BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Raynaud P, Carpentier R, Antoniou A, Lemaigre FP. Biliary differentiation and bile duct morphogenesis in development and disease. Int J Biochem Cell Biol. 2011;43:245-256. [PMID: 19735739 DOI: 10.1016/j.biocel.2009.07.020] [Cited by in Crossref: 101] [Cited by in F6Publishing: 86] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 Mancarella S, Gigante I, Serino G, Pizzuto E, Dituri F, Valentini MF, Wang J, Chen X, Armentano R, Calvisi DF, Giannelli G. Crenigacestat blocking notch pathway reduces liver fibrosis in the surrounding ecosystem of intrahepatic CCA viaTGF-β inhibition. J Exp Clin Cancer Res 2022;41:331. [DOI: 10.1186/s13046-022-02536-6] [Reference Citation Analysis]
2 Tomita H, Hara A. Development of extrahepatic bile ducts and mechanisms of tumorigenesis: Lessons from mouse models. Pathology International 2022. [DOI: 10.1111/pin.13287] [Reference Citation Analysis]
3 Norcia LF, Watanabe EM, Hamamoto Filho PT, Hasimoto CN, Pelafsky L, de Oliveira WK, Sassaki LY. . HMER 2022;Volume 14:135-61. [DOI: 10.2147/hmer.s377530] [Reference Citation Analysis]
4 Sahoo S, Mishra A, Diehl AM, Jolly MK. Dynamics of hepatocyte-cholangiocyte cell-fate decisions during liver development and regeneration. iScience 2022;25:104955. [DOI: 10.1016/j.isci.2022.104955] [Reference Citation Analysis]
5 Gasperoni JG, Fuller JN, Darido C, Wilanowski T, Dworkin S. Grainyhead-like (Grhl) Target Genes in Development and Cancer. Int J Mol Sci 2022;23:2735. [PMID: 35269877 DOI: 10.3390/ijms23052735] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Sun Q, Shen Z, Liang X, He Y, Kong D, Midgley AC, Wang K. Progress and Current Limitations of Materials for Artificial Bile Duct Engineering. Materials (Basel) 2021;14:7468. [PMID: 34885623 DOI: 10.3390/ma14237468] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Lendahl U, Lui VCH, Chung PHY, Tam PKH. Biliary Atresia - emerging diagnostic and therapy opportunities. EBioMedicine 2021;74:103689. [PMID: 34781099 DOI: 10.1016/j.ebiom.2021.103689] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
8 Babel J, Rademacher S, Denecke T, Seehofer D. Zystische Leberläsionen – Diagnostik und Therapieoptionen. Allgemein- und Viszeralchirurgie up2date 2021;15:407-424. [DOI: 10.1055/a-1341-7841] [Reference Citation Analysis]
9 Jaffey JA. Canine hepatobiliary anatomy, physiology and congenital disorders. J Small Anim Pract 2021. [PMID: 34409602 DOI: 10.1111/jsap.13410] [Reference Citation Analysis]
10 Pasqua M, Di Gesù R, Chinnici CM, Conaldi PG, Francipane MG. Generation of Hepatobiliary Cell Lineages from Human Induced Pluripotent Stem Cells: Applications in Disease Modeling and Drug Screening. Int J Mol Sci 2021;22:8227. [PMID: 34360991 DOI: 10.3390/ijms22158227] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Wu H, Chen C, Ziani S, Nelson LJ, Ávila MA, Nevzorova YA, Cubero FJ. Fibrotic Events in the Progression of Cholestatic Liver Disease. Cells 2021;10:1107. [PMID: 34062960 DOI: 10.3390/cells10051107] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
12 Sahoo S, Mishra A, Diehl AM, Jolly MK. Dynamics of a hepatocyte-cholangiocyte decision-making gene regulatory network during liver development and regeneration.. [DOI: 10.1101/2021.04.22.440352] [Reference Citation Analysis]
13 Tanimizu N. The neonatal liver: Normal development and response to injury and disease. Semin Fetal Neonatal Med 2021;:101229. [PMID: 33745829 DOI: 10.1016/j.siny.2021.101229] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wu D, Chen X, Sheng Q, Chen W, Zhang Y, Wu F. Production of Functional Hepatobiliary Organoids from Human Pluripotent Stem Cells. Int J Stem Cells 2021;14:119-26. [PMID: 33377458 DOI: 10.15283/ijsc20152] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Mariotti V, Fiorotto R, Cadamuro M, Fabris L, Strazzabosco M. New insights on the role of vascular endothelial growth factor in biliary pathophysiology. JHEP Rep 2021;3:100251. [PMID: 34151244 DOI: 10.1016/j.jhepr.2021.100251] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
