BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao D, Zhu T, Li J, Cui L, Zhang Z, Zhuang X, Ding J. Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Bioact Mater 2021;6:346-60. [PMID: 32954053 DOI: 10.1016/j.bioactmat.2020.08.016] [Cited by in Crossref: 143] [Cited by in F6Publishing: 120] [Article Influence: 71.5] [Reference Citation Analysis]
Number Citing Articles
1 Liu C, Dai T, Wu X, Ma J, Liu J, Wu S, Yang L, Zhao H. 3D bioprinting of cell-laden nano-attapulgite/gelatin methacrylate composite hydrogel scaffolds for bone tissue repair. Journal of Materials Science & Technology 2023;135:111-125. [DOI: 10.1016/j.jmst.2022.07.011] [Reference Citation Analysis]
2 Huang C, Ye Q, Dong J, Li L, Wang M, Zhang Y, Zhang Y, Wang X, Wang P, Jiang Q. Biofabrication of natural Au/bacterial cellulose hydrogel for bone tissue regeneration via in-situ fermentation. Smart Materials in Medicine 2023;4:1-14. [DOI: 10.1016/j.smaim.2022.06.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Du Z, Wang C, Chen Y, Guo Q, Zhang K, Di Y, Li X. The effect of carrier microstructure on bioactivities of covalently bound osteogenic-related peptides in vivo. Materials & Design 2022;224:111301. [DOI: 10.1016/j.matdes.2022.111301] [Reference Citation Analysis]
4 Xu C, Guan S, Hou W, Dong X, Qi M. Magnesium-organic framework modified biodegradable electrospun scaffolds for promoting osteogenic differentiation and bone regeneration. European Polymer Journal 2022;181:111692. [DOI: 10.1016/j.eurpolymj.2022.111692] [Reference Citation Analysis]
5 Cheng G, Xie C, Cheng Y, Gong C, Li Z, Dong X, Deng H, Li Z. Enhanced mineralization of the nanofibers-incorporated aerogels increases mechanical properties of scaffold and promotes bone formation. Materials Today Advances 2022;16:100318. [DOI: 10.1016/j.mtadv.2022.100318] [Reference Citation Analysis]
6 Elhadad AA, Alcudia A, Begines B, Pérez-soriano EM, Torres Y. A multidisciplinary perspective on the latest trends in artificial cartilage fabrication to mimic real tissue. Applied Materials Today 2022;29:101603. [DOI: 10.1016/j.apmt.2022.101603] [Reference Citation Analysis]
7 Han L, Wang W, Chen Z, Cai Y, Chen C, Chen G, Wang F. Sericin-reinforced Dual-crosslinked Hydrogel for Cartilage Defect Repair. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.113061] [Reference Citation Analysis]
8 Lian H, Ma S, Zhao D, Zhao W, Cui Y, Hua Y, Zhang Z. Cytokine Therapy Combined with Nanomaterials Participates in Cancer Immunotherapy. Pharmaceutics 2022;14:2606. [DOI: 10.3390/pharmaceutics14122606] [Reference Citation Analysis]
9 Wu Z, Yuan K, Zhang Q, Guo JJ, Yang H, Zhou F. Antioxidant PDA-PEG nanoparticles alleviate early osteoarthritis by inhibiting osteoclastogenesis and angiogenesis in subchondral bone. J Nanobiotechnol 2022;20:479. [DOI: 10.1186/s12951-022-01697-y] [Reference Citation Analysis]
10 Liu Z, Fu C. Application of single and cooperative different delivery systems for the treatment of intervertebral disc degeneration. Front Bioeng Biotechnol 2022;10. [DOI: 10.3389/fbioe.2022.1058251] [Reference Citation Analysis]
11 Temiz A, Alshemary AZ, Akar N, Yaşar M. Rapid Casting of Biodegradable Porous Magnesium Scaffolds and Electrophoretic Deposition of 45S5 Bioactive Glass Nanoparticles Coatings on Porous Scaffolds: Characterization and In Vitro Bioactivity Analysis. Inter Metalcast 2022. [DOI: 10.1007/s40962-022-00903-9] [Reference Citation Analysis]
12 Su Z, Zhang J, Tan P, Zhu S, Jiang N. Selective Polyetheretherketone Implants Combined with Graphene Cause Definitive Cell Adhesion and Osteogenic Differentiation. IJN 2022;Volume 17:5327-5338. [DOI: 10.2147/ijn.s380345] [Reference Citation Analysis]
13 Eryildiz M. Fabrication of Drug-Loaded 3D-Printed Bone Scaffolds with Radial Gradient Porosity. J of Materi Eng and Perform. [DOI: 10.1007/s11665-022-07490-0] [Reference Citation Analysis]
14 Ji Y, Hou M, Zhang J, Jin M, Wang T, Yang H, Zhang X. Preparation and Properties of Partial-Degradable ZrO(2)-Chitosan Particles-GelMA Composite Scaffolds. Polymers (Basel) 2022;14. [PMID: 36236178 DOI: 10.3390/polym14194233] [Reference Citation Analysis]
15 Yao H, Luo J, Deng Y, Li Z, Wei J. Alginate-modified mesoporous bioactive glass and its drug delivery, bioactivity, and osteogenic properties. Front Bioeng Biotechnol 2022;10:994925. [DOI: 10.3389/fbioe.2022.994925] [Reference Citation Analysis]
16 Lv Q, Ma C. A novel protocol for injectable artificial cartilage constructs based on programmed shape-morphing hydrogels for cartilage regeneration. Chemical Engineering Journal 2022;446:137109. [DOI: 10.1016/j.cej.2022.137109] [Reference Citation Analysis]
17 Kim HJ, Cho HB, Lee S, Lyu J, Kim HR, Lee S, Park JI, Park KH. Strategies for accelerating osteogenesis through nanoparticle-based DNA/mitochondrial damage repair. Theranostics 2022;12:6409-21. [PMID: 36168629 DOI: 10.7150/thno.77089] [Reference Citation Analysis]
18 Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022;23:267. [PMID: 36163568 DOI: 10.1208/s12249-022-02419-1] [Reference Citation Analysis]
19 Pan H, Deng L, Huang L, Zhang Q, Yu J, Huang Y, Chen L, Chang J. 3D-printed Sr2ZnSi2O7 scaffold facilitates vascularized bone regeneration through macrophage immunomodulation. Front Bioeng Biotechnol 2022;10:1007535. [DOI: 10.3389/fbioe.2022.1007535] [Reference Citation Analysis]
20 Teo YC, Park EJ, Guo J, Abbas A, Smith RAA, Goh D, Yeong JPS, Cool S, Teo P. Bioactive PCL-Peptide and PLA-Peptide Brush Copolymers for Bone Tissue Engineering. ACS Appl Bio Mater . [DOI: 10.1021/acsabm.2c00455] [Reference Citation Analysis]
