BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Y, Yang WQ, Zhu H, Qian YY, Zhou L, Ren YJ, Ren XC, Zhang L, Liu XP, Liu CG, Ming ZJ, Li B, Chen B, Wang JR, Liu YB, Yang JM. Regulation of autophagy by miR-30d impacts sensitivity of anaplastic thyroid carcinoma to cisplatin. Biochem Pharmacol 2014;87:562-70. [PMID: 24345332 DOI: 10.1016/j.bcp.2013.12.004] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Lin Z, Chen G, Zhang Y, He H, Liang Y, Ye J, Liang Y, Mo R, Lu J, Zhuo Y, Zheng Y, Jiang F, Han Z, Wu S, Zhong W, Wu C. MicroRNA-30d promotes angiogenesis and tumor growth via MYPT1/c-JUN/VEGFA pathway and predicts aggressive outcome in prostate cancer. Mol Cancer 2017;16. [DOI: 10.1186/s12943-017-0615-x] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 9.2] [Reference Citation Analysis]
2 Sinha RA, Singh BK, Yen PM. Reciprocal Crosstalk Between Autophagic and Endocrine Signaling in Metabolic Homeostasis. Endocr Rev 2017;38:69-102. [PMID: 27901588 DOI: 10.1210/er.2016-1103] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
3 Saini S, Maker AV, Burman KD, Prabhakar BS. Molecular aberrations and signaling cascades implicated in the pathogenesis of anaplastic thyroid cancer. Biochim Biophys Acta Rev Cancer 2019;1872:188262. [PMID: 30605717 DOI: 10.1016/j.bbcan.2018.12.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
4 Ye C, Yu X, Liu X, Dai M, Zhang B. miR-30d inhibits cell biological progression of Ewing's sarcoma by suppressing the MEK/ERK and PI3K/Akt pathways in vitro. Oncol Lett 2018;15:4390-6. [PMID: 29541208 DOI: 10.3892/ol.2018.7900] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
5 Chen L, Han X, Hu Z, Chen L. The PVT1/miR-216b/Beclin-1 regulates cisplatin sensitivity of NSCLC cells via modulating autophagy and apoptosis. Cancer Chemother Pharmacol 2019;83:921-31. [DOI: 10.1007/s00280-019-03808-3] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 12.0] [Reference Citation Analysis]
6 Chen L, Zhou Y, Sun Q, Zhou J, Pan H, Sui X. Regulation of Autophagy by MiRNAs and Their Emerging Roles in Tumorigenesis and Cancer Treatment. Int Rev Cell Mol Biol 2017;334:1-26. [PMID: 28838537 DOI: 10.1016/bs.ircmb.2017.03.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
7 Shao M, Geng Y, Lu P, Xi Y, Wei S, Wang L, Fan Q, Ma W. REMOVED: miR-4295 promotes cell proliferation and invasion in anaplastic thyroid carcinoma via CDKN1A. Biochemical and Biophysical Research Communications 2015;464:1309-13. [DOI: 10.1016/j.bbrc.2015.07.128] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
8 Boufraqech M, Nilubol N. Multi-omics Signatures and Translational Potential to Improve Thyroid Cancer Patient Outcome. Cancers (Basel) 2019;11:E1988. [PMID: 31835496 DOI: 10.3390/cancers11121988] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
9 Pan B, Feng B, Chen Y, Huang G, Wang R, Chen L, Song H. MiR-200b regulates autophagy associated with chemoresistance in human lung adenocarcinoma. Oncotarget 2015;6:32805-20. [PMID: 26416454 DOI: 10.18632/oncotarget.5352] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 7.3] [Reference Citation Analysis]
10 Lv J, Li S, Wan T, Yang Y, Cheng Y, Xue R. Inhibition of microRNA-30d attenuates the apoptosis and extracellular matrix degradation of degenerative human nucleus pulposus cells by up-regulating SOX9. Chemico-Biological Interactions 2018;296:89-97. [DOI: 10.1016/j.cbi.2018.09.010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
