BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nibourg GA, Hoekstra R, van der Hoeven TV, Ackermans MT, Hakvoort TB, van Gulik TM, Chamuleau RA. Increased hepatic functionality of the human hepatoma cell line HepaRG cultured in the AMC bioreactor. Int J Biochem Cell Biol 2013;45:1860-8. [PMID: 23770120 DOI: 10.1016/j.biocel.2013.05.038] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
Number Citing Articles
1 Moedas M, Adam A, Farelo M, Ijlst L, Chamuleau R, Hoekstra R, Wanders R, Silva M. Advances in methods for characterization of hepatic urea cycle enzymatic activity in HepaRG cells using UPLC-MS/MS. Analytical Biochemistry 2017;535:47-55. [DOI: 10.1016/j.ab.2017.07.025] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
2 Ashraf MN, Asghar MW, Rong Y, Doschak MR, Kiang TKL. Advanced In Vitro HepaRG Culture Systems for Xenobiotic Metabolism and Toxicity Characterization. Eur J Drug Metab Pharmacokinet 2019;44:437-58. [DOI: 10.1007/s13318-018-0533-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
3 Pasqua M, Pereira U, de Lartigue C, Nicolas J, Vigneron P, Dermigny Q, Legallais C. Preclinical characterization of alginate-poly-L-lysine encapsulated HepaRG for extracorporeal liver supply. Biotechnol Bioeng 2021;118:453-64. [PMID: 32997339 DOI: 10.1002/bit.27583] [Reference Citation Analysis]
4 Adam AAA, van der Mark VA, Ruiter JPN, Wanders RJA, Oude Elferink RPJ, Chamuleau RAFM, Hoekstra R. Overexpression of carbamoyl-phosphate synthase 1 significantly improves ureagenesis of human liver HepaRG cells only when cultured under shaking conditions. Mitochondrion 2019;47:298-308. [PMID: 30802674 DOI: 10.1016/j.mito.2019.02.005] [Reference Citation Analysis]
5 van Wenum M, Chamuleau RA, van Gulik TM, Siliakus A, Seppen J, Hoekstra R. Bioartificial livers in vitro and in vivo : tailoring biocomponents to the expanding variety of applications. Expert Opinion on Biological Therapy 2014;14:1745-60. [DOI: 10.1517/14712598.2014.950651] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
6 Adam AAA, Jongejan A, Moerland PD, van der Mark VA, Oude Elferink RP, Chamuleau RAFM, Hoekstra R. Genome-wide expression profiling reveals increased stability and mitochondrial energy metabolism of the human liver cell line HepaRG-CAR. Cytotechnology 2020;72:377-95. [PMID: 32130581 DOI: 10.1007/s10616-020-00384-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Kholodenko IV, Yarygin KN. Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases. Biomed Res Int. 2017;2017:8910821. [PMID: 28210629 DOI: 10.1155/2017/8910821] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 9.2] [Reference Citation Analysis]
8 Helvenstein M, Stanicki D, Laurent S, Blankert B. Interaction between Iron Oxide Nanoparticles and HepaRG Cells: A Preliminary In Vitro Evaluation. Journal of Nanomaterials 2015;2015:1-9. [DOI: 10.1155/2015/463841] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
9 Lee KCL, Stadlbauer V, Jalan R. Extracorporeal liver support devices for listed patients: Extracorporeal Liver Support Devices. Liver Transpl 2016;22:839-48. [DOI: 10.1002/lt.24396] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
10 van Grunsven LA. 3D in vitro models of liver fibrosis. Advanced Drug Delivery Reviews 2017;121:133-46. [DOI: 10.1016/j.addr.2017.07.004] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 11.0] [Reference Citation Analysis]
11 Rebelo SP, Dehne EM, Brito C, Horland R, Alves PM, Marx U. Validation of Bioreactor and Human-on-a-Chip Devices for Chemical Safety Assessment. Adv Exp Med Biol 2016;856:299-316. [PMID: 27671728 DOI: 10.1007/978-3-319-33826-2_12] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Adam AAA, van der Mark VA, Donkers JM, Wildenberg ME, Oude Elferink RPJ, Chamuleau RAFM, Hoekstra R. A practice-changing culture method relying on shaking substantially increases mitochondrial energy metabolism and functionality of human liver cell lines. PLoS One 2018;13:e0193664. [PMID: 29672606 DOI: 10.1371/journal.pone.0193664] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
13 van der Mark VA, Adam AAA, Chang JC, Oude Elferink RP, Chamuleau RAFM, Hoekstra R. Overexpression of the constitutive androstane receptor and shaken 3D-culturing increase biotransformation and oxidative phosphorylation and sensitivity to mitochondrial amiodarone toxicity of HepaRG cells. Toxicol Appl Pharmacol 2020;399:115055. [PMID: 32428594 DOI: 10.1016/j.taap.2020.115055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Chamuleau RAFM, Hoekstra R. End-stage liver failure: filling the treatment gap at the intensive care unit. J Artif Organs 2020;23:113-23. [PMID: 31535298 DOI: 10.1007/s10047-019-01133-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Adam AAA, van Wenum M, van der Mark VA, Jongejan A, Moerland PD, Houtkooper RH, Wanders RJA, Oude Elferink RP, Chamuleau RAFM, Hoekstra R. AMC-Bio-Artificial Liver culturing enhances mitochondrial biogenesis in human liver cell lines: The role of oxygen, medium perfusion and 3D configuration. Mitochondrion 2018;39:30-42. [PMID: 28844938 DOI: 10.1016/j.mito.2017.08.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
16 Kammerer S, Küpper J. Human hepatocyte systems for in vitro toxicology analysis. JCB 2018;3:85-93. [DOI: 10.3233/jcb-179012] [Cited by in Crossref: 12] [Article Influence: 3.0] [Reference Citation Analysis]
17 Nicolas C, Wang Y, Luebke-Wheeler J, Nyberg SL. Stem Cell Therapies for Treatment of Liver Disease. Biomedicines 2016;4:E2. [PMID: 28536370 DOI: 10.3390/biomedicines4010002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
18 Hannoun Z, Steichen C, Dianat N, Weber A, Dubart-Kupperschmitt A. The potential of induced pluripotent stem cell derived hepatocytes. J Hepatol. 2016;65:182-199. [PMID: 26916529 DOI: 10.1016/j.jhep.2016.02.025] [Cited by in Crossref: 57] [Cited by in F6Publishing: 57] [Article Influence: 9.5] [Reference Citation Analysis]
19 van Wenum M, Adam AA, Hakvoort TB, Hendriks EJ, Shevchenko V, van Gulik TM, Chamuleau RA, Hoekstra R. Selecting Cells for Bioartificial Liver Devices and the Importance of a 3D Culture Environment: A Functional Comparison between the HepaRG and C3A Cell Lines. Int J Biol Sci 2016;12:964-78. [PMID: 27489500 DOI: 10.7150/ijbs.15165] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
20 van Wenum M, Treskes P, Tang CY, Coppens EJ, Jansen K, Hendriks EJ, Camus S, van Gulik TM, Chamuleau RAFM, Hoekstra R. Scaling-up of a HepaRG progenitor cell based bioartificial liver: optimization for clinical application and transport. Biofabrication 2017;9:035001. [PMID: 28664876 DOI: 10.1088/1758-5090/aa7657] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]