J, Chen G, Zhao X. p62/SQSTM1 accumulation due to degradation inhibition and transcriptional activation plays a critical role in silica nanoparticle-induced airway inflammation via NF-κB activation. J Nanobiotechnology 2020;18:77. [PMID: 32429946 DOI: 10.1186/s12951-020-00634-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
16 Zhao F, Wang J, Lu H, Fang L, Qin H, Liu C, Min W. Neuroprotection by Walnut-Derived Peptides through Autophagy Promotion via Akt/mTOR Signaling Pathway against Oxidative Stress in PC12 Cells. J Agric Food Chem 2020;68:3638-48. [DOI: 10.1021/acs.jafc.9b08252] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]