BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao X, Xing F, Cong Y, Zhuang Y, Han M, Wu Z, Yu S, Wei H, Wang X, Chen G. Antimony trichloride induces a loss of cell viability via reactive oxygen species-dependent autophagy in A549 cells. The International Journal of Biochemistry & Cell Biology 2017;93:32-40. [DOI: 10.1016/j.biocel.2017.10.007] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
Number Citing Articles
1 Su L, Fang W, Zhao X, Zhu L, Gao L, Chen G. Disruption of mitochondrial redox homeostasis as a mechanism of antimony-induced reactive oxygen species and cytotoxicity. Ecotoxicol Environ Saf 2022;237:113519. [PMID: 35453021 DOI: 10.1016/j.ecoenv.2022.113519] [Reference Citation Analysis]
2 Yu S, Li Z, Zhang Q, Wang R, Zhao Z, Ding W, Wang F, Sun C, Tang J, Wang X, Zhang H, Huang R, Wu Q, Jiang J, Zhao X. GPX4 degradation via chaperone-mediated autophagy contributes to antimony-triggered neuronal ferroptosis. Ecotoxicol Environ Saf 2022;234:113413. [PMID: 35305351 DOI: 10.1016/j.ecoenv.2022.113413] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Lai Z, He M, Lin C, Ouyang W, Liu X. Interactions of antimony with biomolecules and its effects on human health. Ecotoxicol Environ Saf 2022;233:113317. [PMID: 35182796 DOI: 10.1016/j.ecoenv.2022.113317] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
4 Zhang T, Luo J, Ge H, Hao K, Wang Z, Zhang D. Relationships between urinary antimony concentrations and depressive symptoms in adults. Chemosphere 2021;:133104. [PMID: 34856240 DOI: 10.1016/j.chemosphere.2021.133104] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Zheng Y, Ding W, Zhang T, Zhao Z, Wang R, Li Z, Yu S, Li J, Zhao X, Wu Q. Antimony-induced astrocyte activation via mitogen-activated protein kinase activation-dependent CREB phosphorylation. Toxicol Lett 2021;352:9-16. [PMID: 34571074 DOI: 10.1016/j.toxlet.2021.09.006] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Li Y, Wang Z, Liu R. Superparamagnetic α-Fe2O3/Fe3O4 Heterogeneous Nanoparticles with Enhanced Biocompatibility. Nanomaterials (Basel) 2021;11:834. [PMID: 33805140 DOI: 10.3390/nano11040834] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
7 Xu S, Yang Z, Zhi Y, Yu S, Zhang T, Jiang J, Tang J, He H, Lu M, Wang X, Wu Q, Zhao X. The effects of antimony on Alzheimer's disease-like pathological changes in mice brain. Science of The Total Environment 2021;760:143235. [DOI: 10.1016/j.scitotenv.2020.143235] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
8 Zhong G, Wan F, Wu S, Jiang X, Tang Z, Zhang X, Huang R, Hu L. Arsenic or/and antimony induced mitophagy and apoptosis associated with metabolic abnormalities and oxidative stress in the liver of mice. Sci Total Environ 2021;777:146082. [PMID: 33676223 DOI: 10.1016/j.scitotenv.2021.146082] [Cited by in Crossref: 2] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
9 Zhi Y, Lu C, Zhu G, Li Z, Zhu P, Liu Y, Shi W, Su L, Jiang J, Qu J, Zhao X. Positive regulation of the CREB phosphorylation via JNK-dependent pathway prevents antimony-induced neuronal apoptosis in PC12 cell and mice brain. NeuroToxicology 2020;81:101-8. [DOI: 10.1016/j.neuro.2020.09.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
