BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Siegel D, Yan C, Ross D. NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem Pharmacol 2012;83:1033-40. [PMID: 22209713 DOI: 10.1016/j.bcp.2011.12.017] [Cited by in Crossref: 181] [Cited by in F6Publishing: 170] [Article Influence: 16.5] [Reference Citation Analysis]
Number Citing Articles
1 Megarity CF, Timson DJ. Cancer-associated variants of human NQO1: impacts on inhibitor binding and cooperativity. Biosci Rep 2019;39:BSR20191874. [PMID: 31431515 DOI: 10.1042/BSR20191874] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
2 Trendowski M. PU-H71: An improvement on nature's solutions to oncogenic Hsp90 addiction. Pharmacological Research 2015;99:202-16. [DOI: 10.1016/j.phrs.2015.06.007] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.9] [Reference Citation Analysis]
3 Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P, Izzo J, Behrens C, Kadara H, Parra ER, Canales JR. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 2015;5:860-877. [PMID: 26069186 DOI: 10.1158/2159-8290.cd-14-1236] [Cited by in Crossref: 385] [Cited by in F6Publishing: 259] [Article Influence: 55.0] [Reference Citation Analysis]
4 Arakawa N, Okubo A, Yasuhira S, Takahashi K, Amano H, Akasaka T, Masuda T, Shibazaki M, Maesawa C. Carnosic acid, an inducer of NAD(P)H quinone oxidoreductase 1, enhances the cytotoxicity of β-lapachone in melanoma cell lines. Oncol Lett 2018;15:2393-400. [PMID: 29434949 DOI: 10.3892/ol.2017.7618] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
5 El Aissi R, Chezal JM, Tarrit S, Chavignon O, Moreau E. Melanoma-targeted delivery system (part 1): design, synthesis and evaluation of releasable disulfide drug by glutathione. Eur J Med Chem 2015;101:668-80. [PMID: 26210505 DOI: 10.1016/j.ejmech.2015.06.055] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
6 Glorieux C, Buc Calderon P. Cancer Cell Sensitivity to Redox-Cycling Quinones is Influenced by NAD(P)H: Quinone Oxidoreductase 1 Polymorphism. Antioxidants (Basel) 2019;8:E369. [PMID: 31480790 DOI: 10.3390/antiox8090369] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
7 Zhang H, Wen X, Lu X, Zhang H. Association between NAD(P)H:quinone oxidoreductase 1 rs1800566 polymorphism and risk of bladder cancer. Tumour Biol 2013;34:3377-81. [PMID: 23873104 DOI: 10.1007/s13277-013-0909-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
8 Seol SI, Kim HJ, Choi EB, Kang IS, Lee HK, Lee JK, Kim C. Taurine Protects against Postischemic Brain Injury via the Antioxidant Activity of Taurine Chloramine. Antioxidants (Basel) 2021;10:372. [PMID: 33801397 DOI: 10.3390/antiox10030372] [Reference Citation Analysis]
9 Yang Y, Zhang Y, Wu Q, Cui X, Lin Z, Liu S, Chen L. Clinical implications of high NQO1 expression in breast cancers. J Exp Clin Cancer Res. 2014;33:14. [PMID: 24499631 DOI: 10.1186/1756-9966-33-14] [Cited by in Crossref: 87] [Cited by in F6Publishing: 86] [Article Influence: 10.9] [Reference Citation Analysis]
10 Lucki NC, Villa GR, Vergani N, Bollong MJ, Beyer BA, Lee JW, Anglin JL, Spangenberg SH, Chin EN, Sharma A, Johnson K, Sander PN, Gordon P, Skirboll SL, Wurdak H, Schultz PG, Mischel PS, Lairson LL. A cell type-selective apoptosis-inducing small molecule for the treatment of brain cancer. Proc Natl Acad Sci U S A 2019;116:6435-40. [PMID: 30846550 DOI: 10.1073/pnas.1816626116] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
11 Wu JM, Oraee A, Doonan BB, Pinto JT, Hsieh TC. Activation of NQO1 in NQO1*2 polymorphic human leukemic HL-60 cells by diet-derived sulforaphane. Exp Hematol Oncol 2015;5:27. [PMID: 27625902 DOI: 10.1186/s40164-016-0056-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
12 da Silva Júnior EN, Jardim GAM, Jacob C, Dhawa U, Ackermann L, de Castro SL. Synthesis of quinones with highlighted biological applications: A critical update on the strategies towards bioactive compounds with emphasis on lapachones. Eur J Med Chem 2019;179:863-915. [PMID: 31306817 DOI: 10.1016/j.ejmech.2019.06.056] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
13 Peng Q, Lu Y, Lao X, Chen Z, Li R, Sui J, Qin X, Li S. The NQO1 Pro187Ser polymorphism and breast cancer susceptibility: evidence from an updated meta-analysis. Diagn Pathol 2014;9:100. [PMID: 24884893 DOI: 10.1186/1746-1596-9-100] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
14 Naulaerts S, Menden MP, Ballester PJ. Concise Polygenic Models for Cancer-Specific Identification of Drug-Sensitive Tumors from Their Multi-Omics Profiles. Biomolecules 2020;10:E963. [PMID: 32604779 DOI: 10.3390/biom10060963] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Liggi S, Drakakis G, Koutsoukas A, Cortes–ciriano I, Martínez–alonso P, Malliavin TE, Velazquez-campoy A, Brewerton SC, Bodkin MJ, Evans DA, Glen RC, Carrodeguas JA, Bender A. Extending in silico mechanism-of-action analysis by annotating targets with pathways: application to cellular cytotoxicity readouts. Future Medicinal Chemistry 2014;6:2029-56. [DOI: 10.4155/fmc.14.137] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
16 Parkinson EI, Bair JS, Cismesia M, Hergenrother PJ. Efficient NQO1 Substrates are Potent and Selective Anticancer Agents. ACS Chem Biol 2013;8:2173-83. [DOI: 10.1021/cb4005832] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 5.1] [Reference Citation Analysis]
17 Luo S, Lei K, Xiang D, Ye K. NQO1 Is Regulated by PTEN in Glioblastoma, Mediating Cell Proliferation and Oxidative Stress. Oxid Med Cell Longev 2018;2018:9146528. [PMID: 30595797 DOI: 10.1155/2018/9146528] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
18 Li G, Li Q, Sun H, Li W. Novel diosgenin-1,4-quinone hybrids: Synthesis, antitumor evaluation, and mechanism studies. J Steroid Biochem Mol Biol 2021;214:105993. [PMID: 34478831 DOI: 10.1016/j.jsbmb.2021.105993] [Reference Citation Analysis]
19 Oh ET, Park HJ. Implications of NQO1 in cancer therapy. BMB Rep 2015;48:609-17. [PMID: 26424559 DOI: 10.5483/bmbrep.2015.48.11.190] [Cited by in Crossref: 74] [Cited by in F6Publishing: 37] [Article Influence: 12.3] [Reference Citation Analysis]
20 Moder M, Velimezi G, Owusu M, Mazouzi A, Wiedner M, Ferreira da Silva J, Robinson-Garcia L, Schischlik F, Slavkovsky R, Kralovics R, Schuster M, Bock C, Ideker T, Jackson SP, Menche J, Loizou JI. Parallel genome-wide screens identify synthetic viable interactions between the BLM helicase complex and Fanconi anemia. Nat Commun 2017;8:1238. [PMID: 29089570 DOI: 10.1038/s41467-017-01439-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
21 Hegedűs C, Kovács K, Polgár Z, Regdon Z, Szabó É, Robaszkiewicz A, Forman HJ, Martner A, Virág L. Redox control of cancer cell destruction. Redox Biol 2018;16:59-74. [PMID: 29477046 DOI: 10.1016/j.redox.2018.01.015] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 14.0] [Reference Citation Analysis]
22 Best QA, Johnson AE, Prasai B, Rouillere A, McCarley RL. Environmentally Robust Rhodamine Reporters for Probe-based Cellular Detection of the Cancer-linked Oxidoreductase hNQO1. ACS Chem Biol 2016;11:231-40. [PMID: 26555574 DOI: 10.1021/acschembio.5b00792] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