21 Kumar J, Verma R, Singh NK, Singh NK, Nirala NS, Rai SK. Mechanical Property Analysis of Triply Periodic Minimal Surface Inspired Porous Scaffold for Bone Applications: A Compromise between Desired Mechanical Strength and Additive Manufacturability. J of Materi Eng and Perform. [DOI: 10.1007/s11665-022-07322-1] [Reference Citation Analysis]
22 Gide KM, Islam S, Bagheri ZS. Polymer-Based Materials Built with Additive Manufacturing Methods for Orthopedic Applications: A Review. J Compos Sci 2022;6:262. [DOI: 10.3390/jcs6090262] [Reference Citation Analysis]
23 Shuai C, Yang F, Shuai Y, Peng S, Chen S, Deng Y, Feng P. Silicon dioxide nanoparticles decorated on graphene oxide nanosheets and their application in poly(l-lactic acid) scaffold. J Adv Res 2022:S2090-1232(22)00198-9. [PMID: 36087925 DOI: 10.1016/j.jare.2022.08.017] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Yu-sheng Y, Hsu C, Cheng P, Wu KC, Liu C. Poly(acrylic acid)-grafted mearttal-organic framework carrying Mg ions for bone repair. Materials Chemistry and Physics 2022. [DOI: 10.1016/j.matchemphys.2022.126840] [Reference Citation Analysis]
25 Zhang S, Liang X, Clarke SA, Buchanan F. Electron Beam Irradiation-triggered Strontium Delivery from a Bioresorbable Fracture Fixation Device. Materialia 2022. [DOI: 10.1016/j.mtla.2022.101597] [Reference Citation Analysis]
26 Yang Y, Geng Y, Liu M, Liu K, Lv X, Yu H, Pan P, Chen L, Chen J. Facile mussel-inspired polymerization to facilitate biomimetic in situ homogeneous mineralization for bone regeneration. Composites Part B: Engineering 2022. [DOI: 10.1016/j.compositesb.2022.110325] [Reference Citation Analysis]
27 Zhang X, Chen Y, Fu J, Chen Q, Li Y, Fang C, Li C, Wang L, Qiu D, Zhang Z. An injectable pH neutral bioactive glass-based bone cement with suitable bone regeneration ability. Journal of Orthopaedic Translation 2022;36:120-31. [DOI: 10.1016/j.jot.2022.05.011] [Reference Citation Analysis]
28 Xu C, Kang Y, Guan S, Dong X, Jiang D, Qi M. Iron-based metal–organic framework as a dual cooperative release system for enhanced vascularization and bone regeneration. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.107825] [Reference Citation Analysis]
29 Ielo I, Calabrese G, De Luca G, Conoci S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. IJMS 2022;23:9721. [DOI: 10.3390/ijms23179721] [Reference Citation Analysis]
30 Murali A, Vakkattil MA, Parameswaran R. Investigating the Effect of Processing Parameters on Mechanical Behavior of 3D Fused Deposition Modeling Printed Polylactic Acid. J of Materi Eng and Perform. [DOI: 10.1007/s11665-022-07188-3] [Reference Citation Analysis]
31 Wan Z, Dong Q, Guo X, Bai X, Zhang X, Zhang P, Liu Y, Lv L, Zhou Y. A dual-responsive polydopamine modified hydroxybutyl chitosan hydrogel for sequential regulation of bone regeneration. Carbohydrate Polymers 2022. [DOI: 10.1016/j.carbpol.2022.120027] [Reference Citation Analysis]
32 Na X, Chen X, Xu X, Du M, Zhu B, Wang T, Wu C. Fabrication of Biofunctionalized Surfaces for Osteo-regeneration by Directional Seeding of Lactoferrin at the Solid-Liquid Interface. Materials Today Nano 2022. [DOI: 10.1016/j.mtnano.2022.100250] [Reference Citation Analysis]
33 Nie H, Zhang L, Liu Y, Jiang P, Sheng H, Hou X, Li H. Optimizing Mechanical and Biotribological Properties of Carbon Fiber/Epoxy Composites by Applying Interconnected Graphene Interface. Applied Surface Science 2022. [DOI: 10.1016/j.apsusc.2022.154432] [Reference Citation Analysis]
34 Ou Y, Wu W, Zhou Z. In-Vitro Degradation Behaviors of Composite Scaffolds Based on Poly(Lactide-co-Glycolide-co-ε-Caprolactone), 1,4-Butanediamine Modified Poly(Lactide-co-Glycolide) and Bioceramics. Journal of Macromolecular Science, Part B. [DOI: 10.1080/00222348.2022.2101972] [Reference Citation Analysis]
35 Xu Y, Yan S, Chen C, Lu B, Zhao R. Constructing Injectable Bone-Forming Units by Loading a Subtype of Osteoprogenitors on Decellularized Bone Matrix Powders for Bone Regeneration. Front Cell Dev Biol 2022;10:910819. [PMID: 35874802 DOI: 10.3389/fcell.2022.910819] [Reference Citation Analysis]
36 Yan X, Yao H, Luo J, Li Z, Wei J. Functionalization of Electrospun Nanofiber for Bone Tissue Engineering. Polymers 2022;14:2940. [DOI: 10.3390/polym14142940] [Reference Citation Analysis]
37 Rohr N, Brunner C, Bellon B, Fischer J, de Wild M. Characterization of a cotton-wool like composite bone graft material. J Mater Sci Mater Med 2022;33:61. [PMID: 35849225 DOI: 10.1007/s10856-022-06682-3] [Reference Citation Analysis]
38 Kang S, Haider A, Gupta KC, Kim H, Kang I. Chemical Bonding of Biomolecules to the Surface of Nano-Hydroxyapatite to Enhance Its Bioactivity. Coatings 2022;12:999. [DOI: 10.3390/coatings12070999] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Gu P, Xu Y, Liu Q, Wang Y, Li Z, Chen M, Mao R, Liang J, Zhang X, Fan Y, Sun Y. Tailorable 3DP Flexible Scaffolds with Porosification of Filaments Facilitate Cell Ingrowth and Biomineralized Deposition. ACS Appl Mater Interfaces 2022. [PMID: 35829709 DOI: 10.1021/acsami.2c07649] [Reference Citation Analysis]
40 Lei K, Wang Y, Peng X, Yu L, Ding J. Long‐term delivery of etanercept mediated via a thermosensitive hydrogel for efficient inhibition of wear debris‐induced inflammatory osteolysis. Journal of Polymer Science. [DOI: 10.1002/pol.20220337] [Reference Citation Analysis]