16 Inui A, Fujisawa T. Pathogenesis: Overview. Introduction to Biliary Atresia 2021. [DOI: 10.1007/978-981-16-2160-4_6] [Reference Citation Analysis]
17 Verstegen MMA, Roos FJM, Burka K, Gehart H, Jager M, de Wolf M, Bijvelds MJC, de Jonge HR, Ardisasmita AI, van Huizen NA, Roest HP, de Jonge J, Koch M, Pampaloni F, Fuchs SA, Schene IF, Luider TM, van der Doef HPJ, Bodewes FAJA, de Kleine RHJ, Spee B, Kremers GJ, Clevers H, IJzermans JNM, Cuppen E, van der Laan LJW. Human extrahepatic and intrahepatic cholangiocyte organoids show region-specific differentiation potential and model cystic fibrosis-related bile duct disease. Sci Rep 2020;10:21900. [PMID: 33318612 DOI: 10.1038/s41598-020-79082-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
18 Feng S, Wu J, Qiu WL, Yang L, Deng X, Zhou Y, Chen Y, Li X, Yu L, Li H, Xu ZR, Xiao Y, Ren X, Zhang L, Wang C, Sun Z, Wang J, Ding X, Chen Y, Gadue P, Pan G, Ogawa M, Ogawa S, Na J, Zhang P, Hui L, Yin H, Chen L, Xu CR, Cheng X. Large-scale Generation of Functional and Transplantable Hepatocytes and Cholangiocytes from Human Endoderm Stem Cells. Cell Rep 2020;33:108455. [PMID: 33296648 DOI: 10.1016/j.celrep.2020.108455] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
19 Rauff B, Malik A, Bhatti YA, Chudhary SA, Qadri I, Rafiq S. Notch signalling pathway in development of cholangiocarcinoma. World J Gastrointest Oncol 2020; 12(9): 957-974 [PMID: 33005291 DOI: 10.4251/wjgo.v12.i9.957] [Cited by in CrossRef: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
20 Hafiz EOA, Bulutoglu B, Mansy SS, Chen Y, Abu-Taleb H, Soliman SAM, El-Hindawi AAF, Yarmush ML, Uygun BE. Development of liver microtissues with functional biliary ductular network. Biotechnol Bioeng 2021;118:17-29. [PMID: 32856740 DOI: 10.1002/bit.27546] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
21 Gilloteaux J. Primary cilia in the Syrian hamster biliary tract: Bile flow antennae and outlooks about signaling on the hepato-biliary-pancreatic stem cells. Translational Research in Anatomy 2020;19:100063. [DOI: 10.1016/j.tria.2020.100063] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Zhang L, Gan L, Liu Q, Li Y, Lin J, Ou S. Obstructive jaundice in a patient with polycystic liver disease complicated with polycystic kidney and polycystic lung: A case report. Medicine (Baltimore) 2020;99:e19511. [PMID: 32243367 DOI: 10.1097/MD.0000000000019511] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Rizki-Safitri A, Shinohara M, Tanaka M, Sakai Y. Tubular bile duct structure mimicking bile duct morphogenesis for prospective in vitro liver metabolite recovery. J Biol Eng 2020;14:11. [PMID: 32206088 DOI: 10.1186/s13036-020-0230-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
24 Chen F, Wang H, Xiao J. Regulated differentiation of stem cells into an artificial 3D liver as a transplantable source. Clin Mol Hepatol 2020;26:163-79. [PMID: 32098013 DOI: 10.3350/cmh.2019.0022n] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Cadamuro M, Fiorotto R, Strazzabosco M. Cholangiocyte Biology and Pathobiology. The Liver 2020. [DOI: 10.1002/9781119436812.ch32] [Reference Citation Analysis]
26 Masyuk T, Masyuk A, Larusso N. Polycystic Liver Diseases. The Liver 2020. [DOI: 10.1002/9781119436812.ch33] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Khandekar G, Llewellyn J, Kriegermeier A, Waisbourd-Zinman O, Johnson N, Du Y, Giwa R, Liu X, Kisseleva T, Russo PA, Theise ND, Wells RG. Coordinated development of the mouse extrahepatic bile duct: Implications for neonatal susceptibility to biliary injury. J Hepatol 2020;72:135-45. [PMID: 31562906 DOI: 10.1016/j.jhep.2019.08.036] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
28 Zhivaeva E, Freynd G. Dysontogenic liver cysts: patho- and morphogenesis. Dok gastroenterol 2020;9:39. [DOI: 10.17116/dokgastro2020903139] [Reference Citation Analysis]
