BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen H, Fei F, Li X, Nie Z, Zhou D, Liu L, Zhang J, Zhang H, Fei Z, Xu T. A structure-supporting, self-healing, and high permeating hydrogel bioink for establishment of diverse homogeneous tissue-like constructs. Bioact Mater 2021;6:3580-95. [PMID: 33869899 DOI: 10.1016/j.bioactmat.2021.03.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Yang Y, Xu L, Wang J, Meng Q, Zhong S, Gao Y, Cui X. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydrate Polymers 2022;283:119161. [DOI: 10.1016/j.carbpol.2022.119161] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
2 Martorana A, Pitarresi G, Palumbo FS, Barberi G, Fiorica C, Giammona G. Correlating Rheological Properties of a Gellan Gum-Based Bioink: A Study of the Impact of Cell Density. Polymers 2022;14:1844. [DOI: 10.3390/polym14091844] [Reference Citation Analysis]
3 Zhang W, Jiang Y, Wang H, Li Q, Tang K. In situ forming hydrogel recombination with tissue adhesion and antibacterial property for tissue adhesive. J Biomater Appl. [DOI: 10.1177/08853282221078159] [Reference Citation Analysis]
4 Feng Q, Li D, Li Q, Li H, Wang Z, Zhu S, Lin Z, Cao X, Dong H. Assembling Microgels via Dynamic Cross-Linking Reaction Improves Printability, Microporosity, Tissue-Adhesion, and Self-Healing of Microgel Bioink for Extrusion Bioprinting. ACS Appl Mater Interfaces 2022;14:15653-66. [PMID: 35344348 DOI: 10.1021/acsami.2c01295] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Choi CE, Chakraborty A, Coyle A, Shamiya Y, Paul A. Contact-Free Remote Manipulation of Hydrogel Properties Using Light-Triggerable Nanoparticles: A Materials Science Perspective for Biomedical Applications. Adv Healthc Mater 2022;11:e2102088. [PMID: 35032156 DOI: 10.1002/adhm.202102088] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Mueller E, Poulin I, Bodnaryk WJ, Hoare T. Click Chemistry Hydrogels for Extrusion Bioprinting: Progress, Challenges, and Opportunities. Biomacromolecules 2022. [PMID: 34989569 DOI: 10.1021/acs.biomac.1c01105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
7 Xiao L, Hui F, Tian T, Yan R, Xin J, Zhao X, Jiang Y, Zhang Z, Kuang Y, Li N, Zhao Y, Lin Q. A Novel Conductive Antibacterial Nanocomposite Hydrogel Dressing for Healing of Severely Infected Wounds. Front Chem 2021;9:787886. [PMID: 34900945 DOI: 10.3389/fchem.2021.787886] [Reference Citation Analysis]
8 Han X, Chang S, Zhang M, Bian X, Li C, Li D. Advances of Hydrogel-Based Bioprinting for Cartilage Tissue Engineering. Front Bioeng Biotechnol 2021;9:746564. [PMID: 34660559 DOI: 10.3389/fbioe.2021.746564] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 McGivern S, Boutouil H, Al-Kharusi G, Little S, Dunne NJ, Levingstone TJ. Translational Application of 3D Bioprinting for Cartilage Tissue Engineering. Bioengineering (Basel) 2021;8:144. [PMID: 34677217 DOI: 10.3390/bioengineering8100144] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]