11 Xu X, Zong K, Wang X, Dou D, Lv P, Zhang Z, Li H. miR-30d suppresses proliferation and invasiveness of pancreatic cancer by targeting the SOX4/PI3K-AKT axis and predicts poor outcome. Cell Death Dis 2021;12:350. [PMID: 33824274 DOI: 10.1038/s41419-021-03576-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Biersack B. Interactions between anticancer active platinum complexes and non-coding RNAs/microRNAs. Noncoding RNA Res 2017;2:1-17. [PMID: 30159416 DOI: 10.1016/j.ncrna.2016.10.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
13 Zhao J, Nie Y, Wang H, Lin Y. MiR-181a suppresses autophagy and sensitizes gastric cancer cells to cisplatin. Gene. 2016;576:828-833. [PMID: 26589846 DOI: 10.1016/j.gene.2015.11.013] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 8.3] [Reference Citation Analysis]
14 Wang S, Li MY, Liu Y, Vlantis AC, Chan JY, Xue L, Hu BG, Yang S, Chen MX, Zhou S, Guo W, Zeng X, Qiu S, van Hasselt CA, Tong MC, Chen GG. The role of microRNA in cisplatin resistance or sensitivity. Expert Opin Ther Targets. 2020;24:885-897. [PMID: 32559147 DOI: 10.1080/14728222.2020.1785431] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
15 Hu YJ, Zhong JT, Gong L, Zhang SC, Zhou SH. Autophagy-Related Beclin 1 and Head and Neck Cancers. Onco Targets Ther 2020;13:6213-27. [PMID: 32669852 DOI: 10.2147/OTT.S256072] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Zhang Y, Meng X, Li C, Tan Z, Guo X, Zhang Z, Xi T. MiR-9 enhances the sensitivity of A549 cells to cisplatin by inhibiting autophagy. Biotechnol Lett 2017;39:959-66. [PMID: 28337557 DOI: 10.1007/s10529-017-2325-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
17 Gozuacik D, Akkoc Y, Ozturk DG, Kocak M. Autophagy-Regulating microRNAs and Cancer. Front Oncol 2017;7:65. [PMID: 28459042 DOI: 10.3389/fonc.2017.00065] [Cited by in Crossref: 81] [Cited by in F6Publishing: 85] [Article Influence: 16.2] [Reference Citation Analysis]
18 Ogunwobi OO, Kumar A. Chemoresistance Mediated by ceRNA Networks Associated With the PVT1 Locus. Front Oncol 2019;9:834. [PMID: 31508377 DOI: 10.3389/fonc.2019.00834] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
19 Ergun S, Oztuzcu S. Computational analysis of 3'UTR region of CASP3 with respect to miRSNPs and SNPs in targetting miRNAs. Comput Biol Chem 2014;53PB:235-41. [PMID: 25462332 DOI: 10.1016/j.compbiolchem.2014.10.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
20 Boufraqech M, Klubo-Gwiezdzinska J, Kebebew E. MicroRNAs in the thyroid. Best Pract Res Clin Endocrinol Metab 2016;30:603-19. [PMID: 27923454 DOI: 10.1016/j.beem.2016.10.001] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
21 Yu X, Luo A, Liu Y, Wang S, Li Y, Shi W, Liu Z, Qu X. MiR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy. Mol Cancer 2015;14:208. [PMID: 26666173 DOI: 10.1186/s12943-015-0480-4] [Cited by in Crossref: 57] [Cited by in F6Publishing: 54] [Article Influence: 8.1] [Reference Citation Analysis]
22 Chakrabarti M, Klionsky DJ, Ray SK. miR-30e Blocks Autophagy and Acts Synergistically with Proanthocyanidin for Inhibition of AVEN and BIRC6 to Increase Apoptosis in Glioblastoma Stem Cells and Glioblastoma SNB19 Cells. PLoS One 2016;11:e0158537. [PMID: 27388765 DOI: 10.1371/journal.pone.0158537] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
23 Zhao F, Qu Y, Wang H, Huang L, Zhu J, Li S, Tong Y, Zhang L, Li J, Mu D. The effect of miR-30d on apoptosis and autophagy in cultured astrocytes under oxygen-glucose deprivation. Brain Research 2017;1671:67-76. [DOI: 10.1016/j.brainres.2017.06.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
24 Li Z, Jiang X, Chen P, Wu X, Duan A, Qin Y. Combined effects of octreotide and cisplatin on the proliferation of side population cells from anaplastic thyroid cancer cell lines. Oncol Lett 2018;16:4033-42. [PMID: 30128025 DOI: 10.3892/ol.2018.9105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