23 Lei K, Gu X, Alvarado AG, Du Y, Luo S, Ahn EH, Kang SS, Ji B, Liu X, Mao H, Fu H, Kornblum HI, Jin L, Li H, Ye K. Discovery of a dual inhibitor of NQO1 and GSTP1 for treating glioblastoma. J Hematol Oncol 2020;13:141. [PMID: 33087132 DOI: 10.1186/s13045-020-00979-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
24 Li AL, Shen T, Wang T, Zhou MX, Wang B, Song JT, Zhang PL, Wang XL, Ren DM, Lou HX, Wang XN. Novel diterpenoid-type activators of the Keap1/Nrf2/ARE signaling pathway and their regulation of redox homeostasis. Free Radic Biol Med 2019;141:21-33. [PMID: 31167117 DOI: 10.1016/j.freeradbiomed.2019.06.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
25 Pereyra CE, Dantas RF, Ferreira SB, Gomes LP, Silva-Jr FP. The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell Int 2019;19:207. [PMID: 31388334 DOI: 10.1186/s12935-019-0925-8] [Cited by in Crossref: 40] [Cited by in F6Publishing: 28] [Article Influence: 13.3] [Reference Citation Analysis]
26 Petrykey K, Andelfinger GU, Laverdière C, Sinnett D, Krajinovic M. Genetic factors in anthracycline-induced cardiotoxicity in patients treated for pediatric cancer. Expert Opinion on Drug Metabolism & Toxicology 2020;16:865-83. [DOI: 10.1080/17425255.2020.1807937] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Avcı B, Günaydın C, Güvenç T, Yavuz CK, Kuruca N, Bilge SS. Idebenone Ameliorates Rotenone-Induced Parkinson's Disease in Rats Through Decreasing Lipid Peroxidation. Neurochem Res 2021;46:513-22. [PMID: 33247801 DOI: 10.1007/s11064-020-03186-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
28 Zhao H, Zhu F, Sun J, Meng X. Meta-analysis of the association between NQO1 Pro187Ser polymorphism and colorectal cancer in Asians. Tumour Biol 2014;35:2111-6. [PMID: 24142528 DOI: 10.1007/s13277-013-1280-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
29 Yang Y, Qi F, Qian Y, Bao X, Zhang H, Ma B, Dai F, Zhang S, Zhou B. Developing Push–Pull Hydroxylphenylpolyenylpyridinium Chromophores as Ratiometric Two-Photon Fluorescent Probes for Cellular and Intravital Imaging of Mitochondrial NQO1. Anal Chem 2021;93:2385-93. [DOI: 10.1021/acs.analchem.0c04279] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Arowojolu OA, Orlow SJ, Elbuluk N, Manga P. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone. Exp Dermatol 2017;26:637-44. [PMID: 28370349 DOI: 10.1111/exd.13350] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
31 Yang S, Jin T, Su HX, Zhu JH, Wang DW, Zhu SJ, Li S, He J, Chen YH. The association between NQO1 Pro187Ser polymorphism and bladder cancer susceptibility: a meta-analysis of 15 studies. PLoS One 2015;10:e0116500. [PMID: 25602258 DOI: 10.1371/journal.pone.0116500] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
32 Han J, Cheng L, Zhu Y, Xu X, Ge C. Covalent-Assembly Based Fluorescent Probes for Detection of hNQO1 and Imaging in Living Cells. Front Chem 2020;8:756. [PMID: 33005608 DOI: 10.3389/fchem.2020.00756] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 den Braver-Sewradj SP, den Braver MW, Toorneman RM, van Leeuwen S, Zhang Y, Dekker SJ, Vermeulen NPE, Commandeur JNM, Vos JC. Reduction and Scavenging of Chemically Reactive Drug Metabolites by NAD(P)H:Quinone Oxidoreductase 1 and NRH:Quinone Oxidoreductase 2 and Variability in Hepatic Concentrations. Chem Res Toxicol 2018;31:116-26. [PMID: 29281794 DOI: 10.1021/acs.chemrestox.7b00289] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
34 Zhang Y, den Braver-Sewradj SP, Vos JC, Vermeulen NPE, Commandeur JNM. Human glutathione S-transferases- and NAD(P)H:quinone oxidoreductase 1-catalyzed inactivation of reactive quinoneimines of amodiaquine and N-desethylamodiaquine: Possible implications for susceptibility to amodiaquine-induced liver toxicity. Toxicol Lett 2017;275:83-91. [PMID: 28478157 DOI: 10.1016/j.toxlet.2017.05.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
35 Wellington KW. Understanding cancer and the anticancer activities of naphthoquinones – a review. RSC Adv 2015;5:20309-38. [DOI: 10.1039/c4ra13547d] [Cited by in Crossref: 170] [Article Influence: 24.3] [Reference Citation Analysis]
36 Anoz-Carbonell E, Timson DJ, Pey AL, Medina M. The Catalytic Cycle of the Antioxidant and Cancer-Associated Human NQO1 Enzyme: Hydride Transfer, Conformational Dynamics and Functional Cooperativity. Antioxidants (Basel) 2020;9:E772. [PMID: 32825392 DOI: 10.3390/antiox9090772] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
37 Zhang X, Li X, You Q, Zhang X. Prodrug strategy for cancer cell-specific targeting: A recent overview. European Journal of Medicinal Chemistry 2017;139:542-63. [DOI: 10.1016/j.ejmech.2017.08.010] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 9.6] [Reference Citation Analysis]
38 Rashid MH, Babu D, Siraki AG. Interactions of the antioxidant enzymes NAD(P)H: Quinone oxidoreductase 1 (NQO1) and NRH: Quinone oxidoreductase 2 (NQO2) with pharmacological agents, endogenous biochemicals and environmental contaminants. Chem Biol Interact 2021;345:109574. [PMID: 34228969 DOI: 10.1016/j.cbi.2021.109574] [Reference Citation Analysis]
39 Bian J, Deng B, Xu L, Xu X, Wang N, Hu T, Yao Z, Du J, Yang L, Lei Y, Li X, Sun H, Zhang X, You Q. 2-Substituted 3-methylnaphtho[1,2-b]furan-4,5-diones as novel L-shaped ortho-quinone substrates for NAD(P)H:quinone oxidoreductase (NQO1). European Journal of Medicinal Chemistry 2014;82:56-67. [DOI: 10.1016/j.ejmech.2014.05.041] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]
40 Anaissi-Afonso L, Oramas-Royo S, Ayra-Plasencia J, Martín-Rodríguez P, García-Luis J, Lorenzo-Castrillejo I, Fernández-Pérez L, Estévez-Braun A, Machín F. Lawsone, Juglone, and β-Lapachone Derivatives with Enhanced Mitochondrial-Based Toxicity. ACS Chem Biol 2018;13:1950-7. [PMID: 29878754 DOI: 10.1021/acschembio.8b00306] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
41 Bermejo M, Mangas-sanjuan V, Gonzalez-alvarez I, Gonzalez-alvarez M. Enhancing Oral Absorption of β-Lapachone: Progress Till Date. Eur J Drug Metab Pharmacokinet 2017;42:1-10. [DOI: 10.1007/s13318-016-0369-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
42 Jarasiene-Burinskaja R, Alksne M, Bartuskiene V, Voisniene V, Burinskij J, Cenas N, Bukelskiene V. Study of the cytotoxic effects of 2,5-diaziridinyl-3,6-dimethyl-1,4-benzoquinone (MeDZQ) in mouse hepatoma cells. EXCLI J 2017;16:151-9. [PMID: 28435434 DOI: 10.17179/excli2016-783] [Reference Citation Analysis]
43 Bian J, Xu L, Deng B, Qian X, Fan J, Yang X, Liu F, Xu X, Guo X, Li X, Sun H, You Q, Zhang X. Synthesis and evaluation of (±)-dunnione and its ortho-quinone analogues as substrates for NAD(P)H:quinone oxidoreductase 1 (NQO1). Bioorganic & Medicinal Chemistry Letters 2015;25:1244-8. [DOI: 10.1016/j.bmcl.2015.01.057] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
44 Detremmerie CMS, Leung SWS, Vanhoutte PM. Activation of NQO-1 mediates the augmented contractions of isolated arteries due to biased activity of soluble guanylyl cyclase in their smooth muscle. Naunyn-Schmiedeberg's Arch Pharmacol 2018;391:1221-35. [DOI: 10.1007/s00210-018-1548-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Wu L, Ma X, Zhang C, Liu Z. Design, synthesis, and biological evaluation of 4-substituted-3,4-dihydrobenzo[h]quinoline-2,5,6(1H)-triones as NQO1-directed antitumor agents. European Journal of Medicinal Chemistry 2020;198:112396. [DOI: 10.1016/j.ejmech.2020.112396] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
