BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Biancur DE, Kimmelman AC. The plasticity of pancreatic cancer metabolism in tumor progression and therapeutic resistance. Biochim Biophys Acta Rev Cancer 2018;1870:67-75. [PMID: 29702208 DOI: 10.1016/j.bbcan.2018.04.011] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 13.5] [Reference Citation Analysis]
Number Citing Articles
1 Andreasson C, Ansari D, Ekbom F, Andersson R. Macropinocytosis: the Achilles' heel of pancreatic cancer? Scand J Gastroenterol 2021;56:177-9. [PMID: 33280476 DOI: 10.1080/00365521.2020.1855471] [Reference Citation Analysis]
2 Farhood B, Najafi M, Salehi E, Hashemi Goradel N, Nashtaei MS, Khanlarkhani N, Mortezaee K. Disruption of the redox balance with either oxidative or anti-oxidative overloading as a promising target for cancer therapy. J Cell Biochem 2019;120:71-6. [PMID: 30203529 DOI: 10.1002/jcb.27594] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
3 Chen C, Wu H, Kong D, Xu Y, Zhang Z, Chen F, Zou L, Li Z, Shui J, Luo H, Liu SH, Yu J, Wang K, Brunicardi FC. Transcriptome sequencing analysis reveals unique and shared antitumor effects of three statins in pancreatic cancer. Oncol Rep 2020;44:2569-80. [PMID: 33125137 DOI: 10.3892/or.2020.7810] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Rawat M, Kadian K, Gupta Y, Kumar A, Chain PSG, Kovbasnjuk O, Kumar S, Parasher G. MicroRNA in Pancreatic Cancer: From Biology to Therapeutic Potential. Genes (Basel) 2019;10:E752. [PMID: 31557962 DOI: 10.3390/genes10100752] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
5 Najafi M, Farhood B, Mortezaee K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 2019;120:2782-2790. [PMID: 30321449 DOI: 10.1002/jcb.27681] [Cited by in Crossref: 82] [Cited by in F6Publishing: 95] [Article Influence: 20.5] [Reference Citation Analysis]
6 Reyes-Castellanos G, Masoud R, Carrier A. Mitochondrial Metabolism in PDAC: From Better Knowledge to New Targeting Strategies. Biomedicines 2020;8:E270. [PMID: 32756381 DOI: 10.3390/biomedicines8080270] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
7 Kalla D, Kind A, Schnieke A. Genetically Engineered Pigs to Study Cancer. Int J Mol Sci 2020;21:E488. [PMID: 31940967 DOI: 10.3390/ijms21020488] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
8 Ahmad RS, Eubank TD, Lukomski S, Boone BA. Immune Cell Modulation of the Extracellular Matrix Contributes to the Pathogenesis of Pancreatic Cancer. Biomolecules 2021;11:901. [PMID: 34204306 DOI: 10.3390/biom11060901] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Srivastava S, Widmann S, Ho C, Nguyen D, Nguyen A, Premaratne A, Gustafsson JÅ, Lin CY. Novel Liver X Receptor Ligand GAC0001E5 Disrupts Glutamine Metabolism and Induces Oxidative Stress in Pancreatic Cancer Cells. Int J Mol Sci 2020;21:E9622. [PMID: 33348693 DOI: 10.3390/ijms21249622] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Schlick K, Kiem D, Greil R. Recent Advances in Pancreatic Cancer: Novel Prognostic Biomarkers and Targeted Therapy-A Review of the Literature. Biomolecules 2021;11:1469. [PMID: 34680101 DOI: 10.3390/biom11101469] [Reference Citation Analysis]
11 Olson JL, Bold RJ. Currently available first-line drug therapies for treating pancreatic cancer. Expert Opin Pharmacother 2018;19:1927-40. [PMID: 30325679 DOI: 10.1080/14656566.2018.1509954] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
12 Ozcan SC, Mutlu A, Altunok TH, Gurpinar Y, Sarioglu A, Guler S, Muchut RJ, Iglesias AA, Celikler S, Campbell PM, Yalcin A. Simultaneous inhibition of PFKFB3 and GLS1 selectively kills KRAS-transformed pancreatic cells. Biochem Biophys Res Commun 2021;571:118-24. [PMID: 34325126 DOI: 10.1016/j.bbrc.2021.07.070] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Chen RJ, Lyu YJ, Chen YY, Lee YC, Pan MH, Ho YS, Wang YJ. Chloroquine Potentiates the Anticancer Effect of Pterostilbene on Pancreatic Cancer by Inhibiting Autophagy and Downregulating the RAGE/STAT3 Pathway. Molecules 2021;26:6741. [PMID: 34771150 DOI: 10.3390/molecules26216741] [Reference Citation Analysis]