29 Graffmann N, Spitzhorn L, Ncube A, Wruck W, Adjaye J. Liver Disease Modelling. Essential Current Concepts in Stem Cell Biology 2020. [DOI: 10.1007/978-3-030-33923-4_11] [Reference Citation Analysis]
30 Sato A, Kakinuma S, Miyoshi M, Kamiya A, Tsunoda T, Kaneko S, Tsuchiya J, Shimizu T, Takeichi E, Nitta S, Kawai-Kitahata F, Murakawa M, Itsui Y, Nakagawa M, Azuma S, Koshikawa N, Seiki M, Nakauchi H, Asahina Y, Watanabe M. Vasoactive Intestinal Peptide Derived From Liver Mesenchymal Cells Mediates Tight Junction Assembly in Mouse Intrahepatic Bile Ducts. Hepatol Commun 2020;4:235-54. [PMID: 32025608 DOI: 10.1002/hep4.1459] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
31 Funfak A, Bouzhir L, Gontran E, Minier N, Dupuis-Williams P, Gobaa S. Biophysical Control of Bile Duct Epithelial Morphogenesis in Natural and Synthetic Scaffolds. Front Bioeng Biotechnol 2019;7:417. [PMID: 31921820 DOI: 10.3389/fbioe.2019.00417] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
32 Dragos F, Bogdan C, Oana C, Raluca G, Ileana I. Autosomal Dominant Polycystic Kidney Disease with Hepatic Cysts Complications in a Hemodialysis Patient: A Case Report. ARS Medica Tomitana 2019;25:64-8. [DOI: 10.2478/arsm-2019-0014] [Reference Citation Analysis]
33 Fattahi P, Haque A, Son KJ, Guild J, Revzin A. Microfluidic devices, accumulation of endogenous signals and stem cell fate selection. Differentiation 2020;112:39-46. [PMID: 31884176 DOI: 10.1016/j.diff.2019.10.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
34 Buisson EM, Jeong J, Kim HJ, Choi D. Regenerative Medicine of the Bile Duct: Beyond the Myth. Int J Stem Cells 2019;12:183-94. [PMID: 31022996 DOI: 10.15283/ijsc18055] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
35 Cho SJ, Kim GE. A practical approach to the pathology of neonatal cholestatic liver disease. Semin Diagn Pathol 2019;36:375-88. [PMID: 31455583 DOI: 10.1053/j.semdp.2019.07.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
36 Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ. Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol 2019;16:269-81. [PMID: 30850822 DOI: 10.1038/s41575-019-0125-y] [Cited by in Crossref: 196] [Cited by in F6Publishing: 190] [Article Influence: 65.3] [Reference Citation Analysis]
37 Khandekar G, Llewellyn J, Kriegermeier A, Waisbourd-zinman O, Johnson N, Du Y, Giwa R, Liu X, Kisseleva T, Russo PA, Theise ND, Wells RG. Coordinated development of the mouse extrahepatic bile duct: implications for neonatal susceptibility to biliary injury.. [DOI: 10.1101/576256] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
38 Pinon M, Carboni M, Colavito D, Cisarò F, Peruzzi L, Pizzol A, Calosso G, David E, Calvo PL. Not only Alagille syndrome. Syndromic paucity of interlobular bile ducts secondary to HNF1β deficiency: a case report and literature review. Ital J Pediatr 2019;45:27. [PMID: 30791938 DOI: 10.1186/s13052-019-0617-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
39 Lewis PL, Yan M, Su J, Shah RN. Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels. Acta Biomater 2019;85:84-93. [PMID: 30590182 DOI: 10.1016/j.actbio.2018.12.039] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
40 Salas-silva S, Simoni-nieves A, Lopez-ramirez J, Bucio L, Gómez-quiroz LE, Gutiérrez-ruiz MC, Roma MG. Cholangiocyte death in ductopenic cholestatic cholangiopathies: Mechanistic basis and emerging therapeutic strategies. Life Sciences 2019;218:324-39. [DOI: 10.1016/j.lfs.2018.12.044] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
41 Guido M, Sarcognato S, Sacchi D, Ludwig K. The Anatomy and Histology of the Liver and Biliary Tract. Pediatric Hepatology and Liver Transplantation 2019. [DOI: 10.1007/978-3-319-96400-3_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
42 Miao W, Sakai K, Imamura R, Ito K, Suga H, Sakuma T, Yamamoto T, Matsumoto K. MET Activation by a Macrocyclic Peptide Agonist that Couples to Biological Responses Differently from HGF in a Context-Dependent Manner. Int J Mol Sci 2018;19:E3141. [PMID: 30322054 DOI: 10.3390/ijms19103141] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