46 Yang Y, Zhu G, Dong B, Piao J, Chen L, Lin Z. The NQO1/PKLR axis promotes lymph node metastasis and breast cancer progression by modulating glycolytic reprogramming. Cancer Lett 2019;453:170-83. [PMID: 30954648 DOI: 10.1016/j.canlet.2019.03.054] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
47 Nakamura Y, Shen Z, Harada T, Nagaya T, Sato K, Okuyama S, Ogata F, Choyke PL, McCarley RL, Kobayashi H. Characteristics of ovarian cancer detection by a near-infrared fluorescent probe activated by human NAD(P)H: quinone oxidoreductase isozyme 1 (hNQO1). Oncotarget 2017;8:61181-92. [PMID: 28977855 DOI: 10.18632/oncotarget.18044] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
48 Menden MP, Casale FP, Stephan J, Bignell GR, Iorio F, McDermott U, Garnett MJ, Saez-Rodriguez J, Stegle O. The germline genetic component of drug sensitivity in cancer cell lines. Nat Commun 2018;9:3385. [PMID: 30139972 DOI: 10.1038/s41467-018-05811-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
49 Narayanan D, Ma S, Özcelik D. Targeting the Redox Landscape in Cancer Therapy. Cancers (Basel) 2020;12:E1706. [PMID: 32605023 DOI: 10.3390/cancers12071706] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
50 Rougée LR, Riches Z, Berman JM, Collier AC. The Ontogeny and Population Variability of Human Hepatic NADPH Dehydrogenase Quinone Oxido-Reductase 1 (NQO1). Drug Metab Dispos 2016;44:967-74. [PMID: 26856346 DOI: 10.1124/dmd.115.068650] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
51 Park SY, Won M, Kang C, Kim JS, Lee MH. A coumarin-naphthalimide hybrid as a dual emissive fluorescent probe for hNQO1. Dyes and Pigments 2019;164:341-5. [DOI: 10.1016/j.dyepig.2019.01.050] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
52 Chang N, Zhao Y, Ge N, Qian L. A pH/ROS cascade-responsive and self-accelerating drug release nanosystem for the targeted treatment of multi-drug-resistant colon cancer. Drug Deliv 2020;27:1073-86. [PMID: 32706272 DOI: 10.1080/10717544.2020.1797238] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
53 Parkinson EI, Hergenrother PJ. Deoxynyboquinones as NQO1-Activated Cancer Therapeutics. Acc Chem Res 2015;48:2715-23. [PMID: 26444384 DOI: 10.1021/acs.accounts.5b00365] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 7.6] [Reference Citation Analysis]
54 Moreno Raja M, Lim PQ, Wong YS, Xiong GM, Zhang Y, Venkatraman S, Huang Y. Polymeric Nanomaterials. Nanocarriers for Drug Delivery. Elsevier; 2019. pp. 557-653. [DOI: 10.1016/b978-0-12-814033-8.00018-7] [Cited by in Crossref: 9] [Article Influence: 3.0] [Reference Citation Analysis]
55 Velimezi G, Robinson-Garcia L, Muñoz-Martínez F, Wiegant WW, Ferreira da Silva J, Owusu M, Moder M, Wiedner M, Rosenthal SB, Fisch KM, Moffat J, Menche J, van Attikum H, Jackson SP, Loizou JI. Map of synthetic rescue interactions for the Fanconi anemia DNA repair pathway identifies USP48. Nat Commun 2018;9:2280. [PMID: 29891926 DOI: 10.1038/s41467-018-04649-z] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
56 Speranza G, Anderson L, Chen AP, Do K, Eugeni M, Weil M, Rubinstein L, Majerova E, Collins J, Horneffer Y, Juwara L, Zlott J, Bishop R, Conley BA, Streicher H, Tomaszewski J, Doroshow JH, Kummar S. First-in-human study of the epichaperome inhibitor PU-H71: clinical results and metabolic profile. Invest New Drugs 2018;36:230-9. [PMID: 28808818 DOI: 10.1007/s10637-017-0495-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
57 Paludo CR, da Silva-junior EA, Santos RA, Pupo MT, Emery FS, Furtado NA. Microbial transformation of β-lapachone to its glycosides by Cunninghamella elegans ATCC 10028b. Phytochemistry Letters 2013;6:657-61. [DOI: 10.1016/j.phytol.2013.08.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
58 Go J, Ryu YK, Park HY, Choi DH, Choi YK, Hwang DY, Lee CH, Kim KS. NQO1 regulates pharmaco-behavioral effects of d-amphetamine in striatal dopaminergic system in mice. Neuropharmacology 2020;170:108039. [PMID: 32165217 DOI: 10.1016/j.neuropharm.2020.108039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
59 Zabka A, Trzaskoma P, Maszewski J. Dissimilar effects of β-lapachone- and hydroxyurea-induced DNA replication stress in root meristem cells of Allium cepa. Plant Physiol Biochem 2013;73:282-93. [PMID: 24184448 DOI: 10.1016/j.plaphy.2013.10.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
60 Ross D, Siegel D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol 2021;41:101950. [PMID: 33774477 DOI: 10.1016/j.redox.2021.101950] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
61 Lienhart WD, Strandback E, Gudipati V, Koch K, Binter A, Uhl MK, Rantasa DM, Bourgeois B, Madl T, Zangger K, Gruber K, Macheroux P. Catalytic competence, structure and stability of the cancer-associated R139W variant of the human NAD(P)H:quinone oxidoreductase 1 (NQO1). FEBS J 2017;284:1233-45. [PMID: 28236663 DOI: 10.1111/febs.14051] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
62 Florean C, Song S, Dicato M, Diederich M. Redox biology of regulated cell death in cancer: A focus on necroptosis and ferroptosis. Free Radic Biol Med 2019;134:177-89. [PMID: 30639617 DOI: 10.1016/j.freeradbiomed.2019.01.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 10.3] [Reference Citation Analysis]
63 Shreevatsa B, Dharmashekara C, Swamy VH, Gowda MV, Achar RR, Kameshwar VH, Thimmulappa RK, Syed A, Elgorban AM, Al-Rejaie SS, Ortega-Castro J, Frau J, Flores-Holguín N, Shivamallu C, Kollur SP, Glossman-Mitnik D. Virtual Screening for Potential Phytobioactives as Therapeutic Leads to Inhibit NQO1 for Selective Anticancer Therapy. Molecules 2021;26:6863. [PMID: 34833955 DOI: 10.3390/molecules26226863] [Reference Citation Analysis]
64 Yan L, Zhang W, Zhang B, Xuan C, Wang D. BIIB021: A novel inhibitor to heat shock protein 90–addicted oncology. Tumour Biol 2017;39:101042831769835. [DOI: 10.1177/1010428317698355] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
65 Glorieux C, Sandoval JM, Dejeans N, Ameye G, Poirel HA, Verrax J, Calderon PB. Overexpression of NAD(P)H:quinone oxidoreductase 1 (NQO1) and genomic gain of the NQO1 locus modulates breast cancer cell sensitivity to quinones. Life Sci 2016;145:57-65. [PMID: 26687450 DOI: 10.1016/j.lfs.2015.12.017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
66 Lubelska K, Wiktorska K, Mielczarek L, Milczarek M, Zbroińska-bregisz I, Chilmonczyk Z. Sulforaphane Regulates NFE2L2/Nrf2-Dependent Xenobiotic Metabolism Phase II and Phase III Enzymes Differently in Human Colorectal Cancer and Untransformed Epithelial Colon Cells. Nutrition and Cancer 2016;68:1338-48. [DOI: 10.1080/01635581.2016.1224369] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
67 Zhang L, Zhang G, Xu S, Song Y. Recent advances of quinones as a privileged structure in drug discovery. Eur J Med Chem 2021;223:113632. [PMID: 34153576 DOI: 10.1016/j.ejmech.2021.113632] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Takahashi T, Mine Y, Okamoto T. Intracellular reduction of coenzyme Q homologues with a short isoprenoid side chain induces apoptosis of HeLa cells. J Biochem 2018;163:329-39. [PMID: 29319808 DOI: 10.1093/jb/mvy002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Giovannucci TA, Salomons FA, Haraldsson M, Elfman LHM, Wickström M, Young P, Lundbäck T, Eirich J, Altun M, Jafari R, Gustavsson AL, Johnsen JI, Dantuma NP. Inhibition of the ubiquitin-proteasome system by an NQO1-activatable compound. Cell Death Dis 2021;12:914. [PMID: 34615851 DOI: 10.1038/s41419-021-04191-9] [Reference Citation Analysis]