14 Biancur DE, Kapner KS, Yamamoto K, Banh RS, Neggers JE, Sohn ASW, Wu W, Manguso RT, Brown A, Root DE, Aguirre AJ, Kimmelman AC. Functional Genomics Identifies Metabolic Vulnerabilities in Pancreatic Cancer. Cell Metab 2021;33:199-210.e8. [PMID: 33152323 DOI: 10.1016/j.cmet.2020.10.018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
15 Arner EN, Du W, Brekken RA. Behind the Wheel of Epithelial Plasticity in KRAS-Driven Cancers. Front Oncol 2019;9:1049. [PMID: 31681587 DOI: 10.3389/fonc.2019.01049] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
16 Palm W. Metabolic plasticity allows cancer cells to thrive under nutrient starvation. Proc Natl Acad Sci U S A 2021;118:e2102057118. [PMID: 33722932 DOI: 10.1073/pnas.2102057118] [Reference Citation Analysis]
17 Słotwiński R, Słotwińska SM. Pancreatic cancer and adaptive metabolism in a nutrient-deficient environment. Cent Eur J Immunol 2021;46:388-94. [PMID: 34764812 DOI: 10.5114/ceji.2021.109693] [Reference Citation Analysis]
18 Evers TMJ, Holt LJ, Alberti S, Mashaghi A. Reciprocal regulation of cellular mechanics and metabolism. Nat Metab 2021;3:456-68. [PMID: 33875882 DOI: 10.1038/s42255-021-00384-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Zhao R, Ni J, Lu S, Jiang S, You L, Liu H, Shou J, Zhai C, Zhang W, Shao S, Yang X, Pan H, Han W. CircUBAP2-mediated competing endogenous RNA network modulates tumorigenesis in pancreatic adenocarcinoma. Aging (Albany NY) 2019;11:8484-501. [PMID: 31584877 DOI: 10.18632/aging.102334] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
20 Fesler A, Ju J. Development of microRNA-based therapy for pancreatic cancer. J Pancreatol 2019;2:147-51. [PMID: 32133215 DOI: 10.1097/jp9.0000000000000029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
21 Liu X, Gündel B, Li X, Liu J, Wright A, Löhr M, Arvidsson G, Heuchel R. 3D heterospecies spheroids of pancreatic stroma and cancer cells demonstrate key phenotypes of pancreatic ductal adenocarcinoma. Transl Oncol 2021;14:101107. [PMID: 33946033 DOI: 10.1016/j.tranon.2021.101107] [Reference Citation Analysis]
22 Huo J, Wu L, Zang Y. Development and Validation of a Novel Metabolic-Related Signature Predicting Overall Survival for Pancreatic Cancer. Front Genet 2021;12:561254. [PMID: 34122496 DOI: 10.3389/fgene.2021.561254] [Reference Citation Analysis]
23 Tang R, Liu X, Wang W, Hua J, Xu J, Liang C, Meng Q, Liu J, Zhang B, Yu X, Shi S. Identification of the Roles of a Stemness Index Based on mRNA Expression in the Prognosis and Metabolic Reprograming of Pancreatic Ductal Adenocarcinoma. Front Oncol 2021;11:643465. [PMID: 33912458 DOI: 10.3389/fonc.2021.643465] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Qiao S, Koh SB, Vivekanandan V, Salunke D, Patra KC, Zaganjor E, Ross K, Mizukami Y, Jeanfavre S, Chen A, Mino-Kenudson M, Ramaswamy S, Clish C, Haigis M, Bardeesy N, Ellisen LW. REDD1 loss reprograms lipid metabolism to drive progression of RAS mutant tumors. Genes Dev. 2020;34:751-766. [PMID: 32273287 DOI: 10.1101/gad.335166.119] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
25 Suzuki T, Otsuka M, Seimiya T, Iwata T, Kishikawa T, Koike K. The biological role of metabolic reprogramming in pancreatic cancer. MedComm (2020) 2020;1:302-10. [PMID: 34766124 DOI: 10.1002/mco2.37] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Qin C, Yang G, Yang J, Ren B, Wang H, Chen G, Zhao F, You L, Wang W, Zhao Y. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol Cancer 2020;19:50. [PMID: 32122374 DOI: 10.1186/s12943-020-01169-7] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 14.5] [Reference Citation Analysis]
27 Zhuang H, Wang S, Chen B, Zhang Z, Ma Z, Li Z, Liu C, Zhou Z, Gong Y, Huang S, Hou B, Chen Y, Zhang C. Prognostic Stratification Based on HIF-1 Signaling for Evaluating Hypoxic Status and Immune Infiltration in Pancreatic Ductal Adenocarcinomas. Front Immunol 2021;12:790661. [PMID: 34925373 DOI: 10.3389/fimmu.2021.790661] [Reference Citation Analysis]