43 Bezerra JA, Wells RG, Mack CL, Karpen SJ, Hoofnagle JH, Doo E, Sokol RJ. Biliary Atresia: Clinical and Research Challenges for the Twenty-First Century. Hepatology 2018;68:1163-73. [PMID: 29604222 DOI: 10.1002/hep.29905] [Cited by in Crossref: 134] [Cited by in F6Publishing: 131] [Article Influence: 33.5] [Reference Citation Analysis]
44 Kamiya A, Chikada H, Ida K, Ando E, Tsuruya K, Kagawa T, Inagaki Y. An in vitro model of polycystic liver disease using genome-edited human inducible pluripotent stem cells. Stem Cell Res 2018;32:17-24. [PMID: 30172093 DOI: 10.1016/j.scr.2018.08.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
45 Lewis PL, Su J, Yan M, Meng F, Glaser SS, Alpini GD, Green RM, Sosa-Pineda B, Shah RN. Complex bile duct network formation within liver decellularized extracellular matrix hydrogels. Sci Rep 2018;8:12220. [PMID: 30111800 DOI: 10.1038/s41598-018-30433-6] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 9.0] [Reference Citation Analysis]
46 Graffmann N, Ncube A, Wruck W, Adjaye J. Cell fate decisions of human iPSC-derived bipotential hepatoblasts depend on cell density. PLoS One 2018;13:e0200416. [PMID: 29990377 DOI: 10.1371/journal.pone.0200416] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
47 So J, Khaliq M, Evason K, Ninov N, Martin BL, Stainier DYR, Shin D. Wnt/β-catenin signaling controls intrahepatic biliary network formation in zebrafish by regulating notch activity. Hepatology 2018;67:2352-66. [PMID: 29266316 DOI: 10.1002/hep.29752] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
48 Ober EA, Lemaigre FP. Development of the liver: Insights into organ and tissue morphogenesis. J Hepatol 2018;68:1049-62. [PMID: 29339113 DOI: 10.1016/j.jhep.2018.01.005] [Cited by in Crossref: 116] [Cited by in F6Publishing: 115] [Article Influence: 29.0] [Reference Citation Analysis]
49 Benhamouche-Trouillet S, O'Loughlin E, Liu CH, Polacheck W, Fitamant J, McKee M, El-Bardeesy N, Chen CS, McClatchey AI. Proliferation-independent role of NF2 (merlin) in limiting biliary morphogenesis. Development 2018;145:dev162123. [PMID: 29712669 DOI: 10.1242/dev.162123] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
50 Wang W, Feng Y, Aimaiti Y, Jin X, Mao X, Li D. TGFβ signaling controls intrahepatic bile duct development may through regulating the Jagged1‐Notch‐Sox9 signaling axis. J Cell Physiol 2018;233:5780-91. [DOI: 10.1002/jcp.26304] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
51 Vyas D, Baptista PM, Brovold M, Moran E, Gaston B, Booth C, Samuel M, Atala A, Soker S. Self-assembled liver organoids recapitulate hepatobiliary organogenesis in vitro. Hepatology 2018;67:750-61. [PMID: 28834615 DOI: 10.1002/hep.29483] [Cited by in Crossref: 75] [Cited by in F6Publishing: 77] [Article Influence: 18.8] [Reference Citation Analysis]
52 Crawford JM, Bioulac-sage P, Hytiroglou P. Structure, Function, and Responses to Injury. Macsween's Pathology of the Liver. Elsevier; 2018. pp. 1-87. [DOI: 10.1016/b978-0-7020-6697-9.00001-7] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
53 Masyuk AI, Masyuk TV, Larusso NF. Physiology of Cholngiocytes. Physiology of the Gastrointestinal Tract 2018. [DOI: 10.1016/b978-0-12-809954-4.00044-x] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
54 Monga SP, Behari J. Molecular Basis of Liver Disease. Molecular Pathology 2018. [DOI: 10.1016/b978-0-12-802761-5.00020-1] [Reference Citation Analysis]
55 Enaud R, Lamireau T. Paucité ductulaire et syndrome d’Alagille. Hépatologie de L'enfant 2018. [DOI: 10.1016/b978-2-294-75788-4.00012-3] [Reference Citation Analysis]
56 Shiojiri N, Kametani H, Ota N, Akai Y, Fukuchi T, Abo T, Tanaka S, Sekiguchi J, Matsubara S, Kawakami H. Phylogenetic analyses of the hepatic architecture in vertebrates. J Anat 2018;232:200-13. [PMID: 29205342 DOI: 10.1111/joa.12749] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