70 Pradubyat N, Sakunrangsit N, Mutirangura A, Ketchart W. NADPH: Quinone oxidoreductase 1 (NQO1) mediated anti-cancer effects of plumbagin in endocrine resistant MCF7 breast cancer cells. Phytomedicine 2020;66:153133. [PMID: 31790893 DOI: 10.1016/j.phymed.2019.153133] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
71 Ross D, Siegel D. NQO1 in protection against oxidative stress. Current Opinion in Toxicology 2018;7:67-72. [DOI: 10.1016/j.cotox.2017.10.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 15] [Article Influence: 8.8] [Reference Citation Analysis]
72 Di Francesco A, Di Germanio C, Panda AC, Huynh P, Peaden R, Navas-Enamorado I, Bastian P, Lehrmann E, Diaz-Ruiz A, Ross D, Siegel D, Martindale JL, Bernier M, Gorospe M, Abdelmohsen K, de Cabo R. Novel RNA-binding activity of NQO1 promotes SERPINA1 mRNA translation. Free Radic Biol Med 2016;99:225-33. [PMID: 27515817 DOI: 10.1016/j.freeradbiomed.2016.08.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
73 Thapa D, Meng P, Bedolla RG, Reddick RL, Kumar AP, Ghosh R. NQO1 suppresses NF-κB-p300 interaction to regulate inflammatory mediators associated with prostate tumorigenesis. Cancer Res 2014;74:5644-55. [PMID: 25125658 DOI: 10.1158/0008-5472.CAN-14-0562] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
74 Foderaro JE, Konopka JB. Differential Roles of a Family of Flavodoxin-Like Proteins That Promote Resistance to Quinone-Mediated Oxidative Stress in Candida albicans. Infect Immun 2021;89:e00670-20. [PMID: 33468576 DOI: 10.1128/IAI.00670-20] [Reference Citation Analysis]
75 Alshogran OY, Naud J, Ocque AJ, Leblond FA, Pichette V, Nolin TD. Effect of experimental kidney disease on the functional expression of hepatic reductases. Drug Metab Dispos 2015;43:100-6. [PMID: 25332430 DOI: 10.1124/dmd.114.061150] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
76 Hyun DH. Insights into the New Cancer Therapy through Redox Homeostasis and Metabolic Shifts. Cancers (Basel) 2020;12:E1822. [PMID: 32645959 DOI: 10.3390/cancers12071822] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
77 Preethi S, Arthiga K, Patil AB, Spandana A, Jain V. Review on NAD(P)H dehydrogenase quinone 1 (NQO1) pathway. Mol Biol Rep 2022. [PMID: 35347544 DOI: 10.1007/s11033-022-07369-2] [Reference Citation Analysis]
78 Lamberti MJ, Vittar NB, da Silva Fde C, Ferreira VF, Rivarola VA. Synergistic enhancement of antitumor effect of β-Lapachone by photodynamic induction of quinone oxidoreductase (NQO1). Phytomedicine. 2013;20:1007-1012. [PMID: 23746950 DOI: 10.1016/j.phymed.2013.04.018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 3.9] [Reference Citation Analysis]
79 Gong M, Yi Q, Wang W. Association between NQO1 C609T polymorphism and bladder cancer susceptibility: a systemic review and meta-analysis. Tumour Biol 2013;34:2551-6. [PMID: 23749485 DOI: 10.1007/s13277-013-0799-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
80 Mielczarek-Lewandowska A, Hartman ML, Czyz M. Inhibitors of HSP90 in melanoma. Apoptosis 2020;25:12-28. [PMID: 31659567 DOI: 10.1007/s10495-019-01577-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
81 Verma H, Singh Bahia M, Choudhary S, Kumar Singh P, Silakari O. Drug metabolizing enzymes-associated chemo resistance and strategies to overcome it. Drug Metabolism Reviews 2019;51:196-223. [DOI: 10.1080/03602532.2019.1632886] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
82 Steinmeier J, Kube S, Karger G, Ehrke E, Dringen R. β-Lapachone Induces Acute Oxidative Stress in Rat Primary Astrocyte Cultures that is Terminated by the NQO1-Inhibitor Dicoumarol. Neurochem Res 2020;45:2442-55. [PMID: 32789798 DOI: 10.1007/s11064-020-03104-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
83 Johnson FD, Ferrarone J, Liu A, Brandstädter C, Munuganti R, Farnsworth DA, Lu D, Luu J, Sihota T, Jansen S, Nagelberg A, Shi R, Forcina GC, Zhang X, Cheng GSW, Spencer Miko SE, de Rappard-Yuswack G, Sorensen PH, Dixon SJ, Guha U, Becker K, Djaballah H, Somwar R, Varmus H, Morin GB, Lockwood WW. Characterization of a small molecule inhibitor of disulfide reductases that induces oxidative stress and lethality in lung cancer cells. Cell Rep 2022;38:110343. [PMID: 35139387 DOI: 10.1016/j.celrep.2022.110343] [Reference Citation Analysis]
84 Breton CS, Aubry D, Ginet V, Puyal J, Heulot M, Widmann C, Duchosal MA, Nahimana A. Combinative effects of β-Lapachone and APO866 on pancreatic cancer cell death through reactive oxygen species production and PARP-1 activation. Biochimie 2015;116:141-53. [PMID: 26188110 DOI: 10.1016/j.biochi.2015.07.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
85 Cardoso MFDC, Salomão K, Bombaça AC, da Rocha DR, da Silva FDC, Cavaleiro JA, de Castro SL, Ferreira VF. Synthesis and anti-Trypanosoma cruzi activity of new 3‐phenylthio-nor-β-lapachone derivatives. Bioorganic & Medicinal Chemistry 2015;23:4763-8. [DOI: 10.1016/j.bmc.2015.05.039] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
86 Peciukaityte-Alksne M, Šarlauskas J, Miseviciene L, Maroziene A, Cenas N, Krikštopaitis K, Staniulyte Z, Anusevicius Ž. Flavoenzyme-mediated reduction reactions and antitumor activity of nitrogen-containing tetracyclic ortho-quinone compounds and their nitrated derivatives. EXCLI J 2017;16:663-78. [PMID: 28694766 DOI: 10.17179/excli2017-273] [Reference Citation Analysis]
87 Wu YL, Wang D, Peng XE, Chen YL, Zheng DL, Chen WN, Lin X. Epigenetic silencing of NAD(P)H:quinone oxidoreductase 1 by hepatitis B virus X protein increases mitochondrial injury and cellular susceptibility to oxidative stress in hepatoma cells. Free Radic Biol Med 2013;65:632-44. [PMID: 23920313 DOI: 10.1016/j.freeradbiomed.2013.07.037] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
88 Landmann H, Proia DA, He S, Ogawa LS, Kramer F, Beißbarth T, Grade M, Gaedcke J, Ghadimi M, Moll U, Dobbelstein M. UDP glucuronosyltransferase 1A expression levels determine the response of colorectal cancer cells to the heat shock protein 90 inhibitor ganetespib. Cell Death Dis 2014;5:e1411. [PMID: 25210794 DOI: 10.1038/cddis.2014.378] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
89 Costa MP, Feitosa ACS, Oliveira FCE, Cavalcanti BC, Dias GG, Caetano EWS, Sales FAM, Freire VN, Di Fiore S, Fischer R, Ladeira LO, da Silva Júnior EN, Pessoa C. Encapsulation of nor-β-lapachone into poly(d,l)-lactide-co-glycolide (PLGA) microcapsules: full characterization, computational details and cytotoxic activity against human cancer cell lines. Medchemcomm 2017;8:1993-2002. [PMID: 30108718 DOI: 10.1039/c7md00196g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
90 Madeo J, Zubair A, Marianne F. A review on the role of quinones in renal disorders. Springerplus 2013;2:139. [PMID: 23577302 DOI: 10.1186/2193-1801-2-139] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
91 Lamba JK, Fridley BL, Ghosh TM, Yu Q, Mehta G, Gupta P. Genetic variation in platinating agent and taxane pathway genes as predictors of outcome and toxicity in advanced non-small-cell lung cancer. Pharmacogenomics 2014;15:1565-74. [PMID: 25340731 DOI: 10.2217/pgs.14.107] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