25 Kume K, Iwama H, Deguchi K, Ikeda K, Takata T, Kokudo Y, Kamada M, Fujikawa K, Hirose K, Masugata H, Touge T, Masaki T. Serum microRNA expression profiling in patients with multiple system atrophy. Mol Med Rep 2018;17:852-60. [PMID: 29115515 DOI: 10.3892/mmr.2017.7995] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
26 Weckman A, Rotondo F, Di Ieva A, Syro LV, Butz H, Cusimano MD, Kovacs K. Autophagy in endocrine tumors. Endocr Relat Cancer 2015;22:R205-18. [PMID: 25947570 DOI: 10.1530/ERC-15-0042] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 3.1] [Reference Citation Analysis]
27 Smith N, Nucera C. Personalized therapy in patients with anaplastic thyroid cancer: targeting genetic and epigenetic alterations. J Clin Endocrinol Metab 2015;100:35-42. [PMID: 25347569 DOI: 10.1210/jc.2014-2803] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 6.9] [Reference Citation Analysis]
28 Yao D, Jiang Y, Gao S, Shang L, Zhao Y, Huang J, Wang J, Yang S, Chen L. Deconvoluting the complexity of microRNAs in autophagy to improve potential cancer therapy. Cell Prolif 2016;49:541-53. [PMID: 27436709 DOI: 10.1111/cpr.12277] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
29 Jing Z, Han W, Sui X, Xie J, Pan H. Interaction of autophagy with microRNAs and their potential therapeutic implications in human cancers. Cancer Lett 2015;356:332-8. [PMID: 25304373 DOI: 10.1016/j.canlet.2014.09.039] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 7.5] [Reference Citation Analysis]
30 Fuziwara CS, Kimura ET. MicroRNA Deregulation in Anaplastic Thyroid Cancer Biology. Int J Endocrinol 2014;2014:743450. [PMID: 25202329 DOI: 10.1155/2014/743450] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 5.4] [Reference Citation Analysis]
31 Wei W, Hardin H, Luo Q. Targeting autophagy in thyroid cancers. Endocrine-Related Cancer 2019;26:R181-94. [DOI: 10.1530/erc-18-0502] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
32 Jing Y, Liang W, Liu J, Zhang L, Wei J, Yang J, Zhang Y, Huang Z. Autophagy-mediating microRNAs in cancer chemoresistance. Cell Biol Toxicol 2020;36:517-36. [PMID: 32875398 DOI: 10.1007/s10565-020-09553-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
33 Zhuang H, Wu F, Wei W, Dang Y, Yang B, Ma X, Han F, Li Y. Glycine decarboxylase induces autophagy and is downregulated by miRNA-30d-5p in hepatocellular carcinoma. Cell Death Dis 2019;10:192. [PMID: 30804330 DOI: 10.1038/s41419-019-1446-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
34 Zarkesh M, Zadeh-Vakili A, Azizi F, Foroughi F, Akhavan MM, Hedayati M. Altered Epigenetic Mechanisms in Thyroid Cancer Subtypes. Mol Diagn Ther 2018;22:41-56. [PMID: 28986854 DOI: 10.1007/s40291-017-0303-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
35 Hu C, Kang Z, Guo L, Qu F, Qu R. The Role of LINC00284 in the Development of Thyroid Cancer via Its Regulation of the MicroRNA-30d-5p-Mediated ADAM12/Notch Axis. Front Oncol 2021;11:643039. [PMID: 34490077 DOI: 10.3389/fonc.2021.643039] [Reference Citation Analysis]
36 Liu J, Feng L, Zhang H, Zhang J, Zhang Y, Li S, Qin L, Yang Z, Xiong J. Effects of miR-144 on the sensitivity of human anaplastic thyroid carcinoma cells to cisplatin by autophagy regulation. Cancer Biol Ther 2018;19:484-96. [PMID: 29504819 DOI: 10.1080/15384047.2018.1433502] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
37 Xu Y, Han YF, Ye B, Zhang YL, Dong JD, Zhu SJ, Chen J. miR-27b-3p is Involved in Doxorubicin Resistance of Human Anaplastic Thyroid Cancer Cells via Targeting Peroxisome Proliferator-Activated Receptor Gamma. Basic Clin Pharmacol Toxicol 2018;123:670-7. [PMID: 29924913 DOI: 10.1111/bcpt.13076] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
