BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu P, Tong Z, Luo L, Zhao Y, Chen F, Li Y, Huselstein C, Ye Q, Ye Q, Chen Y. Comprehensive strategy of conduit guidance combined with VEGF producing Schwann cells accelerates peripheral nerve repair. Bioact Mater 2021;6:3515-27. [PMID: 33842738 DOI: 10.1016/j.bioactmat.2021.03.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Ma T, Hao Y, Li S, Xia B, Gao X, Zheng Y, Mei L, Wei Y, Yang C, Lu L, Luo Z, Huang J. Sequential oxygen supply system promotes peripheral nerve regeneration by enhancing Schwann cells survival and angiogenesis. Biomaterials 2022;289:121755. [DOI: 10.1016/j.biomaterials.2022.121755] [Reference Citation Analysis]
2 Zhang H, Guo J, Wang Y, Shang L, Chai R, Zhao Y. Natural Polymer‐Derived Bioscaffolds for Peripheral Nerve Regeneration. Adv Funct Materials. [DOI: 10.1002/adfm.202203829] [Reference Citation Analysis]
3 Gong B, Zhang X, Zahrani AA, Gao W, Ma G, Zhang L, Xue J. Neural tissue engineering: From bioactive scaffolds and in situ monitoring to regeneration. Exploration 2022;2:20210035. [DOI: 10.1002/exp.20210035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Zhang H, Zhang H, Wang H, Zhao Y, Chai R. Natural proteins-derived asymmetric porous conduit for peripheral nerve regeneration. Applied Materials Today 2022;27:101431. [DOI: 10.1016/j.apmt.2022.101431] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Nan L, Lin Z, Wang F, Jin X, Fang J, Xu B, Liu S, Zhang F, Wu Z, Zhou Z, Chen F, Cao W, Wang J, Liu J. Ti3C2Tx MXene-Coated Electrospun PCL Conduits for Enhancing Neurite Regeneration and Angiogenesis. Front Bioeng Biotechnol 2022;10:850650. [DOI: 10.3389/fbioe.2022.850650] [Reference Citation Analysis]
6 Jessen KR, Mirsky R. The Role of c-Jun and Autocrine Signaling Loops in the Control of Repair Schwann Cells and Regeneration. Front Cell Neurosci 2021;15:820216. [PMID: 35221918 DOI: 10.3389/fncel.2021.820216] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
7 Wen X, Jiao L, Tan H. MAPK/ERK Pathway as a Central Regulator in Vertebrate Organ Regeneration. Int J Mol Sci 2022;23:1464. [PMID: 35163418 DOI: 10.3390/ijms23031464] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
8 Zhang L, Zhang H, Wang H, Guo K, Zhu H, Li S, Gao F, Li S, Yang Z, Liu X, Zheng X. Fabrication of Multi-Channel Nerve Guidance Conduits Containing Schwann Cells Based on Multi-Material 3D Bioprinting. 3D Printing and Additive Manufacturing. [DOI: 10.1089/3dp.2021.0203] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Li Y, Ma Z, Ren Y, Lu D, Li T, Li W, Wang J, Ma H, Zhao J. Tissue Engineering Strategies for Peripheral Nerve Regeneration. Front Neurol 2021;12:768267. [PMID: 34867754 DOI: 10.3389/fneur.2021.768267] [Reference Citation Analysis]
10 Gong P, Zhang W, He Y, Wang J, Li S, Chen S, Ye Q, Li M. Classification and Characteristics of Mesenchymal Stem Cells and Its Potential Therapeutic Mechanisms and Applications against Ischemic Stroke. Stem Cells Int 2021;2021:2602871. [PMID: 34795764 DOI: 10.1155/2021/2602871] [Reference Citation Analysis]
11 Liu W, Liu C, Liu C, Li Y, Pan L, Wang J, Jian X. Surface chemical modification of poly(phthalazinone ether nitrile ketone) through rhBMP-2 and antimicrobial peptide conjugation for enhanced osteogenic and antibacterial activities in vitro and in vivo. Chemical Engineering Journal 2021;424:130321. [DOI: 10.1016/j.cej.2021.130321] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Wei Z, Hong FF, Cao Z, Zhao SY, Chen L. In Situ Fabrication of Nerve Growth Factor Encapsulated Chitosan Nanoparticles in Oxidized Bacterial Nanocellulose for Rat Sciatic Nerve Regeneration. Biomacromolecules 2021. [PMID: 34724615 DOI: 10.1021/acs.biomac.1c00947] [Reference Citation Analysis]
13 Saio S, Konishi K, Hohjoh H, Tamura Y, Masutani T, Iddamalgoda A, Ichihashi M, Hasegawa H, Mizutani KI. Extracellular Environment-Controlled Angiogenesis, and Potential Application for Peripheral Nerve Regeneration. Int J Mol Sci 2021;22:11169. [PMID: 34681829 DOI: 10.3390/ijms222011169] [Reference Citation Analysis]
14 Zhao P, Tang ZW, Lin HC, Djuanda D, Zhu Z, Niu Q, Zhao LM, Qian YN, Cao G, Shen JL, Fu B. VEGF aptamer/i-motif-based drug co-delivery system for combined chemotherapy and photodynamic therapy. Photodiagnosis Photodyn Ther 2021;36:102547. [PMID: 34562647 DOI: 10.1016/j.pdpdt.2021.102547] [Reference Citation Analysis]
15 Xu Y, Lin Z, He L, Qu Y, Ouyang L, Han Y, Xu C, Duan D. Platelet-Rich Plasma-Derived Exosomal USP15 Promotes Cutaneous Wound Healing via Deubiquitinating EIF4A1. Oxid Med Cell Longev 2021;2021:9674809. [PMID: 34422211 DOI: 10.1155/2021/9674809] [Reference Citation Analysis]
16 de Lima GG, Júnior ELS, Aggio BB, Shee BS, Filho EMM, Segundo FAS, Fournet MB, Devine DM, Magalhães WLE, de Sá MJC. Nanocellulose for peripheral nerve regeneration in rabbits using citric acid as crosslinker with chitosan and freeze/thawed PVA. Biomed Mater 2021;16. [PMID: 34330112 DOI: 10.1088/1748-605X/ac199b] [Reference Citation Analysis]
17 Chen F, Liu W, Zhang Q, Wu P, Xiao A, Zhao Y, Zhou Y, Wang Q, Chen Y, Tong Z. IL-17F depletion accelerates chitosan conduit guided peripheral nerve regeneration. Acta Neuropathol Commun 2021;9:125. [PMID: 34274026 DOI: 10.1186/s40478-021-01227-1] [Reference Citation Analysis]