92 Mehta A, Shervington A, Howl J, Jones S, Shervington L. Can RNAi-mediated hsp90α knockdown in combination with 17-AAG be a therapy for glioma? FEBS Open Bio 2013;3:271-8. [PMID: 23905009 DOI: 10.1016/j.fob.2013.06.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
93 Costa MP, Feitosa AC, Oliveira FC, Cavalcanti BC, da Silva EN, Dias GG, Sales FA, Sousa BL, Barroso-Neto IL, Pessoa C, Caetano EW, Di Fiore S, Fischer R, Ladeira LO, Freire VN. Controlled Release of Nor-β-lapachone by PLGA Microparticles: A Strategy for Improving Cytotoxicity against Prostate Cancer Cells. Molecules 2016;21:E873. [PMID: 27384551 DOI: 10.3390/molecules21070873] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
94 Ramos-pérez C, Lorenzo-castrillejo I, Quevedo O, García-luis J, Matos-perdomo E, Medina-coello C, Estévez-braun A, Machín F. Yeast cytotoxic sensitivity to the antitumour agent β-lapachone depends mainly on oxidative stress and is largely independent of microtubule- or topoisomerase-mediated DNA damage. Biochemical Pharmacology 2014;92:206-19. [DOI: 10.1016/j.bcp.2014.09.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
95 Ferraz da Costa DC, Pereira Rangel L, Martins-Dinis MMDDC, Ferretti GDDS, Ferreira VF, Silva JL. Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues. Molecules 2020;25:E893. [PMID: 32085381 DOI: 10.3390/molecules25040893] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
96 Qi Y, Chen L, Guo L, Cao Y, Wang H, Yang Y, Lu Y, Zhu H. Multifunctional fluorescent probes "killing two birds with one stone" - recent progress and outlook. Applied Materials Today 2020;21:100877. [DOI: 10.1016/j.apmt.2020.100877] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
97 Zhang H, Kozono DE, O'Connor KW, Vidal-Cardenas S, Rousseau A, Hamilton A, Moreau L, Gaudiano EF, Greenberger J, Bagby G, Soulier J, Grompe M, Parmar K, D'Andrea AD. TGF-β Inhibition Rescues Hematopoietic Stem Cell Defects and Bone Marrow Failure in Fanconi Anemia. Cell Stem Cell 2016;18:668-81. [PMID: 27053300 DOI: 10.1016/j.stem.2016.03.002] [Cited by in Crossref: 72] [Cited by in F6Publishing: 73] [Article Influence: 12.0] [Reference Citation Analysis]
98 Mielczarek-Lewandowska A, Sztiller-Sikorska M, Osrodek M, Czyz M, Hartman ML. 17-Aminogeldanamycin selectively diminishes IRE1α-XBP1s pathway activity and cooperatively induces apoptosis with MEK1/2 and BRAFV600E inhibitors in melanoma cells of different genetic subtypes. Apoptosis 2019;24:596-611. [PMID: 30989459 DOI: 10.1007/s10495-019-01542-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
99 Manley E Jr, Waxman DJ. Impact of tumor blood flow modulation on tumor sensitivity to the bioreductive drug banoxantrone. J Pharmacol Exp Ther 2013;344:368-77. [PMID: 23192656 DOI: 10.1124/jpet.112.200089] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
100 Liu L, Xu QM, Chen T, Cheng JS, Yuan YJ. Artificial consortium that produces riboflavin regulates distribution of acetoin and 2,3-butanediol by Paenibacillus polymyxa CJX518. Eng Life Sci 2017;17:1039-49. [PMID: 32624854 DOI: 10.1002/elsc.201600239] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
101 Tétard-Jones C, Sabbadin F, Moss S, Hull R, Neve P, Edwards R. Changes in the proteome of the problem weed blackgrass correlating with multiple-herbicide resistance. Plant J 2018;94:709-20. [PMID: 29575327 DOI: 10.1111/tpj.13892] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
102 Vredenburg G, Elias NS, Venkataraman H, Hendriks DFG, Vermeulen NPE, Commandeur JNM, Vos JC. Human NAD(P)H:quinone Oxidoreductase 1 (NQO1)-Mediated Inactivation of Reactive Quinoneimine Metabolites of Diclofenac and Mefenamic Acid. Chem Res Toxicol 2014;27:576-86. [DOI: 10.1021/tx400431k] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
103 Malátková P, Wsól V. Carbonyl reduction pathways in drug metabolism. Drug Metabolism Reviews 2013;46:96-123. [DOI: 10.3109/03602532.2013.853078] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 5.4] [Reference Citation Analysis]
104 Li JZ, Ke Y, Misra HP, Trush MA, Li YR, Zhu H, Jia Z. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent. Toxicol Appl Pharmacol 2014;281:285-93. [PMID: 25448047 DOI: 10.1016/j.taap.2014.10.012] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 3.5] [Reference Citation Analysis]
105 Yang Y, Zheng J, Wang M, Zhang J, Tian T, Wang Z, Yuan S, Liu L, Zhu P, Gu F, Fu S, Shan Y, Pan Z, Zhou W. NQO1 promotes an aggressive phenotype in hepatocellular carcinoma via amplifying ERK-NRF2 signaling. Cancer Sci 2021;112:641-54. [PMID: 33222332 DOI: 10.1111/cas.14744] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
106 Ahmed SR, Hamed AR, Ali MI, Sedeek MS, Abelyan N, Al-sanea MM. Cancer Chemopreventive Potential and Chemical Profiling of Euphorbia abyssinica Endowed with Docking Studies. ACS Omega. [DOI: 10.1021/acsomega.1c06148] [Reference Citation Analysis]
107 Yu D, Wang F, Ye S, Yang S, Yu N, Zhou X, Zhang N. Quercitrin protects human bronchial epithelial cells from oxidative damage. Open Medicine 2022;17:375-83. [DOI: 10.1515/med-2022-0416] [Reference Citation Analysis]
108 Hettiarachchi SU, Prasai B, McCarley RL. Detection and cellular imaging of human cancer enzyme using a turn-on, wavelength-shiftable, self-immolative profluorophore. J Am Chem Soc 2014;136:7575-8. [PMID: 24813575 DOI: 10.1021/ja5030707] [Cited by in Crossref: 128] [Cited by in F6Publishing: 117] [Article Influence: 16.0] [Reference Citation Analysis]
109 Kolossov VL, Ponnuraj N, Beaudoin JN, Leslie MT, Kenis PJ, Gaskins HR. Distinct responses of compartmentalized glutathione redox potentials to pharmacologic quinones targeting NQO1. Biochem Biophys Res Commun 2017;483:680-6. [PMID: 27986568 DOI: 10.1016/j.bbrc.2016.12.082] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
110 Pan D, Luo F, Liu X, Liu W, Chen W, Liu F, Kuang Y, Jiang J. A novel two-photon fluorescent probe with a long Stokes shift and a high signal-to-background ratio for human NAD(P)H:quinone oxidoreductase 1 (hNQO1) detection and imaging in living cells and tissues. Analyst 2017;142:2624-30. [DOI: 10.1039/c7an00575j] [Cited by in Crossref: 20] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
111 Yu S, Zhai J, Yu J, Yang Q, Yang J. Downregulation of BACH1 Protects AGAINST Cerebral Ischemia/Reperfusion Injury through the Functions of HO-1 and NQO1. Neuroscience 2020;436:154-66. [DOI: 10.1016/j.neuroscience.2020.04.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
112 Ger M, Kaupinis A, Nemeikaite-ceniene A, Sarlauskas J, Cicenas J, Cenas N, Valius M. Quantitative proteomic analysis of anticancer drug RH1 resistance in liver carcinoma. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2016;1864:219-32. [DOI: 10.1016/j.bbapap.2015.11.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
113 Liao J, Huang Q, Li Y, Zhang D, Wang G. Chitosan derivatives functionalized dual ROS-responsive nanocarriers to enhance synergistic oxidation-chemotherapy. Carbohydrate Polymers 2022;282:119087. [DOI: 10.1016/j.carbpol.2021.119087] [Reference Citation Analysis]