41 Bu S, Yu M, Chen Q, Chen D, Xia P, Li G, Zhang K, Yan S, Wu H, Yin J. Construction of poly-(γ-benzyl‐l‐glutamate) composite microcarriers with osteogenic and angiogenic properties for the restoration of alveolar bone defects. Composites Part B: Engineering 2022. [DOI: 10.1016/j.compositesb.2022.110085] [Reference Citation Analysis]
42 Liu T, Li Z, Zhao L, Chen Z, Lin Z, Li B, Feng Z, Jin P, Zhang J, Wu Z, Wu H, Xu X, Ye X, Zhang Y. Customized Design 3D Printed PLGA/Calcium Sulfate Scaffold Enhances Mechanical and Biological Properties for Bone Regeneration. Front Bioeng Biotechnol 2022;10:874931. [DOI: 10.3389/fbioe.2022.874931] [Reference Citation Analysis]
43 Nanda HS, Yang L, Hu J, Mao H, Jiang S. Editorial: Biodegradable Polymers for Biomedical Applications. Front Mater 2022;9:944755. [DOI: 10.3389/fmats.2022.944755] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Long S, Huang D, Ma Z, Shi S, Xiao Y, Zhang X. A sonication-induced silk-collagen hydrogel for functional cartilage regeneration. J Mater Chem B 2022. [PMID: 35726720 DOI: 10.1039/d2tb00564f] [Reference Citation Analysis]
45 Li W, Li S, Zhang J, Zhong H, Liang J, Huang S, Liao G, Zhang B, Liu C. Fabrication and evaluation of bone morphogenetic protein-2 microspheres coated black phosphorus nanosheets@polylactic-glycolic acid copolymers scaffold: A multifunctional antibacterial photothermal scaffold for bone regeneration. Int J Biol Macromol 2022;210:350-64. [PMID: 35537585 DOI: 10.1016/j.ijbiomac.2022.05.028] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Li Q, Yang Z, Wei Z, Li D, Luo Y, Kang P. Copper-Lithium-Doped Nanohydroxyapatite Modulates Mesenchymal Stem Cells Homing to Treat Glucocorticoids-Related Osteonecrosis of the Femoral Head. Front Bioeng Biotechnol 2022;10:916562. [DOI: 10.3389/fbioe.2022.916562] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Yuan J, Ye Z, Zeng Y, Pan Z, Feng Z, Bao Y, Li Y, Liu X, He Y, Feng Q. Bifunctional scaffolds for tumor therapy and bone regeneration: Synergistic effect and interplay between therapeutic agents and scaffold materials. Mater Today Bio 2022;15:100318. [PMID: 35734197 DOI: 10.1016/j.mtbio.2022.100318] [Reference Citation Analysis]
48 Hussain M, Khan SM, Al-khaled K, Ayadi M, Abbas N, Chammam W. Performance analysis of biodegradable materials for orthopedic applications. Materials Today Communications 2022;31:103167. [DOI: 10.1016/j.mtcomm.2022.103167] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Tavares L, Smaoui S, Lima PS, de Oliveira MM, Santos L. Propolis: Encapsulation and application in the food and pharmaceutical industries. Trends in Food Science & Technology 2022. [DOI: 10.1016/j.tifs.2022.06.003] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
50 Cheng L, Xu Z, Liu Y, Zhou D, Sun M, Xu Y, Chen L, Sun J. 3D-Printed Drug-Loaded Composite Scaffolds to Promote Osteogenesis and Antibacterial Activity. ACS Appl Polym Mater 2022;4:4476-85. [DOI: 10.1021/acsapm.2c00432] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Sun F, Sun X, Wang H, Li C, Zhao Y, Tian J, Lin Y. Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering. Int J Mol Sci 2022;23:5831. [PMID: 35628638 DOI: 10.3390/ijms23105831] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Ai Y, She W, Wu S, Shao Q, Jiang Z, Chen P, Mei L, Zou C, Peng Y, He Y. AM1241-Loaded Poly(ethylene glycol)–Dithiothreitol Hydrogel Repairs Cranial Bone Defects by Promoting Vascular Endothelial Growth Factor and COL-1 Expression. Front Cell Dev Biol 2022;10:888598. [DOI: 10.3389/fcell.2022.888598] [Reference Citation Analysis]
53 Liu X, Chen G, Zhong X, Wang T, He X, Yuan W, Zhang P, Liu Y, Cao D, Chen S, Manabe K, Jiang Z, Furushima T, Kent D, Chen Y, Ni G, Gao M, Li H. Degradation of differently processed Mg-based implants leads to distinct foreign body reactions (FBRs) through dissimilar signaling pathways. Journal of Magnesium and Alloys 2022. [DOI: 10.1016/j.jma.2022.03.017] [Reference Citation Analysis]
54 Song W, Jin Z, Huang X, Xi Z, Luo X, Cen L. Microfluidic-preparation of PLGA microcarriers with collagen patches for MSCs expansion and osteogenic differentiation. European Polymer Journal 2022;170:111177. [DOI: 10.1016/j.eurpolymj.2022.111177] [Reference Citation Analysis]
55 Li D, Yang Z, Zhao X, Luo Y, Zhou W, Xu J, Hou Z, Kang P, Tian M. Osteoimmunomodulatory injectable Lithium-Heparin hydrogel with Microspheres/TGF-β1 delivery promotes M2 macrophage polarization and osteogenesis for guided bone regeneration. Chemical Engineering Journal 2022;435:134991. [DOI: 10.1016/j.cej.2022.134991] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
56 Furtado M, Chen L, Chen Z, Chen A, Cui W. Development of fish collagen in tissue regeneration and drug delivery. Engineered Regeneration 2022. [DOI: 10.1016/j.engreg.2022.05.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
57 Mukherjee D, Bhatt S. Biocomposite-based nanostructured delivery systems for treatment and control of inflammatory lung diseases. Nanomedicine (Lond) 2022. [PMID: 35477308 DOI: 10.2217/nnm-2021-0425] [Reference Citation Analysis]
58 Mirkhalaf M, Men Y, Wang R, No Y, Zreiqat H. Personalized 3D printed bone scaffolds: A review. Acta Biomater 2022:S1742-7061(22)00218-5. [PMID: 35429670 DOI: 10.1016/j.actbio.2022.04.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
59 Wang L, Chen L, Wang J, Wang L, Gao C, Li B, Wang Y, Wu J, Quan C. Bioactive gelatin cryogels with BMP‐2 biomimetic peptide and VEGF: A potential scaffold for synergistically induced osteogenesis. Chinese Chemical Letters 2022;33:1956-62. [DOI: 10.1016/j.cclet.2021.10.070] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
