BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sekiguchi F, Miyamoto Y, Kanaoka D, Ide H, Yoshida S, Ohkubo T, Kawabata A. Endogenous and exogenous hydrogen sulfide facilitates T-type calcium channel currents in Cav3.2-expressing HEK293 cells. Biochem Biophys Res Commun 2014;445:225-9. [PMID: 24508802 DOI: 10.1016/j.bbrc.2014.01.185] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Wei L, Yi L, Song F, Wei C, Wang B, Xi Z. FRET ratiometric probes reveal the chiral-sensitive cysteine-dependent H2S production and regulation in living cells. Sci Rep 2015;4. [DOI: 10.1038/srep04521] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
2 Yakovlev AV, Kurmasheva ED, Giniatullin R, Khalilov I, Sitdikova GF. Hydrogen sulfide inhibits giant depolarizing potentials and abolishes epileptiform activity of neonatal rat hippocampal slices. Neuroscience 2017;340:153-65. [DOI: 10.1016/j.neuroscience.2016.10.051] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
3 Zhang W, Xu C, Yang G, Wu L, Wang R. Interaction of H2S with Calcium Permeable Channels and Transporters. Oxid Med Cell Longev 2015;2015:323269. [PMID: 26078804 DOI: 10.1155/2015/323269] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
4 Kuksis M, Smith PM, Ferguson AV. Hydrogen sulfide regulates cardiovascular function by influencing the excitability of subfornical organ neurons. PLoS One 2014;9:e105772. [PMID: 25144759 DOI: 10.1371/journal.pone.0105772] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
5 Sekiguchi F, Kawara Y, Tsubota M, Kawakami E, Ozaki T, Kawaishi Y, Tomita S, Kanaoka D, Yoshida S, Ohkubo T, Kawabata A. Therapeutic potential of RQ-00311651, a novel T-type Ca2+ channel blocker, in distinct rodent models for neuropathic and visceral pain. Pain 2016;157:1655-65. [DOI: 10.1097/j.pain.0000000000000565] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
6 Mukhopadhyay M, Bera AK. Modulation of acid-sensing ion channels by hydrogen sulfide. Biochem Biophys Res Commun 2020;527:71-5. [PMID: 32446393 DOI: 10.1016/j.bbrc.2020.04.092] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
7 Gerasimova E, Lebedeva J, Yakovlev A, Zefirov A, Giniatullin R, Sitdikova G. Mechanisms of hydrogen sulfide (H2S) action on synaptic transmission at the mouse neuromuscular junction. Neuroscience 2015;303:577-85. [PMID: 26192092 DOI: 10.1016/j.neuroscience.2015.07.036] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
8 Kuksis M, Ferguson AV. Actions of a hydrogen sulfide donor (NaHS) on transient sodium, persistent sodium, and voltage-gated calcium currents in neurons of the subfornical organ. J Neurophysiol 2015;114:1641-51. [PMID: 26180118 DOI: 10.1152/jn.00252.2015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
9 Elies J, Scragg JL, Huang S, Dallas ML, Huang D, MacDougall D, Boyle JP, Gamper N, Peers C. Hydrogen sulfide inhibits Cav3.2 T-type Ca2+ channels. FASEB J 2014;28:5376-87. [PMID: 25183670 DOI: 10.1096/fj.14-257113] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
10 Kubickova J, Hudecova S, Csaderova L, Soltysova A, Lichvarova L, Lencesova L, Babula P, Krizanova O. Slow sulfide donor GYY4137 differentiates NG108-15 neuronal cells through different intracellular transporters than dbcAMP. Neuroscience 2016;325:100-10. [PMID: 27038748 DOI: 10.1016/j.neuroscience.2016.03.057] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
11 Wang XL, Tian B, Huang Y, Peng XY, Chen LH, Li JC, Liu T. Hydrogen sulfide-induced itch requires activation of Cav3.2 T-type calcium channel in mice. Sci Rep 2015;5:16768. [PMID: 26602811 DOI: 10.1038/srep16768] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
12 Fukami K, Sekiguchi F, Yasukawa M, Asano E, Kasamatsu R, Ueda M, Yoshida S, Kawabata A. Functional upregulation of the H2S/Cav3.2 channel pathway accelerates secretory function in neuroendocrine-differentiated human prostate cancer cells. Biochemical Pharmacology 2015;97:300-9. [DOI: 10.1016/j.bcp.2015.08.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
13 Mustafina AN, Yakovlev AV, Gaifullina AS, Weiger TM, Hermann A, Sitdikova GF. Hydrogen sulfide induces hyperpolarization and decreases the exocytosis of secretory granules of rat GH3 pituitary tumor cells. Biochemical and Biophysical Research Communications 2015;465:825-31. [DOI: 10.1016/j.bbrc.2015.08.095] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