114 Kong Q, Deng H, Li C, Wang X, Shimoda Y, Tao S, Kato K, Zhang J, Yamanaka K, An Y. Sustained high expression of NRF2 and its target genes induces dysregulation of cellular proliferation and apoptosis is associated with arsenite-induced malignant transformation of human bronchial epithelial cells. Science of The Total Environment 2021;756:143840. [DOI: 10.1016/j.scitotenv.2020.143840] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Al Habash A, Aljasim LA, Owaidhah O, Edward DP. A review of the efficacy of mitomycin C in glaucoma filtration surgery. Clin Ophthalmol 2015;9:1945-51. [PMID: 26527859 DOI: 10.2147/OPTH.S80111] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 0.9] [Reference Citation Analysis]
116 Okubo A, Yasuhira S, Shibazaki M, Takahashi K, Akasaka T, Masuda T, Maesawa C. NAD(P)H dehydrogenase, quinone 1 (NQO1), protects melanin-producing cells from cytotoxicity of rhododendrol. Pigment Cell Melanoma Res 2016;29:309-16. [PMID: 26847926 DOI: 10.1111/pcmr.12461] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
117 Raccor B, Teitelbaum A, Dinh J, Totah R. Principles of Drug Metabolism 3: Enzymes and Tissues☆. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier; 2014. [DOI: 10.1016/b978-0-12-409547-2.11323-x] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
118 Lee KM, Gwon MR, Lee HW, Seong SJ, Yoon YR. The possibility of low isomerization of β-lapachone in the human body. Transl Clin Pharmacol 2021;29:160-70. [PMID: 34621708 DOI: 10.12793/tcp.2021.29.e16] [Reference Citation Analysis]
119 Butsri S, Kukongviriyapan V, Senggunprai L, Kongpetch S, Zeekpudsa P, Prawan A. Downregulation of NAD(P)H:quinone oxidoreductase 1 inhibits proliferation, cell cycle and migration of cholangiocarcinoma cells. Oncol Lett 2017;13:4540-8. [PMID: 28599455 DOI: 10.3892/ol.2017.5951] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
120 Zhu Y, Han J, Zhang Q, Zhao Z, Wang J, Xu X, Hao H, Zhang J. A highly selective fluorescent probe for human NAD(P)H:quinone oxidoreductase 1 (hNQO1) detection and imaging in living tumor cells. RSC Adv 2019;9:26729-33. [DOI: 10.1039/c9ra05650e] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
121 Ihling A, Ihling CH, Sinz A, Gekle M. Acidosis-Induced Changes in Proteome Patterns of the Prostate Cancer-Derived Tumor Cell Line AT-1. J Proteome Res 2015;14:3996-4004. [PMID: 26214752 DOI: 10.1021/acs.jproteome.5b00503] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
122 Chen PH, Chang JT, Li LA, Tsai HT, Shen MY, Lin P. Aryl hydrocarbon receptor is a target of 17-Allylamino-17-demethoxygeldanamycin and enhances its anticancer activity in lung adenocarcinoma cells. Mol Pharmacol 2013;83:605-12. [PMID: 23229511 DOI: 10.1124/mol.112.081646] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
123 Ding X, Wang M, Chu H, Chu M, Na T, Wen Y, Wu D, Han B, Bai Z, Chen W, Yuan J, Wu T, Hu Z, Zhang Z, Shen H. Global gene expression profiling of human bronchial epithelial cells exposed to airborne fine particulate matter collected from Wuhan, China. Toxicology Letters 2014;228:25-33. [DOI: 10.1016/j.toxlet.2014.04.010] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 5.4] [Reference Citation Analysis]
124 Siegel D, Kepa JK, Ross D. NAD(P)H:quinone oxidoreductase 1 (NQO1) localizes to the mitotic spindle in human cells. PLoS One. 2012;7:e44861. [PMID: 22984577 DOI: 10.1371/journal.pone.0044861] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
125 Paludo CR, da Silva-junior EA, de Oliveira Silva E, Vessecchi R, Peporine Lopes N, Tallarico Pupo M, da Silva Emery F, dos Santos Gonçalves N, Alves dos Santos R, Jacometti Cardoso Furtado NA. Inactivation of β-Lapachone Cytotoxicity by Filamentous Fungi that Mimic the Human Blood Metabolism. Eur J Drug Metab Pharmacokinet 2017;42:213-20. [DOI: 10.1007/s13318-016-0337-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
126 Aires ADL, Ximenes ECPA, Silva RAR, Barbosa VX, Góes AJDS, Peixoto CA, Souza VMO, Albuquerque MCPDA. Ultrastructural analysis of β-lapachone-induced surface membrane damage in male adult Schistosoma mansoni BH strain worms. Experimental Parasitology 2014;142:83-90. [DOI: 10.1016/j.exppara.2014.04.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
127 Hernández-Rodríguez M, Mendoza Sánchez PI, Macias Perez ME, Rosales Cruz E, Mera Jiménez E, Nicolás Vázquez MI, Miranda Ruvalcaba R. In vitro and computational studies showed that perezone inhibits PARP-1 and induces changes in the redox state of K562 cells. Arch Biochem Biophys 2019;671:225-34. [PMID: 31063714 DOI: 10.1016/j.abb.2019.05.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
128 Bai X, Chen Y, Hou X, Huang M, Jin J. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev 2016;48:541-67. [PMID: 27320238 DOI: 10.1080/03602532.2016.1197239] [Cited by in Crossref: 78] [Cited by in F6Publishing: 76] [Article Influence: 13.0] [Reference Citation Analysis]
129 Kasai S, Arakawa N, Okubo A, Shigeeda W, Yasuhira S, Masuda T, Akasaka T, Shibazaki M, Maesawa C. NAD(P)H:Quinone Oxidoreductase-1 Expression Sensitizes Malignant Melanoma Cells to the HSP90 Inhibitor 17-AAG. PLoS One 2016;11:e0153181. [PMID: 27045471 DOI: 10.1371/journal.pone.0153181] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
130 Froeling FEM, Swamynathan MM, Deschênes A, Chio IIC, Brosnan E, Yao MA, Alagesan P, Lucito M, Li J, Chang AY, Trotman LC, Belleau P, Park Y, Rogoff HA, Watson JD, Tuveson DA. Bioactivation of Napabucasin Triggers Reactive Oxygen Species-Mediated Cancer Cell Death. Clin Cancer Res 2019;25:7162-74. [PMID: 31527169 DOI: 10.1158/1078-0432.CCR-19-0302] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
131 Liu M, Song W, Du X, Su J, Dong K, Chen Y, Peng Z. NQO1-Selective Activated Prodrug of Triptolide: Synthesis and Antihepatocellular Carcinoma Activity Evaluation. ACS Med Chem Lett 2018;9:1253-7. [PMID: 30613335 DOI: 10.1021/acsmedchemlett.8b00404] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
132 Sági JC, Egyed B, Kelemen A, Kutszegi N, Hegyi M, Gézsi A, Herlitschke MA, Rzepiel A, Fodor LE, Ottóffy G, Kovács GT, Erdélyi DJ, Szalai C, Semsei ÁF. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer 2018;18:704. [PMID: 29970035 DOI: 10.1186/s12885-018-4629-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
133 Kuciauskas D, Dreize N, Ger M, Kaupinis A, Zemaitis K, Stankevicius V, Suziedelis K, Cicenas J, Graves LM, Valius M. Proteomic Analysis of Breast Cancer Resistance to the Anticancer Drug RH1 Reveals the Importance of Cancer Stem Cells. Cancers (Basel) 2019;11:E972. [PMID: 31336714 DOI: 10.3390/cancers11070972] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
134 Sidhu JS, Kaur N, Singh N. Trends in small organic fluorescent scaffolds for detection of oxidoreductase. Biosens Bioelectron 2021;191:113441. [PMID: 34167075 DOI: 10.1016/j.bios.2021.113441] [Reference Citation Analysis]
135 Sedláček V, Ptáčková N, Rejmontová P, Kučera I. The flavoprotein FerB of Paracoccus denitrificans binds to membranes, reduces ubiquinone and superoxide, and acts as an in vivo antioxidant. FEBS J 2015;282:283-96. [DOI: 10.1111/febs.13126] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
136 Li L, Naseem S, Sharma S, Konopka JB. Flavodoxin-Like Proteins Protect Candida albicans from Oxidative Stress and Promote Virulence. PLoS Pathog 2015;11:e1005147. [PMID: 26325183 DOI: 10.1371/journal.ppat.1005147] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