38 Yan L, Qiu J, Yao J. Downregulation of microRNA-30d promotes cell proliferation and invasion by targeting LRH-1 in colorectal carcinoma. Int J Mol Med 2017;39:1371-80. [PMID: 28440426 DOI: 10.3892/ijmm.2017.2958] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
39 Prete A, Matrone A, Gambale C, Torregrossa L, Minaldi E, Romei C, Ciampi R, Molinaro E, Elisei R. Poorly Differentiated and Anaplastic Thyroid Cancer: Insights into Genomics, Microenvironment and New Drugs. Cancers (Basel) 2021;13:3200. [PMID: 34206867 DOI: 10.3390/cancers13133200] [Reference Citation Analysis]
40 Pourhanifeh MH, Vosough M, Mahjoubin-tehran M, Hashemipour M, Nejati M, Abbasi-kolli M, Sahebkar A, Mirzaei H. Autophagy-related microRNAs: Possible regulatory roles and therapeutic potential in and gastrointestinal cancers. Pharmacological Research 2020;161:105133. [DOI: 10.1016/j.phrs.2020.105133] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
41 López JA, López AJG. MiRNAs in Cervical Cancer Radio- and Chemotherapy Response. In: Rajkumar R, editor. Colposcopy and Cervical Pathology. InTech; 2017. [DOI: 10.5772/68010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
42 Akkoc Y, Gozuacik D. MicroRNAs as major regulators of the autophagy pathway. Biochim Biophys Acta Mol Cell Res 2020;1867:118662. [PMID: 32001304 DOI: 10.1016/j.bbamcr.2020.118662] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
43 Zangouei AS, Moghbeli M. MicroRNAs as the critical regulators of cisplatin resistance in gastric tumor cells. Genes Environ 2021;43:21. [PMID: 34099061 DOI: 10.1186/s41021-021-00192-4] [Reference Citation Analysis]
44 Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M. Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 2015;11:867-80. [PMID: 25836756 DOI: 10.1080/15548627.2015.1034410] [Cited by in Crossref: 172] [Cited by in F6Publishing: 165] [Article Influence: 28.7] [Reference Citation Analysis]
45 Pishkari S, Paryan M, Hashemi M, Baldini E, Mohammadi-yeganeh S. The role of microRNAs in different types of thyroid carcinoma: a comprehensive analysis to find new miRNA supplementary therapies. J Endocrinol Invest 2018;41:269-83. [DOI: 10.1007/s40618-017-0735-6] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 6.4] [Reference Citation Analysis]
46 Han B, Yang X, Hosseini DK, Luo P, Liu M, Xu X, Zhang Y, Su H, Zhou T, Sun H, Chen X. Development and validation of a survival model for thyroid carcinoma based on autophagy-associated genes. Aging (Albany NY) 2020;12:19129-46. [PMID: 33055358 DOI: 10.18632/aging.103715] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Li Y, Zhang J, Liu Y, Zhang B, Zhong F, Wang S, Fang Z. MiR-30a-5p confers cisplatin resistance by regulating IGF1R expression in melanoma cells. BMC Cancer 2018;18:404. [PMID: 29642855 DOI: 10.1186/s12885-018-4233-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
48 Barnwal SK, Bendale H, Banerjee S. Non-coding RNAs associated with autophagy and their regulatory role in cancer therapeutics. Mol Biol Rep 2022. [PMID: 35534587 DOI: 10.1007/s11033-022-07517-8] [Reference Citation Analysis]
49 Zhang Z, Tian H, Miao Y, Feng X, Li Y, Wang H, Song X. Upregulation of p72 Enhances Malignant Migration and Invasion of Glioma Cells by Repressing Beclin1 Expression. Biochemistry (Mosc). 2016;81:574-582. [PMID: 27301285 DOI: 10.1134/s0006297916060031] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
50 Zhang R, Xu J, Zhao J, Bai J. Mir-30d suppresses cell proliferation of colon cancer cells by inhibiting cell autophagy and promoting cell apoptosis. Tumour Biol 2017;39:101042831770398. [DOI: 10.1177/1010428317703984] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