57 Russell JO, Monga SP. Wnt/β-Catenin Signaling in Liver Development, Homeostasis, and Pathobiology. Annu Rev Pathol 2018;13:351-78. [PMID: 29125798 DOI: 10.1146/annurev-pathol-020117-044010] [Cited by in Crossref: 178] [Cited by in F6Publishing: 188] [Article Influence: 35.6] [Reference Citation Analysis]
58 Wu N, Nguyen Q, Wan Y, Zhou T, Venter J, Frampton GA, DeMorrow S, Pan D, Meng F, Glaser S, Alpini G, Bai H. The Hippo signaling functions through the Notch signaling to regulate intrahepatic bile duct development in mammals. Lab Invest 2017;97:843-53. [PMID: 28581486 DOI: 10.1038/labinvest.2017.29] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 7.4] [Reference Citation Analysis]
59 Kettunen JLT, Parviainen H, Miettinen PJ, Färkkilä M, Tamminen M, Salonen P, Lantto E, Tuomi T. Biliary Anomalies in Patients With HNF1B Diabetes. The Journal of Clinical Endocrinology & Metabolism 2017;102:2075-82. [DOI: 10.1210/jc.2017-00061] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
60 Villasenor A, Stainier DYR. On the development of the hepatopancreatic ductal system. Semin Cell Dev Biol 2017;66:69-80. [PMID: 28214561 DOI: 10.1016/j.semcdb.2017.02.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
61 Cervantes-Alvarez E, Wang Y, Collin de l'Hortet A, Guzman-Lepe J, Zhu J, Takeishi K. Current strategies to generate mature human induced pluripotent stem cells derived cholangiocytes and future applications. Organogenesis 2017;13:1-15. [PMID: 28055309 DOI: 10.1080/15476278.2016.1278133] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
62 Enomoto K, Nishikawa Y. Development and Anatomy of the Bile Duct. Pathology of the Bile Duct 2017. [DOI: 10.1007/978-981-10-3500-5_1] [Reference Citation Analysis]
63 Cadamuro M, Fabris L, Strazzabosco M. The Healthy Biliary Tree: Cellular and Immune Biology. Biliary Disease 2017. [DOI: 10.1007/978-3-319-50168-0_2] [Reference Citation Analysis]
64 Che L, Fan B, Pilo MG, Xu Z, Liu Y, Cigliano A, Cossu A, Palmieri G, Pascale RM, Porcu A, Vidili G, Serra M, Dombrowski F, Ribback S, Calvisi DF, Chen X. Jagged 1 is a major Notch ligand along cholangiocarcinoma development in mice and humans. Oncogenesis 2016;5:e274. [PMID: 27918553 DOI: 10.1038/oncsis.2016.73] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.8] [Reference Citation Analysis]
65 Terada M, Horisawa K, Miura S, Takashima Y, Ohkawa Y, Sekiya S, Matsuda-Ito K, Suzuki A. Kupffer cells induce Notch-mediated hepatocyte conversion in a common mouse model of intrahepatic cholangiocarcinoma. Sci Rep. 2016;6:34691. [PMID: 27698452 DOI: 10.1038/srep34691] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
66 Fassiadis N, Lampaki S, Zarogoulidis P, Tsavlis D, Tsiouda T, Kougioumtzi I, Machairiotis N, Pavlidis P, Charalampidis C, Tsakiridis K. Isolated polycystic liver disease and aneurism: a case report. Ann Transl Med 2016;4:167. [PMID: 27275480 DOI: 10.21037/atm.2016.04.14] [Reference Citation Analysis]
67 Tong F, Liang Y, Zhang L, Li W, Chen P, Duan Y, Zhou Y. Fatal liver cyst rupture in polycystic liver disease complicated with autosomal dominant polycystic kidney disease: A case report. Forensic Sci Int 2016;262:e5-8. [PMID: 27050907 DOI: 10.1016/j.forsciint.2016.03.045] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
68 Wang S, Wu X, Liu Y, Yuan J, Yang F, Huang J, Meng Q, Zhou C, Liu F, Ma J, Sun S, Zheng J, Wang F. Long noncoding RNA H19 inhibits the proliferation of fetal liver cells and the Wnt signaling pathway. FEBS Lett 2016;590:559-70. [PMID: 26801864 DOI: 10.1002/1873-3468.12078] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 4.5] [Reference Citation Analysis]
69 Thakurdas SM, Lopez MF, Kakuda S, Fernandez-Valdivia R, Zarrin-Khameh N, Haltiwanger RS, Jafar-Nejad H. Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology 2016;63:550-65. [PMID: 26235536 DOI: 10.1002/hep.28024] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 12.0] [Reference Citation Analysis]
70 Hwang KL, Goessling W. Baiting for Cancer: Using the Zebrafish as a Model in Liver and Pancreatic Cancer. Cancer and Zebrafish 2016. [DOI: 10.1007/978-3-319-30654-4_17] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