137 Zhang K, Chen D, Ma K, Wu X, Hao H, Jiang S. NAD(P)H:Quinone Oxidoreductase 1 (NQO1) as a Therapeutic and Diagnostic Target in Cancer. J Med Chem 2018;61:6983-7003. [DOI: 10.1021/acs.jmedchem.8b00124] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 13.5] [Reference Citation Analysis]
138 Zhou MX, Li GH, Sun B, Xu YW, Li AL, Li YR, Ren DM, Wang XN, Wen XS, Lou HX, Shen T. Identification of novel Nrf2 activators from Cinnamomum chartophyllum H.W. Li and their potential application of preventing oxidative insults in human lung epithelial cells. Redox Biol 2018;14:154-63. [PMID: 28942193 DOI: 10.1016/j.redox.2017.09.004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
139 Chen QM. Nrf2 for cardiac protection: pharmacological options against oxidative stress. Trends Pharmacol Sci 2021;42:729-44. [PMID: 34332753 DOI: 10.1016/j.tips.2021.06.005] [Reference Citation Analysis]
140 Zhao Y, Hu Q, Cheng F, Su N, Wang A, Zou Y, Hu H, Chen X, Zhou HM, Huang X, Yang K, Zhu Q, Wang X, Yi J, Zhu L, Qian X, Chen L, Tang Y, Loscalzo J, Yang Y. SoNar, a Highly Responsive NAD+/NADH Sensor, Allows High-Throughput Metabolic Screening of Anti-tumor Agents. Cell Metab 2015;21:777-89. [PMID: 25955212 DOI: 10.1016/j.cmet.2015.04.009] [Cited by in Crossref: 193] [Cited by in F6Publishing: 176] [Article Influence: 32.2] [Reference Citation Analysis]
141 He JL, Zhou ZW, Yin JJ, He CQ, Zhou SF, Yu Y. Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway. Drug Des Devel Ther 2015;9:127-46. [PMID: 25552902 DOI: 10.2147/DDDT.S68501] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
142 Yang JF, Liu YR, Huang CC, Ueng YF. The time-dependent effects of St John's wort on cytochrome P450, uridine diphosphate-glucuronosyltransferase, glutathione S-transferase, and NAD(P)H-quinone oxidoreductase in mice. J Food Drug Anal 2018;26:422-31. [PMID: 29389584 DOI: 10.1016/j.jfda.2017.01.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
143 Daryaei I, Jones KM, Pagel MD. Detection of DT-diaphorase Enzyme with a ParaCEST MRI Contrast Agent. Chemistry 2017;23:6514-7. [PMID: 28370655 DOI: 10.1002/chem.201700721] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
144 Ieque AL, Carvalho HC, Baldin VP, Santos NCS, Costacurta GF, Sampiron EG, Fernandez de Andrade CMM, Siqueira VLD, Caleffi Ferracioli KR, Cardoso RF, Cortez DAG (in memoriam), Silva EL, Scodro RBL. Antituberculosis Activities of Lapachol and β-Lapachone in Combination with Other Drugs in Acidic pH. Microb Drug Resist 2021;27:924-32. [PMID: 33275860 DOI: 10.1089/mdr.2020.0164] [Reference Citation Analysis]
145 Wang Y, Zhang G, Luo Y. Association between NQO1 C609T polymorphism and colorectal cancer risk. Tumour Biol 2013;34:4027-32. [PMID: 23893397 DOI: 10.1007/s13277-013-0993-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
146 Lin LC, Lee HT, Chien PJ, Huang YH, Chang MY, Lee YC, Chang WW. NAD(P)H:quinone oxidoreductase 1 determines radiosensitivity of triple negative breast cancer cells and is controlled by long non-coding RNA NEAT1. Int J Med Sci 2020;17:2214-24. [PMID: 32922184 DOI: 10.7150/ijms.45706] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
147 Zhang Y, Yang D, Zhu JH, Chen MB, Shen WX, He J. The association between NQO1 Pro187Ser polymorphism and urinary system cancer susceptibility: a meta-analysis of 22 studies. Cancer Invest 2015;33:39-40. [PMID: 25608636 DOI: 10.3109/07357907.2014.998836] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
148 Chen X, Mims J, Huang X, Singh N, Motea E, Planchon SM, Beg M, Tsang AW, Porosnicu M, Kemp ML, Boothman DA, Furdui CM. Modulators of Redox Metabolism in Head and Neck Cancer. Antioxid Redox Signal 2018;29:1660-90. [PMID: 29113454 DOI: 10.1089/ars.2017.7423] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
149 Ito S, Wakamatsu K. Biochemical Mechanism of Rhododendrol-Induced Leukoderma. Int J Mol Sci 2018;19:E552. [PMID: 29439519 DOI: 10.3390/ijms19020552] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
150 Kong F, Li Y, Yang C, Li X, Wu J, Liu X, Gao X, Xu K, Tang B. A fluorescent probe for simultaneously sensing NTR and hNQO1 and distinguishing cancer cells. J Mater Chem B 2019;7:6822-7. [PMID: 31608921 DOI: 10.1039/c9tb01581g] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 4.3] [Reference Citation Analysis]
151 Lienhart WD, Gudipati V, Uhl MK, Binter A, Pulido SA, Saf R, Zangger K, Gruber K, Macheroux P. Collapse of the native structure caused by a single amino acid exchange in human NAD(P)H:quinone oxidoreductase(1.). FEBS J 2014;281:4691-704. [PMID: 25143260 DOI: 10.1111/febs.12975] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.8] [Reference Citation Analysis]
152 Revollo J, Petibone DM, McKinzie P, Knox B, Morris SM, Ning B, Dobrovolsky VN. Whole genome and normalized mRNA sequencing reveal genetic status of TK6, WTK1, and NH32 human B-lymphoblastoid cell lines. Mutat Res Genet Toxicol Environ Mutagen 2016;795:60-9. [PMID: 26774668 DOI: 10.1016/j.mrgentox.2015.11.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
153 Park EJ, Min KJ, Lee TJ, Yoo YH, Kim YS, Kwon TK. β-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells. Cell Death Dis 2014;5:e1230. [PMID: 24832602 DOI: 10.1038/cddis.2014.202] [Cited by in Crossref: 61] [Cited by in F6Publishing: 62] [Article Influence: 7.6] [Reference Citation Analysis]
154 Alexandrova EM, Yallowitz AR, Li D, Xu S, Schulz R, Proia DA, Lozano G, Dobbelstein M, Moll UM. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature 2015;523:352-6. [PMID: 26009011 DOI: 10.1038/nature14430] [Cited by in Crossref: 198] [Cited by in F6Publishing: 190] [Article Influence: 28.3] [Reference Citation Analysis]
155 Chen QM, Maltagliati AJ. Nrf2 at the heart of oxidative stress and cardiac protection. Physiol Genomics 2018;50:77-97. [PMID: 29187515 DOI: 10.1152/physiolgenomics.00041.2017] [Cited by in Crossref: 113] [Cited by in F6Publishing: 106] [Article Influence: 22.6] [Reference Citation Analysis]
156 Zeng Y, Ma J, Zhan Y, Xu X, Zeng Q, Liang J, Chen X. Hypoxia-activated prodrugs and redox-responsive nanocarriers. Int J Nanomedicine 2018;13:6551-74. [PMID: 30425475 DOI: 10.2147/IJN.S173431] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
157 Zhang J, Xu Q, Ma D. Inhibition of thioredoxin reductase by natural anticancer candidate β-lapachone accounts for triggering redox activation-mediated HL-60 cell apoptosis. Free Radical Biology and Medicine 2022. [DOI: 10.1016/j.freeradbiomed.2022.01.019] [Reference Citation Analysis]
158 Shen Z, Prasai B, Nakamura Y, Kobayashi H, Jackson MS, McCarley RL. A Near-Infrared, Wavelength-Shiftable, Turn-on Fluorescent Probe for the Detection and Imaging of Cancer Tumor Cells. ACS Chem Biol 2017;12:1121-32. [PMID: 28240865 DOI: 10.1021/acschembio.6b01094] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 8.2] [Reference Citation Analysis]
159 Yu J, Zhong B, Xiao Q, Du L, Hou Y, Sun HS, Lu JJ, Chen X. Induction of programmed necrosis: A novel anti-cancer strategy for natural compounds. Pharmacol Ther 2020;214:107593. [PMID: 32492512 DOI: 10.1016/j.pharmthera.2020.107593] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