14 Tsubota M, Matsui K, Nakano M, Kajitani R, Ishii Y, Tomochika K, Nishikawa Y, Fukushi S, Yamagata A, Sekiguchi F, Okada T, Toyooka N, Kawabata A. Essential role of Cav3.2 T-type calcium channels in butyrate-induced colonic pain and nociceptor hypersensitivity in mice. Eur J Pharmacol 2020;887:173576. [PMID: 32949597 DOI: 10.1016/j.ejphar.2020.173576] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Gur S, Kadowitz PJ, Sikka SC, Peak TC, Hellstrom WJ. Overview of potential molecular targets for hydrogen sulfide: A new strategy for treating erectile dysfunction. Nitric Oxide 2015;50:65-78. [DOI: 10.1016/j.niox.2015.08.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
16 Gui Y, Li A, Qiu B, Chen F, Chen L, Liu D, Chen S, Zhou W, Zhou H. Endogenous CBS–H2S Pathway Contributes to the Development of CCI-Induced Neuropathic Pain. Neurochem Res 2016;41:1381-9. [DOI: 10.1007/s11064-016-1842-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
17 Hiramoto S, Tsubota M, Yamaguchi K, Okazaki K, Sakaegi A, Toriyama Y, Tanaka J, Sekiguchi F, Ishikura H, Wake H, Nishibori M, Nguyen HD, Okada T, Toyooka N, Kawabata A. Cystitis-Related Bladder Pain Involves ATP-Dependent HMGB1 Release from Macrophages and Its Downstream H2S/Cav3.2 Signaling in Mice. Cells 2020;9:E1748. [PMID: 32707767 DOI: 10.3390/cells9081748] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
18 Sekiguchi F, Fujita T, Deguchi T, Yamaoka S, Tomochika K, Tsubota M, Ono S, Horaguchi Y, Ichii M, Ichikawa M, Ueno Y, Koike N, Tanino T, Nguyen HD, Okada T, Nishikawa H, Yoshida S, Ohkubo T, Toyooka N, Murata K, Matsuda H, Kawabata A. Blockade of T-type calcium channels by 6-prenylnaringenin, a hop component, alleviates neuropathic and visceral pain in mice. Neuropharmacology 2018;138:232-44. [PMID: 29913186 DOI: 10.1016/j.neuropharm.2018.06.020] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
19 Elies J, Scragg JL, Boyle JP, Gamper N, Peers C. Regulation of the T-type Ca(2+) channel Cav3.2 by hydrogen sulfide: emerging controversies concerning the role of H2 S in nociception. J Physiol 2016;594:4119-29. [PMID: 26804000 DOI: 10.1113/JP270963] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
20 Matsui K, Tsubota M, Fukushi S, Koike N, Masuda H, Kasanami Y, Miyazaki T, Sekiguchi F, Ohkubo T, Yoshida S, Mukai Y, Oita A, Takada M, Kawabata A. Genetic deletion of Cav3.2 T-type calcium channels abolishes H2S-dependent somatic and visceral pain signaling in C57BL/6 mice. J Pharmacol Sci 2019;140:310-2. [PMID: 31492577 DOI: 10.1016/j.jphs.2019.07.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
21 Wen JY, Zhang J, Chen S, Chen Y, Zhang Y, Ma ZY, Zhang F, Xie WM, Fan YF, Duan JS, Chen ZW. Endothelium-derived hydrogen sulfide acts as a hyperpolarizing factor and exerts neuroprotective effects via activation of large-conductance Ca2+ -activated K+ channels. Br J Pharmacol 2021. [PMID: 34216027 DOI: 10.1111/bph.15607] [Reference Citation Analysis]
22 Chen ZJ, Ai HW. A highly responsive and selective fluorescent probe for imaging physiological hydrogen sulfide. Biochemistry 2014;53:5966-74. [PMID: 25141269 DOI: 10.1021/bi500830d] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 5.6] [Reference Citation Analysis]
23 Kerckhove N, Scanzi J, Pereira B, Ardid D, Dapoigny M. Assessment of the effectiveness and safety of ethosuximide in the treatment of abdominal pain related to irritable bowel syndrome - IBSET: protocol of a randomised, parallel, controlled, double-blind and multicentre trial. BMJ Open 2017;7:e015380. [PMID: 28720615 DOI: 10.1136/bmjopen-2016-015380] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
24 Faris P, Ferulli F, Vismara M, Tanzi M, Negri S, Rumolo A, Lefkimmiatis K, Maestri M, Shekha M, Pedrazzoli P, Guidetti GF, Montagna D, Moccia F. Hydrogen Sulfide-Evoked Intracellular Ca2+ Signals in Primary Cultures of Metastatic Colorectal Cancer Cells. Cancers (Basel) 2020;12:E3338. [PMID: 33187307 DOI: 10.3390/cancers12113338] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