10 Seshadri P, Seames W, Sisk MD, Bowman F, Benson S. Mobility of Semi-volatile Trace Elements from the Fly Ash Generated by the Combustion of a Sub-bituminous Coal—The Effects of the Combustion Temperature. Energy Fuels 2020;34:15411-23. [DOI: 10.1021/acs.energyfuels.0c02372] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 Shi W, Tang Y, Zhi Y, Li Z, Yu S, Jiang J, Zhu J, Li J, Wang F, Su L, Zhao X. Akt inhibition-dependent downregulation of the Wnt/β-Catenin Signaling pathway contributes to antimony-induced neurotoxicity. Sci Total Environ 2020;737:140252. [PMID: 32783850 DOI: 10.1016/j.scitotenv.2020.140252] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
12 Wu Y, Jin Y, Sun T, Zhu P, Li J, Zhang Q, Wang X, Jiang J, Chen G, Zhao X. p62/SQSTM1 accumulation due to degradation inhibition and transcriptional activation plays a critical role in silica nanoparticle-induced airway inflammation via NF-κB activation. J Nanobiotechnology 2020;18:77. [PMID: 32429946 DOI: 10.1186/s12951-020-00634-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
13 Guo Y, Ni S, Zhou W, Hou J, Shen J. SPARC Levels Modulate the Capacity of Mitomycin to Inhibit the Proliferation of Human Tenon's Capsule Fibroblasts. J Ophthalmol 2020;2020:5703286. [PMID: 32104594 DOI: 10.1155/2020/5703286] [Reference Citation Analysis]
14 You X, Xiao Y, Liu K, Yu Y, Liu Y, Long P, Wang H, Zhou L, Deng Q, Lin Y, Zhang X, He M, Wu T, Yuan Y. Association of plasma antimony concentration with markers of liver function in Chinese adults. Environ Chem 2020;17:304. [DOI: 10.1071/en19195] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Zhao X, Wu Y, Li J, Li D, Jin Y, Zhu P, Liu Y, Zhuang Y, Yu S, Cao W, Wei H, Wang X, Han Y, Chen G. JNK activation-mediated nuclear SIRT1 protein suppression contributes to silica nanoparticle-induced pulmonary damage via p53 acetylation and cytoplasmic localisation. Toxicology 2019;423:42-53. [DOI: 10.1016/j.tox.2019.05.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
16 Wang X, Zhu P, Xu S, Liu Y, Jin Y, Yu S, Wei H, Li J, Zhang Q, Hasegawa T, Yao C, Yoshimura H, Wu Q, Zhao X. Antimony, a novel nerve poison, triggers neuronal autophagic death via reactive oxygen species-mediated inhibition of the protein kinase B/mammalian target of rapamycin pathway. Int J Biochem Cell Biol 2019;114:105561. [PMID: 31228582 DOI: 10.1016/j.biocel.2019.105561] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
17 Zhu G, Liu Y, Zhi Y, Jin Y, Li J, Shi W, Liu Y, Han Y, Yu S, Jiang J, Zhao X. PKA- and Ca2+-dependent p38 MAPK/CREB activation protects against manganese-mediated neuronal apoptosis. Toxicol Lett 2019;309:10-9. [PMID: 30951808 DOI: 10.1016/j.toxlet.2019.04.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 4.7] [Reference Citation Analysis]
18 Marie I. Systemic sclerosis and exposure to heavy metals. Autoimmunity Reviews 2019;18:62-72. [DOI: 10.1016/j.autrev.2018.11.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
19 Zhao X, Jin Y, Yang L, Hou Z, Liu Y, Sun T, Pei J, Li J, Yao C, Wang X, Chen G. Promotion of SIRT1 protein degradation and lower SIRT1 gene expression via reactive oxygen species is involved in Sb-induced apoptosis in BEAS-2b cells. Toxicology Letters 2018;296:73-81. [DOI: 10.1016/j.toxlet.2018.07.047] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
20 Zhao X, Liu Y, Zhu G, Liang Y, Liu B, Wu Y, Han M, Sun W, Han Y, Chen G, Jiang J. SIRT1 downregulation mediated Manganese-induced neuronal apoptosis through activation of FOXO3a-Bim/PUMA axis. Sci Total Environ 2019;646:1047-55. [PMID: 30235590 DOI: 10.1016/j.scitotenv.2018.07.363] [Cited by in Crossref: 20] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]