71 Just PA, Poncy A, Charawi S, Dahmani R, Traore M, Dumontet T, Drouet V, Dumont F, Gilgenkrantz H, Colnot S, Terris B, Coulouarn C, Lemaigre F, Perret C. LKB1 and Notch Pathways Interact and Control Biliary Morphogenesis. PLoS One 2015;10:e0145400. [PMID: 26689699 DOI: 10.1371/journal.pone.0145400] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
72 de Miranda Henriques MS, de Morais Villar EJ; Internal Medicine Department, Medicine Sciences Center, Universidade Federal da Paraíba, Brazil, Gastroenterologist of Clementino Fraga Infeccious Disease Hospital, Brazil. The Liver and Polycystic Kidney Disease. In: Li X, editor. Polycystic Kidney Disease. Codon Publications; 2015. pp. 425-41. [DOI: 10.15586/codon.pkd.2015.ch17] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
73 Kamiya A, Ito K, Yanagida A, Chikada H, Iwama A, Nakauchi H. MEK-ERK Activity Regulates the Proliferative Activity of Fetal Hepatoblasts Through Accumulation of p16/19 cdkn2a. Stem Cells and Development 2015;24:2525-35. [DOI: 10.1089/scd.2015.0015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
74 Pech L, Favelier S, Falcoz MT, Loffroy R, Krause D, Cercueil JP. Imaging of Von Meyenburg complexes. Diagn Interv Imaging. 2016;97:401-409. [PMID: 26522945 DOI: 10.1016/j.diii.2015.05.012] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
75 Ogawa M, Ogawa S, Bear CE, Ahmadi S, Chin S, Li B, Grompe M, Keller G, Kamath BM, Ghanekar A. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol. 2015;33:853-861. [PMID: 26167630 DOI: 10.1038/nbt.3294] [Cited by in Crossref: 202] [Cited by in F6Publishing: 211] [Article Influence: 28.9] [Reference Citation Analysis]
76 Beaudry JB, Cordi S, Demarez C, Lepreux S, Pierreux CE, Lemaigre FP. Proliferation-Independent Initiation of Biliary Cysts in Polycystic Liver Diseases. PLoS One 2015;10:e0132295. [PMID: 26125584 DOI: 10.1371/journal.pone.0132295] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
77 Poncy A, Antoniou A, Cordi S, Pierreux CE, Jacquemin P, Lemaigre FP. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev Biol 2015;404:136-48. [PMID: 26033091 DOI: 10.1016/j.ydbio.2015.05.012] [Cited by in Crossref: 72] [Cited by in F6Publishing: 76] [Article Influence: 10.3] [Reference Citation Analysis]
78 Takashima Y, Terada M, Kawabata M, Suzuki A. Dynamic three-dimensional morphogenesis of intrahepatic bile ducts in mouse liver development. Hepatology 2015;61:1003-11. [PMID: 25212491 DOI: 10.1002/hep.27436] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 5.3] [Reference Citation Analysis]
79 Kotalova R, Dusatkova P, Cinek O, Dusatkova L, Dedic T, Seeman T, Lebl J, Pruhova S. Hepatic phenotypes of HNF1B gene mutations: A case of neonatal cholestasis requiring portoenterostomy and literature review. World J Gastroenterol 2015; 21(8): 2550-2557 [PMID: 25741167 DOI: 10.3748/wjg.v21.i8.2550] [Cited by in CrossRef: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
80 Gradilone SA, O'Hara SP, Masyuk TV, Pisarello MJ, LaRusso NF. MicroRNAs and benign biliary tract diseases. Semin Liver Dis 2015;35:26-35. [PMID: 25632932 DOI: 10.1055/s-0034-1397346] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
81 Geisler F, Strazzabosco M. Emerging roles of Notch signaling in liver disease. Hepatology 2015;61:382-92. [PMID: 24930574 DOI: 10.1002/hep.27268] [Cited by in Crossref: 156] [Cited by in F6Publishing: 163] [Article Influence: 22.3] [Reference Citation Analysis]
82 Perugorria MJ, Masyuk TV, Marin JJ, Marzioni M, Bujanda L, LaRusso NF, Banales JM. Polycystic liver diseases: advanced insights into the molecular mechanisms. Nat Rev Gastroenterol Hepatol 2014;11:750-61. [PMID: 25266109 DOI: 10.1038/nrgastro.2014.155] [Cited by in Crossref: 63] [Cited by in F6Publishing: 61] [Article Influence: 7.9] [Reference Citation Analysis]
83 O'Hara SP, Gradilone SA, Masyuk TV, Tabibian JH, LaRusso NF. MicroRNAs in Cholangiopathies. Curr Pathobiol Rep 2014;2:133-42. [PMID: 25097819 DOI: 10.1007/s40139-014-0048-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