51 Zhu G, Xie L, Miller D. Expression of MicroRNAs in Thyroid Carcinoma. In: Huang J, Borchert GM, Dou D, Huan J, Lan W, Tan M, Wu B, editors. Bioinformatics in MicroRNA Research. New York: Springer; 2017. pp. 261-80. [DOI: 10.1007/978-1-4939-7046-9_19] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
52 Han X, Zhen S, Ye Z, Lu J, Wang L, Li P, Li J, Zheng X, Li H, Chen W, Li X, Zhao L. A Feedback Loop Between miR-30a/c-5p and DNMT1 Mediates Cisplatin Resistance in Ovarian Cancer Cells. Cell Physiol Biochem. 2017;41:973-986. [PMID: 28222434 DOI: 10.1159/000460618] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
53 Yin Y, Huang J, Shi H, Huang Y, Huang Z, Song M, Yin L, Zhong WL. LINC01087 Promotes the Proliferation, Migration, and Invasion of Thyroid Cancer Cells by Upregulating PPM1E. Journal of Oncology 2022;2022:1-12. [DOI: 10.1155/2022/7787378] [Reference Citation Analysis]
54 Cervantes-Anaya N, Ponciano-Gómez A, López-Álvarez GS, Gonzalez-Reyes C, Hernández-Garcia S, Cabañas-Cortes MA, Garrido-Guerrero JE, Villa-Treviño S. Downregulation of sorting nexin 10 is associated with overexpression of miR-30d during liver cancer progression in rats. Tumour Biol 2017;39:1010428317695932. [PMID: 28381192 DOI: 10.1177/1010428317695932] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
55 Yang Y, Liang C. MicroRNAs: an emerging player in autophagy. ScienceOpen Res 2015;2015. [PMID: 26744638 DOI: 10.14293/S2199-1006.1.SOR-LIFE.A181CU.v1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
56 Liu Y, Zhang B, Shi T, Qin H. miR-182 promotes tumor growth and increases chemoresistance of human anaplastic thyroid cancer by targeting tripartite motif 8. Onco Targets Ther 2017;10:1115-22. [PMID: 28280352 DOI: 10.2147/OTT.S110468] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 4.4] [Reference Citation Analysis]
57 Wang S, Wu J, Ren J, Vlantis AC, Li MY, Liu SYW, Ng EKW, Chan ABW, Luo DC, Liu Z, Guo W, Xue L, Ng SK, van Hasselt CA, Tong MCF, Chen GG. MicroRNA-125b Interacts with Foxp3 to Induce Autophagy in Thyroid Cancer. Mol Ther 2018;26:2295-303. [PMID: 30005868 DOI: 10.1016/j.ymthe.2018.06.015] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 5.3] [Reference Citation Analysis]
58 Yin Q, Feng W, Shen X, Ju S. Regulatory effects of lncRNAs and miRNAs on autophagy in malignant tumorigenesis. Biosci Rep 2018;38:BSR20180516. [PMID: 30266744 DOI: 10.1042/BSR20180516] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
59 Sasanakietkul T, Murtha TD, Javid M, Korah R, Carling T. Epigenetic modifications in poorly differentiated and anaplastic thyroid cancer. Mol Cell Endocrinol. 2018;469:23-37. [PMID: 28552796 DOI: 10.1016/j.mce.2017.05.022] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
60 Liu PF, Farooqi AA, Peng SY, Yu TJ, Dahms HU, Lee CH, Tang JY, Wang SC, Shu CW, Chang HW. Regulatory effects of noncoding RNAs on the interplay of oxidative stress and autophagy in cancer malignancy and therapy. Semin Cancer Biol 2020:S1044-579X(20)30214-5. [PMID: 33127466 DOI: 10.1016/j.semcancer.2020.10.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
61 An X, Sarmiento C, Tan T, Zhu H. Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharm Sin B 2017;7:38-51. [PMID: 28119807 DOI: 10.1016/j.apsb.2016.09.002] [Cited by in Crossref: 88] [Cited by in F6Publishing: 92] [Article Influence: 14.7] [Reference Citation Analysis]
62 Mu Q, Lv Y, Luo C, Liu X, Huang C, Xiu Y, Tang L. Research Progress on the Functions and Mechanism of circRNA in Cisplatin Resistance in Tumors. Front Pharmacol 2021;12:709324. [PMID: 34566636 DOI: 10.3389/fphar.2021.709324] [Reference Citation Analysis]