60 Yu F, Geng D, Kuang Z, Huang S, Cheng Y, Chen Y, Leng F, Bei Y, Zhao Y, Tang Q, Huang Y, Xiang Q. Sequentially releasing self-healing hydrogel facilitated with TGFβ3-microspheres and bFGF to facilitates rat alveolar bone defect repair. Asian Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ajps.2022.03.003] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
61 Wang X, Sun H, Song M, Yan G, Wang Q. The Biodegradability and in Vitro Cytological Study on the Composite of PLGA Combined With Magnesium Metal. Front Bioeng Biotechnol 2022;10:859280. [DOI: 10.3389/fbioe.2022.859280] [Reference Citation Analysis]
62 Radulescu DE, Neacsu IA, Grumezescu AM, Andronescu E. Novel Trends into the Development of Natural Hydroxyapatite-Based Polymeric Composites for Bone Tissue Engineering. Polymers (Basel) 2022;14:899. [PMID: 35267722 DOI: 10.3390/polym14050899] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
63 Hindy OA, Goker M, Yilgor Huri P. Nanoscale agents within 3D-printed constructs: intersection of nanotechnology and personalized bone tissue engineering. emergent mater . [DOI: 10.1007/s42247-022-00366-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Qin X, Wu Y, Liu S, Yang L, Yuan H, Cai S, Flesch J, Li Z, Tang Y, Li X, Zhuang Y, You C, Liu C, Yu C. Surface Modification of Polycaprolactone Scaffold With Improved Biocompatibility and Controlled Growth Factor Release for Enhanced Stem Cell Differentiation. Front Bioeng Biotechnol 2021;9:802311. [PMID: 35071210 DOI: 10.3389/fbioe.2021.802311] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Chen Y, Shang H, Wang C, Zeng J, Zhang S, Wu B, Cheng W. RNA-Seq Explores the Mechanism of Oxygen-Boosted Sonodynamic Therapy Based on All-in-One Nanobubbles to Enhance Ferroptosis for the Treatment of HCC. Int J Nanomedicine 2022;17:105-23. [PMID: 35027829 DOI: 10.2147/IJN.S343361] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
66 Rashia Begum S, Saravana Kumar M, Vasumathi M, Umar Farooq M, Pruncu CI. Revealing the compressive and flow properties of novel bone scaffold structure manufactured by selective laser sintering technique. Proc Inst Mech Eng H 2022;:9544119211070412. [PMID: 35014560 DOI: 10.1177/09544119211070412] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
67 Zhao X, Liu Y, Coates P, Caton-rose F, Ye L. Triple-shape memory effect of long-chain branched Poly(lactic acid)-b-poly(lactide-co-caprolactone) and its controllable shape recovery as self-fastening smart bone fixture. Polymer 2022;238:124421. [DOI: 10.1016/j.polymer.2021.124421] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Eini E, Ghaemi A, Rahim F. Bone Using Stem Cells for Maxillofacial Bone Disorders: A Systematic Review and Meta-analysis. Advances in Experimental Medicine and Biology 2022. [DOI: 10.1007/5584_2022_706] [Reference Citation Analysis]
69 Ma X, Gao Y, Zhao D, Zhang W, Zhao W, Wu M, Cui Y, Li Q, Zhang Z, Ma C. Titanium Implants and Local Drug Delivery Systems Become Mutual Promoters in Orthopedic Clinics. Nanomaterials 2021;12:47. [DOI: 10.3390/nano12010047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
70 Wei J, Yan Y, Gao J, Li Y, Wang R, Wang J, Zou Q, Zuo Y, Zhu M, Li J. 3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration. Mater Sci Eng C Mater Biol Appl 2021;:112618. [PMID: 35031175 DOI: 10.1016/j.msec.2021.112618] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
71 Yan X, Cao W, Li H. Biomedical Alloys and Physical Surface Modifications: A Mini-Review. Materials (Basel) 2021;15:66. [PMID: 35009212 DOI: 10.3390/ma15010066] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
72 Li J, Wang W, Li M, Song P, Lei H, Gui X, Zhou C, Liu L. Biomimetic Methacrylated Gelatin Hydrogel Loaded With Bone Marrow Mesenchymal Stem Cells for Bone Tissue Regeneration. Front Bioeng Biotechnol 2021;9:770049. [PMID: 34926420 DOI: 10.3389/fbioe.2021.770049] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
73 Shuai C, Yu L, Feng P, Peng S, Pan H, Bai X. Construction of a stereocomplex between poly(D-lactide) grafted hydroxyapatite and poly(L-lactide): toward a bioactive composite scaffold with enhanced interfacial bonding. J Mater Chem B 2021. [PMID: 34927656 DOI: 10.1039/d1tb02111g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
74 Yin T, Du R, Wang Y, Huang J, Ge S, Huang Y, Tan Y, Liu Q, Chen Z, Feng H, Du J, Wang Y, Wang G. Two-stage degradation and novel functional endothelium characteristics of a 3-D printed bioresorbable scaffold. Bioact Mater 2022;10:378-96. [PMID: 34901554 DOI: 10.1016/j.bioactmat.2021.08.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
75 Farahani A, Zarei-Hanzaki A, Abedi HR, Tayebi L, Mostafavi E. Polylactic Acid Piezo-Biopolymers: Chemistry, Structural Evolution, Fabrication Methods, and Tissue Engineering Applications. J Funct Biomater 2021;12:71. [PMID: 34940550 DOI: 10.3390/jfb12040071] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
76 Huang C, Dong J, Zhang Y, Chai S, Wang X, Kang S, Yu D, Wang P, Jiang Q. Gold Nanoparticles-Loaded Polyvinylpyrrolidone/Ethylcellulose Coaxial Electrospun Nanofibers with Enhanced Osteogenic Capability for Bone Tissue Regeneration. Materials & Design 2021;212:110240. [DOI: 10.1016/j.matdes.2021.110240] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 35.0] [Reference Citation Analysis]
77 Qiao F, Dong C, Yao D, Xu Z, Lv Y. 4-Octyl itaconate modified demineralized bone matrix scaffold improves bone repair by regulating early inflammation. Chemical Engineering Journal 2021;425:131490. [DOI: 10.1016/j.cej.2021.131490] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