84 Cnossen WR, Drenth JP. Polycystic liver disease: an overview of pathogenesis, clinical manifestations and management. Orphanet J Rare Dis 2014;9:69. [PMID: 24886261 DOI: 10.1186/1750-1172-9-69] [Cited by in Crossref: 103] [Cited by in F6Publishing: 111] [Article Influence: 12.9] [Reference Citation Analysis]
85 Nakamura K, Tanoue A. Etiology of biliary atresia as a developmental anomaly: recent advances. J Hepatobiliary Pancreat Sci 2013;20:459-64. [PMID: 23567964 DOI: 10.1007/s00534-013-0604-4] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
86 Lee NP. The Blood-Biliary Barrier, Tight Junctions and Human Liver Diseases. In: Cheng CY, editor. Biology and Regulation of Blood-Tissue Barriers. New York: Springer; 2013. pp. 171-85. [DOI: 10.1007/978-1-4614-4711-5_8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
87 Tabibian J, Larusso N. Liver and Bile. Reference Module in Biomedical Sciences. Elsevier; 2014. [DOI: 10.1016/b978-0-12-801238-3.00047-7] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
88 Yang J, Okabe H, Monga S. Liver Development, Regeneration, and Stem Cells. Pathobiology of Human Disease 2014. [DOI: 10.1016/b978-0-12-386456-7.04203-9] [Reference Citation Analysis]
89 Tang V, Friedman J. Biliary Disease. Pathobiology of Human Disease 2014. [DOI: 10.1016/b978-0-12-386456-7.04211-8] [Reference Citation Analysis]
90 Shin D, Monga SP. Cellular and molecular basis of liver development. Compr Physiol 2013;3:799-815. [PMID: 23720330 DOI: 10.1002/cphy.c120022] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 3.6] [Reference Citation Analysis]
91 Tabibian JH, Masyuk AI, Masyuk TV, O'Hara SP, LaRusso NF. Physiology of cholangiocytes. Compr Physiol. 2013;3:541-565. [PMID: 23720296 DOI: 10.1002/cphy.c120019] [Cited by in Crossref: 118] [Cited by in F6Publishing: 133] [Article Influence: 13.1] [Reference Citation Analysis]
92 Katsuda T, Kojima N, Ochiya T, Sakai Y. Biliary Epithelial Cells Play an Essential Role in the Reconstruction of Hepatic Tissue with a Functional Bile Ductular Network. Tissue Engineering Part A 2013;19:2402-11. [DOI: 10.1089/ten.tea.2013.0021] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
93 Suchy FJ. Biliary atresia in sea lampreys. What can it tell us about the disorder in human infants? Hepatology 2013;57:2114-6. [PMID: 23526371 DOI: 10.1002/hep.26409] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
94 Jeliazkova P, Jörs S, Lee M, Zimber-Strobl U, Ferrer J, Schmid RM, Siveke JT, Geisler F. Canonical Notch2 signaling determines biliary cell fates of embryonic hepatoblasts and adult hepatocytes independent of Hes1. Hepatology 2013;57:2469-79. [PMID: 23315998 DOI: 10.1002/hep.26254] [Cited by in Crossref: 76] [Cited by in F6Publishing: 76] [Article Influence: 8.4] [Reference Citation Analysis]
95 Clapéron A, Debray D, Redon MJ, Mergey M, Ho-Bouldoires TH, Housset C, Fabre M, Fouassier L. Immunohistochemical profile of ezrin and radixin in human liver epithelia during fetal development and pediatric cholestatic diseases. Clin Res Hepatol Gastroenterol 2013;37:142-51. [PMID: 23507543 DOI: 10.1016/j.clinre.2013.02.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
96 Lemaigre F. Le développement des lignages hépatiques dans le foie normal et durant la régénération. Med Sci (Paris) 2012;28:958-62. [DOI: 10.1051/medsci/20122811014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
97 Roelandt P, Antoniou A, Libbrecht L, Van Steenbergen W, Laleman W, Verslype C, Van der Merwe S, Nevens F, De Vos R, Fischer E, Pontoglio M, Lemaigre F, Cassiman D. HNF1B deficiency causes ciliary defects in human cholangiocytes. Hepatology 2012;56:1178-81. [PMID: 22706971 DOI: 10.1002/hep.25876] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 1.9] [Reference Citation Analysis]