160 Strandback E, Lienhart WD, Hromic-Jahjefendic A, Bourgeois B, Högler A, Waltenstorfer D, Winkler A, Zangger K, Madl T, Gruber K, Macheroux P. A small molecule chaperone rescues the stability and activity of a cancer-associated variant of NAD(P)H:quinone oxidoreductase 1 in vitro. FEBS Lett 2020;594:424-38. [PMID: 31605637 DOI: 10.1002/1873-3468.13636] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
161 Gorący J, Bogacz A, Uzar I, Wolek M, Łochyńska M, Ziętek P, Czerny B, Cymbaluk-Płoska A, Modliborski P, Kamiński A. The Analysis of NADPH Quinone Reductase 1 (NQO1) Polymorphism in Polish Patients with Colorectal Cancer. Biomolecules 2021;11:1024. [PMID: 34356648 DOI: 10.3390/biom11071024] [Reference Citation Analysis]
162 Urra FA, Martínez-Cifuentes M, Pavani M, Lapier M, Jaña-Prado F, Parra E, Maya JD, Pessoa-Mahana H, Ferreira J, Araya-Maturana R. An ortho-carbonyl substituted hydroquinone derivative is an anticancer agent that acts by inhibiting mitochondrial bioenergetics and by inducing G₂/M-phase arrest in mammary adenocarcinoma TA3. Toxicol Appl Pharmacol 2013;267:218-27. [PMID: 23333614 DOI: 10.1016/j.taap.2012.12.023] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
163 Hussein B, Ikhmais B, Kadirvel M, Magwaza RN, Halbert G, Bryce RA, Stratford IJ, Freeman S. Discovery of potent 4-aminoquinoline hydrazone inhibitors of NRH:quinoneoxidoreductase-2 (NQO2). European Journal of Medicinal Chemistry 2019;182:111649. [DOI: 10.1016/j.ejmech.2019.111649] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
164 Wu Y, Shen Y, Zhu Y, Mupunga J, Zou L, Liu C, Liu S, Mao J. Broccoli ingestion increases the glucosinolate hydrolysis activity of microbiota in the mouse gut. International Journal of Food Sciences and Nutrition 2019;70:585-94. [DOI: 10.1080/09637486.2018.1554624] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
165 Cui X, Li L, Yan G, Meng K, Lin Z, Nan Y, Jin G, Li C. High expression of NQO1 is associated with poor prognosis in serous ovarian carcinoma. BMC Cancer 2015;15:244. [PMID: 25885439 DOI: 10.1186/s12885-015-1271-4] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 5.0] [Reference Citation Analysis]
166 Hausman-Cohen SR, Hausman-Cohen LJ, Williams GE, Bilich CE. Genomics of Detoxification: How Genomics can be Used for Targeting Potential Intervention and Prevention Strategies Including Nutrition for Environmentally Acquired Illness. J Am Coll Nutr 2020;39:94-102. [PMID: 32027241 DOI: 10.1080/07315724.2020.1713654] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
167 Sharp S, Jones K, Workman P. Exploiting Cancer Dependence on Molecular Chaperones. Cancer Drug Design and Discovery. Elsevier; 2014. pp. 239-74. [DOI: 10.1016/b978-0-12-396521-9.00009-7] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
168 Lundberg AP, Francis JM, Pajak M, Parkinson EI, Wycislo KL, Rosol TJ, Brown ME, London CA, Dirikolu L, Hergenrother PJ, Fan TM. Pharmacokinetics and derivation of an anticancer dosing regimen for the novel anti-cancer agent isobutyl-deoxynyboquinone (IB-DNQ), a NQO1 bioactivatable molecule, in the domestic felid species. Invest New Drugs 2017;35:134-44. [PMID: 27975234 DOI: 10.1007/s10637-016-0414-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
169 Wood JM, de Carvalho RL, da Silva Júnior EN. The Different Facets of Metal-Catalyzed C-H Functionalization Involving Quinone Compounds. Chem Rec 2021;21:2604-37. [PMID: 33415843 DOI: 10.1002/tcr.202000163] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
170 Hadley KE, Hendricks DT. Use of NQO1 status as a selective biomarker for oesophageal squamous cell carcinomas with greater sensitivity to 17-AAG. BMC Cancer 2014;14:334. [PMID: 24886060 DOI: 10.1186/1471-2407-14-334] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
171 Sekiguchi M, Seki M, Kawai T, Yoshida K, Yoshida M, Isobe T, Hoshino N, Shirai R, Tanaka M, Souzaki R, Watanabe K, Arakawa Y, Nannya Y, Suzuki H, Fujii Y, Kataoka K, Shiraishi Y, Chiba K, Tanaka H, Shimamura T, Sato Y, Sato-Otsubo A, Kimura S, Kubota Y, Hiwatari M, Koh K, Hayashi Y, Kanamori Y, Kasahara M, Kohashi K, Kato M, Yoshioka T, Matsumoto K, Oka A, Taguchi T, Sanada M, Tanaka Y, Miyano S, Hata K, Ogawa S, Takita J. Integrated multiomics analysis of hepatoblastoma unravels its heterogeneity and provides novel druggable targets. NPJ Precis Oncol 2020;4:20. [PMID: 32656360 DOI: 10.1038/s41698-020-0125-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
172 Hasan MM, Tasmin MS, El-Shehawi AM, Elseehy MM, Reza MA, Haque A. R. vesicarius L. exerts nephroprotective effect against cisplatin-induced oxidative stress. BMC Complement Med Ther 2021;21:225. [PMID: 34481509 DOI: 10.1186/s12906-021-03398-9] [Reference Citation Analysis]
173 Cunha-filho MSS, Martínez-pacheco R, Landin M. Effect of storage conditions on the stability of β-lapachone in solid state and in solution. Journal of Pharmacy and Pharmacology 2013;65:798-806. [DOI: 10.1111/jphp.12040] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
174 Begunov RS, Sokolov AA, Filimonov SI. Synthesis of Quinone Derivatives of Benzannelated Heterocycles with Bridgehead Nitrogen. Russ J Org Chem 2020;56:1383-91. [DOI: 10.1134/s1070428020080084] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
175 Liu K, Tian H, Yu KZ, Shen WY, Mao ZC, Jin CH, Pan HB, He JX. Association between NQO1 Pro187Ser polymorphism and esophageal cancer: a meta-analysis. Tumour Biol 2014;35:2063-8. [PMID: 24213850 DOI: 10.1007/s13277-013-1273-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
176 Sági JC, Kutszegi N, Kelemen A, Fodor LE, Gézsi A, Kovács GT, Erdélyi DJ, Szalai C, Semsei ÁF. Pharmacogenetics of anthracyclines. Pharmacogenomics 2016;17:1075-87. [DOI: 10.2217/pgs-2016-0036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
177 Byun SJ, Son Y, Hwan Cho B, Chung HT, Pae HO. β-Lapachone, a substrate of NAD(P)H:quinone oxidoreductase, induces anti-inflammatory heme oxygenase-1 via AMP-activated protein kinase activation in RAW264.7 macrophages. J Clin Biochem Nutr 2013;52:106-11. [PMID: 23525626 DOI: 10.3164/jcbn.12-80] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
178 Nakamae I, Morimoto T, Shima H, Shionyu M, Fujiki H, Yoneda-Kato N, Yokoyama T, Kanaya S, Kakiuchi K, Shirai T, Meiyanto E, Kato JY. Curcumin Derivatives Verify the Essentiality of ROS Upregulation in Tumor Suppression. Molecules 2019;24:E4067. [PMID: 31717651 DOI: 10.3390/molecules24224067] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
179 Megarity CF, Gill JR, Caraher MC, Stratford IJ, Nolan KA, Timson DJ. The two common polymorphic forms of human NRH-quinone oxidoreductase 2 (NQO2) have different biochemical properties. FEBS Lett 2014;588:1666-72. [PMID: 24631540 DOI: 10.1016/j.febslet.2014.02.063] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
180 Hook I, Sheridan H. Effects of (±)-dunnione and quinone-containing extracts from in vitro-cultured plantlets of Streptocarpus dunnii Hook. f. and a hybrid ‘Ruby’ on seed germination. South African Journal of Botany 2020;131:1-11. [DOI: 10.1016/j.sajb.2020.01.036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
181 Rajagopal T, Seshachalam A, Rathnam KK, Jothi A, Talluri S, Venkatabalasubramanian S, Dunna NR. Impact of xenobiotic-metabolizing gene polymorphisms on breast cancer risk in South Indian women. Breast Cancer Res Treat 2021;186:823-37. [PMID: 33392841 DOI: 10.1007/s10549-020-06028-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]