78 Zhang X, Lai K, Li S, Wang J, Li J, Wang W, Ni S, Lu B, Grzybowski A, Ji J, Han H, Yao K. Drug-eluting intraocular lens with sustained bromfenac release for conquering posterior capsular opacification. Bioact Mater 2022;9:343-57. [PMID: 34820575 DOI: 10.1016/j.bioactmat.2021.07.015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 14.0] [Reference Citation Analysis]
79 Zhu T, Jiang M, Zhang M, Cui L, Yang X, Wang X, Liu G, Ding J, Chen X. Biofunctionalized composite scaffold to potentiate osteoconduction, angiogenesis, and favorable metabolic microenvironment for osteonecrosis therapy. Bioact Mater 2022;9:446-60. [PMID: 34820582 DOI: 10.1016/j.bioactmat.2021.08.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 25.0] [Reference Citation Analysis]
80 Cheng WX, Liu YZ, Meng XB, Zheng ZT, Li LL, Ke LQ, Li L, Huang CS, Zhu GY, Pan HD, Qin L, Wang XL, Zhang P. PLGA/β-TCP composite scaffold incorporating cucurbitacin B promotes bone regeneration by inducing angiogenesis. J Orthop Translat 2021;31:41-51. [PMID: 34804799 DOI: 10.1016/j.jot.2021.10.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
81 Jung O, Hesse B, Stojanovic S, Seim C, Weitkamp T, Batinic M, Goerke O, Kačarević ŽP, Rider P, Najman S, Barbeck M. Biocompatibility Analyses of HF-Passivated Magnesium Screws for Guided Bone Regeneration (GBR). Int J Mol Sci 2021;22:12567. [PMID: 34830451 DOI: 10.3390/ijms222212567] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
82 Luo K, Wang L, Tang J, Zeng X, Chen X, Zhang P, Zhou S, Li J, Zuo Y. Enhanced biomineralization of shape memory composite scaffolds from citrate functionalized amorphous calcium phosphate for bone repair. J Mater Chem B 2021;9:9191-203. [PMID: 34698324 DOI: 10.1039/d1tb01554k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
83 Shen CC, Hsu SH, Chang KB, Yeh CA, Chang HC, Tang CM, Yang YC, Hsieh HH, Hung HS. Physical Gold Nanoparticle-Decorated Polyethylene Glycol-Hydroxyapatite Composites Guide Osteogenesis and Angiogenesis of Mesenchymal Stem Cells. Biomedicines 2021;9:1632. [PMID: 34829861 DOI: 10.3390/biomedicines9111632] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
84 Du F, You Z, Meng K, Qu X, Zhang D, Zhang W, Liu M, Shen Y, Deng W, Jin X. Dealuminization for a Modified (Si–OH) n –Pt Interface: Self-Activation of Pt/NaY Catalysts for Oxidation of Ethylene Glycol in a Base-Free Medium. ACS Sustainable Chem Eng 2021;9:14416-29. [DOI: 10.1021/acssuschemeng.1c04448] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
85 Wu Y, Liao Q, Wu L, Luo Y, Zhang W, Guan M, Pan H, Tong L, Chu PK, Wang H. ZnL2-BPs Integrated Bone Scaffold under Sequential Photothermal Mediation: A Win-Win Strategy Delivering Antibacterial Therapy and Fostering Osteogenesis Thereafter. ACS Nano 2021. [PMID: 34704438 DOI: 10.1021/acsnano.1c06062] [Cited by in Crossref: 21] [Cited by in F6Publishing: 27] [Article Influence: 21.0] [Reference Citation Analysis]
86 Xu X, Zhuo J, Xiao L, Xu Y, Yang X, Li Y, Du Z, Luo K. Nanosilicate-Functionalized Polycaprolactone Orchestrates Osteogenesis and Osteoblast-Induced Multicellular Interactions for Potential Endogenous Vascularized Bone Regeneration. Macromol Biosci 2021;:e2100265. [PMID: 34705332 DOI: 10.1002/mabi.202100265] [Reference Citation Analysis]
87 Zhu Y, Liu W, Ngai T. Polymer coatings on magnesium‐based implants for orthopedic applications. Journal of Polymer Science 2022;60:32-51. [DOI: 10.1002/pol.20210578] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
88 Yuan X, Zhao Y, Li J, Chen X, Lu Z, Li L, Guo J. Citrate-based mussel-inspired magnesium whitlockite composite adhesives augmented bone-to-tendon healing. J Mater Chem B 2021;9:8202-10. [PMID: 34590109 DOI: 10.1039/d1tb01710a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
89 Dong H, Zhu T, Zhang M, Wang D, Wang X, Huang G, Wang S, Zhang M. Polymer Scaffolds-Enhanced Bone Regeneration in Osteonecrosis Therapy. Front Bioeng Biotechnol 2021;9:761302. [PMID: 34631688 DOI: 10.3389/fbioe.2021.761302] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
90 Yu P, Liu Y, Xie J, Li J. Spatiotemporally controlled calcitonin delivery: Long-term and targeted therapy of skeletal diseases. J Control Release 2021;338:486-504. [PMID: 34481022 DOI: 10.1016/j.jconrel.2021.08.056] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
91 Wang Y, Yao Y, Thirumurugan M, Prabakaran S, Rajan M, Wang K. Natural Drug-Loaded Bimetal-Substituted Hydroxyapatite-Polymeric Composite for Osteosarcoma-Affected Bone Repair. Front Cell Dev Biol 2021;9:731887. [PMID: 34616738 DOI: 10.3389/fcell.2021.731887] [Reference Citation Analysis]
92 Jing X, Ding Q, Wu Q, Su W, Yu K, Su Y, Ye B, Gao Q, Sun T, Guo X, Xj, Ts, Xg, Xj, Xj, Qd, Ws, Ky, Xj, Qd, Ws, Ky, Ys, By, Qw, Qg, Ts, Xj, Qd, Ws, Ky, Xj, Xj, Qd, Ws, Ky, Xj, Qd, Ws, Ky, Ys, Xg. Magnesium-based materials in orthopaedics: material properties and animal models. Biomater Transl 2021;2:197-213. [PMID: 35836647 DOI: 10.12336/biomatertransl.2021.03.004] [Reference Citation Analysis]
93 He D, Gao J, Zheng L, Liu S, Ye L, Lai H, Pan B, Pan W, Lou C, Chen Z, Fan S. TGF‑β inhibitor RepSox suppresses osteosarcoma via the JNK/Smad3 signaling pathway. Int J Oncol 2021;59:84. [PMID: 34533199 DOI: 10.3892/ijo.2021.5264] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
94 Zhang W, Zhao W, Li Q, Zhao D, Qu J, Yuan Z, Cheng Z, Zhu X, Zhuang X, Zhang Z. 3D-printing magnesium-polycaprolactone loaded with melatonin inhibits the development of osteosarcoma by regulating cell-in-cell structures. J Nanobiotechnology 2021;19:263. [PMID: 34481503 DOI: 10.1186/s12951-021-01012-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