98 Burute M, Thery M. Spatial segregation between cell-cell and cell-matrix adhesions. Curr Opin Cell Biol 2012;24:628-36. [PMID: 22884506 DOI: 10.1016/j.ceb.2012.07.003] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 4.7] [Reference Citation Analysis]
99 Delous M, Yin C, Shin D, Ninov N, Debrito Carten J, Pan L, Ma TP, Farber SA, Moens CB, Stainier DY. Sox9b is a key regulator of pancreaticobiliary ductal system development. PLoS Genet 2012;8:e1002754. [PMID: 22719264 DOI: 10.1371/journal.pgen.1002754] [Cited by in Crossref: 86] [Cited by in F6Publishing: 92] [Article Influence: 8.6] [Reference Citation Analysis]
100 Strazzabosco M, Fabris L. Development of the bile ducts: essentials for the clinical hepatologist. J Hepatol 2012;56:1159-70. [PMID: 22245898 DOI: 10.1016/j.jhep.2011.09.022] [Cited by in Crossref: 125] [Cited by in F6Publishing: 125] [Article Influence: 12.5] [Reference Citation Analysis]
101 Zong Y, Stanger BZ. Molecular mechanisms of liver and bile duct development: Liver and bile duct development. WIREs Dev Biol 2012;1:643-55. [DOI: 10.1002/wdev.47] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 4.3] [Reference Citation Analysis]
102 Penton AL, Leonard LD, Spinner NB. Notch signaling in human development and disease. Semin Cell Dev Biol 2012;23:450-7. [PMID: 22306179 DOI: 10.1016/j.semcdb.2012.01.010] [Cited by in Crossref: 226] [Cited by in F6Publishing: 233] [Article Influence: 22.6] [Reference Citation Analysis]
103 Carpentier R, Suñer RE, van Hul N, Kopp JL, Beaudry JB, Cordi S, Antoniou A, Raynaud P, Lepreux S, Jacquemin P, Leclercq IA, Sander M, Lemaigre FP. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 2011;141:1432-8, 1438.e1-4. [PMID: 21708104 DOI: 10.1053/j.gastro.2011.06.049] [Cited by in Crossref: 212] [Cited by in F6Publishing: 217] [Article Influence: 19.3] [Reference Citation Analysis]
104 Erlinger S. Ductal plate malformations: A morphogenetic classification based on genetic defects. Clinics and Research in Hepatology and Gastroenterology 2011;35:604-606. [DOI: 10.1016/j.clinre.2011.07.008] [Reference Citation Analysis]
105 Raynaud P, Tate J, Callens C, Cordi S, Vandersmissen P, Carpentier R, Sempoux C, Devuyst O, Pierreux CE, Courtoy P, Dahan K, Delbecque K, Lepreux S, Pontoglio M, Guay-Woodford LM, Lemaigre FP. A classification of ductal plate malformations based on distinct pathogenic mechanisms of biliary dysmorphogenesis. Hepatology 2011;53:1959-66. [PMID: 21391226 DOI: 10.1002/hep.24292] [Cited by in Crossref: 82] [Cited by in F6Publishing: 78] [Article Influence: 7.5] [Reference Citation Analysis]
106 Tanaka M, Itoh T, Tanimizu N, Miyajima A. Liver stem/progenitor cells: their characteristics and regulatory mechanisms. J Biochem. 2011;149:231-239. [PMID: 21217146 DOI: 10.1093/jb/mvr001] [Cited by in Crossref: 90] [Cited by in F6Publishing: 96] [Article Influence: 8.2] [Reference Citation Analysis]
107 Hofmann JJ, Zovein AC, Koh H, Radtke F, Weinmaster G, Iruela-Arispe ML. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development. 2010;137:4061-4072. [PMID: 21062863 DOI: 10.1242/dev.052118] [Cited by in Crossref: 174] [Cited by in F6Publishing: 179] [Article Influence: 14.5] [Reference Citation Analysis]
108 Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, Hosokawa S, Elbahrawy A, Soeda T, Koizumi M, Masui T, Kawaguchi M, Takaori K, Doi R, Nishi E, Kakinoki R, Deng JM, Behringer RR, Nakamura T, Uemoto S. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 2011;43:34-41. [PMID: 21113154 DOI: 10.1038/ng.722] [Cited by in Crossref: 624] [Cited by in F6Publishing: 656] [Article Influence: 52.0] [Reference Citation Analysis]
109 Zong Y, Stanger BZ. Molecular mechanisms of bile duct development. Int J Biochem Cell Biol 2011;43:257-64. [PMID: 20601079 DOI: 10.1016/j.biocel.2010.06.020] [Cited by in Crossref: 63] [Cited by in F6Publishing: 53] [Article Influence: 5.3] [Reference Citation Analysis]
110 Strazzabosco M. Foxa1 and Foxa2 regulate bile duct development in mice. J Hepatol 2010;52:765-7. [PMID: 20347503 DOI: 10.1016/j.jhep.2009.12.022] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]