25 Du Nguyen H, Okada T, Kitamura S, Yamaoka S, Horaguchi Y, Kasanami Y, Sekiguchi F, Tsubota M, Yoshida S, Nishikawa H, Kawabata A, Toyooka N. Design and synthesis of novel anti-hyperalgesic agents based on 6-prenylnaringenin as the T-type calcium channel blockers. Bioorg Med Chem 2018;26:4410-27. [PMID: 30031654 DOI: 10.1016/j.bmc.2018.07.023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
26 Ozaki T, Tsubota M, Sekiguchi F, Kawabata A. Involvement of NF-κB in the upregulation of cystathionine-γ-lyase, a hydrogen sulfide-forming enzyme, and bladder pain accompanying cystitis in mice. Clin Exp Pharmacol Physiol 2018;45:355-61. [PMID: 29044685 DOI: 10.1111/1440-1681.12875] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
27 Terada Y, Fujimura M, Nishimura S, Tsubota M, Sekiguchi F, Kawabata A. Roles of Cav3.2 and TRPA1 channels targeted by hydrogen sulfide in pancreatic nociceptive processing in mice with or without acute pancreatitis. J Neurosci Res 2015;93:361-9. [PMID: 25267397 DOI: 10.1002/jnr.23490] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
28 Syhr KM, Boosen M, Hohmann SW, Longen S, Köhler Y, Pfeilschifter J, Beck K, Geisslinger G, Schmidtko A, Kallenborn-gerhardt W. The H 2 S-producing enzyme CSE is dispensable for the processing of inflammatory and neuropathic pain. Brain Research 2015;1624:380-9. [DOI: 10.1016/j.brainres.2015.07.058] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
29 Wallace JL, Wang R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat Rev Drug Discov 2015;14:329-45. [PMID: 25849904 DOI: 10.1038/nrd4433] [Cited by in Crossref: 418] [Cited by in F6Publishing: 387] [Article Influence: 59.7] [Reference Citation Analysis]
30 Fukami K, Kawabata A. Hydrogen sulfide and neuronal differentiation: focus on Ca2+ channels. Nitric Oxide 2015;46:50-4. [PMID: 25660006 DOI: 10.1016/j.niox.2015.02.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
31 Terada Y, Kawabata A. H2S and Pain: A Novel Aspect for Processing of Somatic, Visceral and Neuropathic Pain Signals. In: Moore PK, Whiteman M, editors. Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide. Cham: Springer International Publishing; 2015. pp. 217-30. [DOI: 10.1007/978-3-319-18144-8_11] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
32 Nagpure BV, Bian JS. Brain, Learning, and Memory: Role of H2S in Neurodegenerative Diseases. Handb Exp Pharmacol 2015;230:193-215. [PMID: 26162836 DOI: 10.1007/978-3-319-18144-8_10] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 4.9] [Reference Citation Analysis]
33 Yi L, Wei L, Wang R, Zhang C, Zhang J, Tan T, Xi Z. A Dual-Response Fluorescent Probe Reveals the H 2 O 2 -Induced H 2 S Biogenesis through a Cystathionine β-Synthase Pathway. Chem Eur J 2015;21:15167-72. [DOI: 10.1002/chem.201502832] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 5.7] [Reference Citation Analysis]
34 Wei L, Zhu Z, Li Y, Yi L, Xi Z. A highly selective and fast-response fluorescent probe for visualization of enzymatic H 2 S production in vitro and in living cells. Chem Commun 2015;51:10463-6. [DOI: 10.1039/c5cc03707g] [Cited by in Crossref: 64] [Cited by in F6Publishing: 1] [Article Influence: 9.1] [Reference Citation Analysis]
35 Malik R, Ferguson AV. Hydrogen sulfide depolarizes neurons in the nucleus of the solitary tract of the rat. Brain Res 2016;1633:1-9. [PMID: 26721687 DOI: 10.1016/j.brainres.2015.12.029] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
36 Yu W, Jin H, Tang C, Du J, Zhang Z. Sulfur-containing gaseous signal molecules, ion channels and cardiovascular diseases. Br J Pharmacol 2018;175:1114-25. [PMID: 28430359 DOI: 10.1111/bph.13829] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
37 Kashfi K. The dichotomous role of H2S in cancer cell biology? Déjà vu all over again. Biochem Pharmacol 2018;149:205-23. [PMID: 29397935 DOI: 10.1016/j.bcp.2018.01.042] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
38 Evans JG, Todorovic SM. Redox and trace metal regulation of ion channels in the pain pathway. Biochem J 2015;470:275-80. [PMID: 26341484 DOI: 10.1042/BJ20150522] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
39 Voisin T, Bourinet E, Lory P. Genetic alteration of the metal/redox modulation of Cav3.2 T-type calcium channel reveals its role in neuronal excitability. J Physiol 2016;594:3561-74. [PMID: 26931411 DOI: 10.1113/JP271925] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]