95 Tamburaci S, Tihminlioglu F. Development of Si doped nano hydroxyapatite reinforced bilayer chitosan nanocomposite barrier membranes for guided bone regeneration. Mater Sci Eng C Mater Biol Appl 2021;128:112298. [PMID: 34474849 DOI: 10.1016/j.msec.2021.112298] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
96 Cao X, Dai L, Sun S, Ma R, Liu X. Preparation and performance of porous hydroxyapatite/poly(lactic-co-glycolic acid) drug-loaded microsphere scaffolds for gentamicin sulfate delivery. J Mater Sci 2021;56:15278-98. [DOI: 10.1007/s10853-021-06183-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
97 Santos-coquillat A, Martínez-campos E, Mora Sánchez H, Moreno L, Arrabal R, Mohedano M, Gallardo A, Rodríguez-hernández J, Matykina E. Hybrid functionalized coatings on Metallic Biomaterials for Tissue Engineering. Surface and Coatings Technology 2021;422:127508. [DOI: 10.1016/j.surfcoat.2021.127508] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
98 Zhu GY, Liu YH, Liu W, Huang XQ, Zhang B, Zheng ZL, Wei X, Xu JZ, Zhao ZH. Surface Epitaxial Nano-Topography Facilitates Biomineralization to Promote Osteogenic Differentiation and Osteogenesis. ACS Omega 2021;6:21792-800. [PMID: 34471781 DOI: 10.1021/acsomega.1c03462] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
99 Sasaki JI, Abe GL, Li A, Matsumoto T, Imazato S. Large three-dimensional cell constructs for tissue engineering. Sci Technol Adv Mater 2021;22:571-82. [PMID: 34408551 DOI: 10.1080/14686996.2021.1945899] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
100 Guo Y, Liu Y, Shi C, Wu T, Cui Y, Wang S, Liu P, Feng X, He Y, Fu D. Remote-controllable bone-targeted delivery of estradiol for the treatment of ovariectomy-induced osteoporosis in rats. J Nanobiotechnology 2021;19:248. [PMID: 34407835 DOI: 10.1186/s12951-021-00976-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
101 Zhou X, Zha M, Cao J, Yan H, Feng X, Chen D, Yang C. Glycolic Acid Production from Ethylene Glycol via Sustainable Biomass Energy: Integrated Conceptual Process Design and Comparative Techno-economic–Society–Environment Analysis. ACS Sustainable Chem Eng 2021;9:10948-62. [DOI: 10.1021/acssuschemeng.1c03717] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
102 Nifant'ev I, Gavrilov D, Tavtorkin A, Chinova M, Besprozvannykh V, Komarov P, Zaitsev V, Podoprigora I, Ivchenko P. Antibacterial Poly(ε-CL)/Hydroxyapatite Electrospun Fibers Reinforced by Poly(ε-CL)-b-poly(ethylene phosphoric acid). Int J Mol Sci 2021;22:7690. [PMID: 34299308 DOI: 10.3390/ijms22147690] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
103 Li H, Li P, Yang Z, Gao C, Fu L, Liao Z, Zhao T, Cao F, Chen W, Peng Y, Yuan Z, Sui X, Liu S, Guo Q. Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front Cell Dev Biol 2021;9:661802. [PMID: 34327197 DOI: 10.3389/fcell.2021.661802] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
104 Martinez T, Sarda S, Dupret-Bories A, Charvillat C, Projetti F, Drouet C. Toward a doxorubicin-loaded bioinspired bone cement for the localized treatment of osteosarcoma. Future Oncol 2021;17:3511-28. [PMID: 34213375 DOI: 10.2217/fon-2021-0128] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
105 Li R, Sun Y, Cai Z, Li Y, Sun J, Bi W, Yang F, Zhou Q, Ye T, Yu Y. Highly bioactive peptide-HA photo-crosslinking hydrogel for sustained promoting bone regeneration. Chemical Engineering Journal 2021;415:129015. [DOI: 10.1016/j.cej.2021.129015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
106 Xing J, Peng X, Li A, Chen M, Ding Y, Xu X, Yu P, Xie J, Li J. Gellan gum/alginate-based Ca-enriched acellular bilayer hydrogel with robust interface bonding for effective osteochondral repair. Carbohydr Polym 2021;270:118382. [PMID: 34364624 DOI: 10.1016/j.carbpol.2021.118382] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
107 Wu B, Yuan Y, Liu J, Shang H, Dong J, Liang X, Wang D, Chen Y, Wang C, Zhou Y, Jing H, Cheng W. Single-cell RNA sequencing reveals the mechanism of sonodynamic therapy combined with a RAS inhibitor in the setting of hepatocellular carcinoma. J Nanobiotechnology 2021;19:177. [PMID: 34118951 DOI: 10.1186/s12951-021-00923-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
108 Su X, Xian C, Gao M, Liu G, Wu J. Edible Materials in Tissue Regeneration. Macromol Biosci 2021;21:e2100114. [PMID: 34117831 DOI: 10.1002/mabi.202100114] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
109 Tian B, Wang N, Jiang Q, Tian L, Hu L, Zhang Z. The immunogenic reaction and bone defect repair function of ε-poly-L-lysine (EPL)-coated nanoscale PCL/HA scaffold in rabbit calvarial bone defect. J Mater Sci Mater Med 2021;32:63. [PMID: 34097140 DOI: 10.1007/s10856-021-06533-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
110 Haider MK, Sun L, Ullah A, Ullah S, Suzuki Y, Park S, Kato Y, Tamada Y, Kim IS. Polyacrylonitrile/Carbon Black nanoparticle/Nano-Hydroxyapatite (PAN/nCB/HA) composite nanofibrous matrix as a potential biomaterial scaffold for bone regenerative applications. Materials Today Communications 2021;27:102259. [DOI: 10.1016/j.mtcomm.2021.102259] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
111 Jin S, Xia X, Huang J, Yuan C, Zuo Y, Li Y, Li J. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater 2021;127:56-79. [PMID: 33831569 DOI: 10.1016/j.actbio.2021.03.067] [Cited by in Crossref: 37] [Cited by in F6Publishing: 24] [Article Influence: 37.0] [Reference Citation Analysis]
112 Rui L, Yang M, Zhu D, Han W, Dang X. High-modulus nanocomposite scaffold based on waterborne polyurethane grafted collagen polypeptide/hydroxyapatite for potential bone healing. Materials Today Communications 2021;27:102222. [DOI: 10.1016/j.mtcomm.2021.102222] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
113 Xing F, Chi Z, Yang R, Xu D, Cui J, Huang Y, Zhou C, Liu C. Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration. Int J Biol Macromol 2021;184:170-80. [PMID: 34052273 DOI: 10.1016/j.ijbiomac.2021.05.019] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
114 Liu Y, Liu W, Zheng Z, Wei X, Shah NA, Lin H, Zhao B, Huang S, Xu J, Li Z. Fabrication of Highly Anisotropic and Interconnected Porous Scaffolds to Promote Preosteoblast Proliferation for Bone Tissue Engineering. Chin J Polym Sci 2021;39:1191-9. [DOI: 10.1007/s10118-021-2573-4] [Reference Citation Analysis]
115 Wu X, Wang X, Chen X, Yang X, Ma Q, Xu G, Yu L, Ding J. Injectable and thermosensitive hydrogels mediating a universal macromolecular contrast agent with radiopacity for noninvasive imaging of deep tissues. Bioact Mater 2021;6:4717-28. [PMID: 34136722 DOI: 10.1016/j.bioactmat.2021.05.013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 18.0] [Reference Citation Analysis]
116 Qu X, Yang H, Jia B, Wang M, Yue B, Zheng Y, Dai K. Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties. Bioact Mater 2021;6:4607-24. [PMID: 34095620 DOI: 10.1016/j.bioactmat.2021.05.023] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
117 Yuan S, Shen Y, Li Z. Injectable Cell- and Growth Factor-Free Poly(4-hydroxybutyrate) (P4HB) Microspheres with Open Porous Structures and Great Efficiency of Promoting Bone Regeneration. ACS Appl Bio Mater 2021;4:4432-40. [PMID: 35006855 DOI: 10.1021/acsabm.1c00188] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
118 Abdollahiyan P, Oroojalian F, Hejazi M, de la Guardia M, Mokhtarzadeh A. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. Journal of Controlled Release 2021;333:391-417. [DOI: 10.1016/j.jconrel.2021.04.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
119 Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y, Liu J, Wang Y, Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021;6:4110-40. [PMID: 33997497 DOI: 10.1016/j.bioactmat.2021.03.043] [Cited by in Crossref: 55] [Cited by in F6Publishing: 60] [Article Influence: 55.0] [Reference Citation Analysis]
120 Balbinot GS, Bahlis EADC, Visioli F, Leitune VCB, Soares RMD, Collares FM. Polybutylene-adipate-terephthalate and niobium-containing bioactive glasses composites: Development of barrier membranes with adjusted properties for guided bone regeneration. Mater Sci Eng C Mater Biol Appl 2021;125:112115. [PMID: 33965098 DOI: 10.1016/j.msec.2021.112115] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
121 Oizumi I, Hamai R, Shiwaku Y, Mori Y, Anada T, Baba K, Miyatake N, Hamada S, Tsuchiya K, Nishimura SN, Itoi E, Suzuki O. Impact of simultaneous hydrolysis of OCP and PLGA on bone induction of a PLGA-OCP composite scaffold in a rat femoral defect. Acta Biomater 2021;124:358-73. [PMID: 33556607 DOI: 10.1016/j.actbio.2021.01.048] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
122 Abdollahiyan P, Oroojalian F, Mokhtarzadeh A. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. Journal of Controlled Release 2021;332:460-92. [DOI: 10.1016/j.jconrel.2021.02.036] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 22.0] [Reference Citation Analysis]
123 Ruiz-Alonso S, Lafuente-Merchan M, Ciriza J, Saenz-Del-Burgo L, Pedraz JL. Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques. J Control Release 2021;333:448-86. [PMID: 33811983 DOI: 10.1016/j.jconrel.2021.03.040] [Cited by in Crossref: 26] [Cited by in F6Publishing: 33] [Article Influence: 26.0] [Reference Citation Analysis]
124 Gao J, Huang J, Shi R, Wei J, Lei X, Dou Y, Li Y, Zuo Y, Li J. Loading and Releasing Behavior of Selenium and Doxorubicin Hydrochloride in Hydroxyapatite with Different Morphologies. ACS Omega 2021;6:8365-75. [PMID: 33817497 DOI: 10.1021/acsomega.1c00092] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
125 Li J, Liu Y, Zhang Y, Yao B, Enhejirigala, Li Z, Song W, Wang Y, Duan X, Yuan X, Fu X, Huang S. Biophysical and Biochemical Cues of Biomaterials Guide Mesenchymal Stem Cell Behaviors. Front Cell Dev Biol 2021;9:640388. [PMID: 33842464 DOI: 10.3389/fcell.2021.640388] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
126 Gwon K, Kim Y, Cho H, Lee S, Yang SH, Kim SJ, Lee DN. Robust Copper Metal-Organic Framework-Embedded Polysiloxanes for Biomedical Applications: Its Antibacterial Effects on MRSA and In Vitro Cytotoxicity. Nanomaterials (Basel) 2021;11:719. [PMID: 33809285 DOI: 10.3390/nano11030719] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
127 Amiryaghoubi N, Fathi M, Barzegari A, Barar J, Omidian H, Omidi Y. Recent advances in polymeric scaffolds containing carbon nanotube and graphene oxide for cartilage and bone regeneration. Materials Today Communications 2021;26:102097. [DOI: 10.1016/j.mtcomm.2021.102097] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
128 Jiang S, Tian G, Yang Z, Gao X, Wang F, Li J, Tian Z, Huang B, Wei F, Sang X, Shao L, Zhou J, Wang Z, Liu S, Sui X, Guo Q, Guo W, Li X. Enhancement of acellular cartilage matrix scaffold by Wharton's jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration. Bioact Mater 2021;6:2711-28. [PMID: 33665503 DOI: 10.1016/j.bioactmat.2021.01.031] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 42.0] [Reference Citation Analysis]
129 Shen H, Hu X. Growth factor loading on aliphatic polyester scaffolds. RSC Adv 2021;11:6735-47. [PMID: 35423177 DOI: 10.1039/d0ra10232f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
130 Chinta ML, Velidandi A, Pabbathi NPP, Dahariya S, Parcha SR. Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review. Int J Biol Macromol 2021;175:495-515. [PMID: 33539959 DOI: 10.1016/j.ijbiomac.2021.01.196] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
131 Yeo T, Ko Y, Kim EJ, Kwon OK, Chung HY, Kwon OH. Promoting bone regeneration by 3D-printed poly(glycolic acid)/hydroxyapatite composite scaffolds. Journal of Industrial and Engineering Chemistry 2021;94:343-51. [DOI: 10.1016/j.jiec.2020.11.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 23.0] [Reference Citation Analysis]
132 Shi H, Zhou Z, Li W, Fan Y, Li Z, Wei J. Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction. Crystals 2021;11:149. [DOI: 10.3390/cryst11020149] [Cited by in Crossref: 39] [Cited by in F6Publishing: 45] [Article Influence: 39.0] [Reference Citation Analysis]
133 Wu X, Li P, Cheng J, Xu Q, Lu B, Han C, Huo W. ROS-Sensitive Nanoparticles Co-delivering Dexamethasone and CDMP-1 for the Treatment of Osteoarthritis Through Chondrogenic Differentiation Induction and Inflammation Inhibition. Front Bioeng Biotechnol 2021;9:608150. [PMID: 33585431 DOI: 10.3389/fbioe.2021.608150] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
134 Rashia Begum S, Saravana Kumar M, Pruncu CI, Vasumathi M, Harikrishnan P. Optimization and Fabrication of Customized Scaffold Using Additive Manufacturing to Match the Property of Human Bone. J of Materi Eng and Perform 2021;30:4848-59. [DOI: 10.1007/s11665-020-05449-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
135 Tang Y, Luo K, Chen Y, Chen Y, Zhou R, Chen C, Tan J, Deng M, Dai Q, Yu X, Liu J, Zhang C, Wu W, Xu J, Dong S, Luo F. Phosphorylation inhibition of protein-tyrosine phosphatase 1B tyrosine-152 induces bone regeneration coupled with angiogenesis for bone tissue engineering. Bioact Mater 2021;6:2039-57. [PMID: 33511306 DOI: 10.1016/j.bioactmat.2020.12.025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
136 Yan Z, Chen W, Jin W, Sun Y, Cai J, Gu K, Mi R, Chen N, Chen S, Shao Z. An interference screw made using a silk fibroin-based bulk material with high content of hydroxyapatite for anterior cruciate ligament reconstruction in a rabbit model. J Mater Chem B 2021;9:5352-64. [PMID: 34152356 DOI: 10.1039/d1tb01006a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
137 Ding Z, Pan X, Wang X, Xie H, Ye Q. Interactions between induced pluripotent stem cells and stem cell niche augment osteogenesis and bone regeneration. Smart Materials in Medicine 2021;2:196-208. [DOI: 10.1016/j.smaim.2021.07.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
138 Zmejkoski DZ, Marković ZM, Zdravković NM, Trišić DD, Budimir MD, Kuzman SB, Kozyrovska NO, Orlovska IV, Bugárová N, Petrović ĐŽ, Kováčová M, Kleinová A, Špitalský Z, Pavlović VB, Todorović Marković BM. Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent. RSC Adv 2021;11:8559-68. [DOI: 10.1039/d0ra10782d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
139 Guan F, Wang Q, Bao Y, Chao Y. Anti-rheumatic effect of quercetin and recent developments in nano formulation. RSC Adv 2021;11:7280-93. [DOI: 10.1039/d0ra08817j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
140 Dou Y, Huang J, Xia X, Wei J, Zou Q, Zuo Y, Li J, Li Y. A hierarchical scaffold with a highly pore-interconnective 3D printed PLGA/n-HA framework and an extracellular matrix like gelatin network filler for bone regeneration. J Mater Chem B 2021;9:4488-501. [PMID: 34019618 DOI: 10.1039/d1tb00662b] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
141 Shi S, Yin H, Zheng G, Su K, Gao S, Liao G, Liu W, Zheng Z, Xu J, Li X. Promoted Bone Regeneration by 3D-Printed Porous Scaffolds with the Synergy of a Nanotopological Morphology and Amino Modification. ACS Appl Bio Mater 2020;3:8627-8639. [DOI: 10.1021/acsabm.0c01024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
142 Yuan B, Wang Z, Zhao Y, Tang Y, Zhou S, Sun Y, Chen X. In Vitro and In Vivo Study of a Novel Nanoscale Demineralized Bone Matrix Coated PCL/β-TCP Scaffold for Bone Regeneration. Macromol Biosci 2021;21:e2000336. [PMID: 33346401 DOI: 10.1002/mabi.202000336] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
143 Ma Z, Zhao X, Zhao J, Zhao Z, Wang Q, Zhang C. Biologically Modified Polyether Ether Ketone as Dental Implant Material. Front Bioeng Biotechnol 2020;8:620537. [PMID: 33392178 DOI: 10.3389/fbioe.2020.620537] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
144 Ding H, Cheng Y, Niu X, Hu Y. Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering. J Biomater Sci Polym Ed 2021;32:536-61. [PMID: 33175667 DOI: 10.1080/09205063.2020.1849922] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
145 Dubey S, Mishra R, Roy P, Singh RP. 3-D macro/microporous-nanofibrous bacterial cellulose scaffolds seeded with BMP-2 preconditioned mesenchymal stem cells exhibit remarkable potential for bone tissue engineering. Int J Biol Macromol 2021;167:934-46. [PMID: 33189758 DOI: 10.1016/j.ijbiomac.2020.11.049] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
146 Patel M, Koh WG. Composite Hydrogel of Methacrylated Hyaluronic Acid and Fragmented Polycaprolactone Nanofiber for Osteogenic Differentiation of Adipose-Derived Stem Cells. Pharmaceutics 2020;12:E902. [PMID: 32971914 DOI: 10.3390/pharmaceutics12090902] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]