28 Arpalahti L, Haglund C, Holmberg CI. Proteostasis Dysregulation in Pancreatic Cancer. Adv Exp Med Biol 2020;1233:101-15. [PMID: 32274754 DOI: 10.1007/978-3-030-38266-7_4] [Reference Citation Analysis]
29 Chang CK, Shih TT, Tien YW, Chang MC, Chang YT, Yang SH, Cheng MF, Chen BB. Metabolic Alterations in Pancreatic Cancer Detected by In Vivo 1H-MR Spectroscopy: Correlation with Normal Pancreas, PET Metabolic Activity, Clinical Stages, and Survival Outcome. Diagnostics (Basel) 2021;11:1541. [PMID: 34573881 DOI: 10.3390/diagnostics11091541] [Reference Citation Analysis]
30 Ma J, Xue H, He LH, Wang LY, Wang XJ, Li X, Zhang L. The Role and Mechanism of Autophagy in Pancreatic Cancer: An Update Review. Cancer Manag Res 2021;13:8231-40. [PMID: 34754243 DOI: 10.2147/CMAR.S328786] [Reference Citation Analysis]
31 Derle A, De Santis MC, Gozzelino L, Ratto E, Martini M. The role of metabolic adaptation to nutrient stress in pancreatic cancer. Cell Stress 2018;2:332-9. [PMID: 31225458 DOI: 10.15698/cst2018.12.166] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
32 Wang Z, Jiang J, Qin T, Xiao Y, Han L. EIF5A regulates proliferation and chemoresistance in pancreatic cancer through the sHH signalling pathway. J Cell Mol Med 2019;23:2678-88. [PMID: 30761741 DOI: 10.1111/jcmm.14167] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
33 Cayron C, Guillermet-Guibert J. The type of KRAS mutation drives PI3Kα/γ signalling dependency: Implication for the choice of targeted therapy in pancreatic adenocarcinoma patients. Clin Res Hepatol Gastroenterol 2021;45:101473. [PMID: 32593694 DOI: 10.1016/j.clinre.2020.05.021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
34 Wu G, Yang Y, Zhu Y, Li Y, Zhai Z, An L, Liu M, Zheng Y, Wang Y, Zhou Y, Guo Q. Comprehensive Analysis to Identify the Epithelial-Mesenchymal Transition-Related Immune Signatures as a Prognostic and Therapeutic Biomarkers in Hepatocellular Carcinoma. Front Surg 2021;8:742443. [PMID: 34722623 DOI: 10.3389/fsurg.2021.742443] [Reference Citation Analysis]
35 Tuerhong A, Xu J, Shi S, Tan Z, Meng Q, Hua J, Liu J, Zhang B, Wang W, Yu X, Liang C. Overcoming chemoresistance by targeting reprogrammed metabolism: the Achilles' heel of pancreatic ductal adenocarcinoma. Cell Mol Life Sci 2021;78:5505-26. [PMID: 34131808 DOI: 10.1007/s00018-021-03866-y] [Reference Citation Analysis]
36 Stopa KB, Kusiak AA, Szopa MD, Ferdek PE, Jakubowska MA. Pancreatic Cancer and Its Microenvironment-Recent Advances and Current Controversies. Int J Mol Sci 2020;21:E3218. [PMID: 32370075 DOI: 10.3390/ijms21093218] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
37 Chen J, Qiu M, Zhang S, Li B, Li D, Huang X, Qian Z, Zhao J, Wang Z, Tang D. A calcium phosphate drug carrier loading with 5-fluorouracil achieving a synergistic effect for pancreatic cancer therapy. J Colloid Interface Sci 2021;605:263-73. [PMID: 34332405 DOI: 10.1016/j.jcis.2021.07.080] [Reference Citation Analysis]
38 Speck-planche A. Multicellular Target QSAR Model for Simultaneous Prediction and Design of Anti-Pancreatic Cancer Agents. ACS Omega 2019;4:3122-32. [DOI: 10.1021/acsomega.8b03693] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
39 Woitek R, Gallagher FA. The use of hyperpolarised 13C-MRI in clinical body imaging to probe cancer metabolism. Br J Cancer 2021;124:1187-98. [PMID: 33504974 DOI: 10.1038/s41416-020-01224-6] [Reference Citation Analysis]
40 Lee JH, Cho YR, Kim JH, Kim J, Nam HY, Kim SW, Son J. Branched-chain amino acids sustain pancreatic cancer growth by regulating lipid metabolism. Exp Mol Med 2019;51:1-11. [PMID: 31784505 DOI: 10.1038/s12276-019-0350-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
41 Kim JH, Lee J, Cho YR, Lee SY, Sung GJ, Shin DM, Choi KC, Son J. TFEB Supports Pancreatic Cancer Growth through the Transcriptional Regulation of Glutaminase. Cancers (Basel) 2021;13:483. [PMID: 33513833 DOI: 10.3390/cancers13030483] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Stødkilde‐jørgensen H, Laustsen C, Hansen ESS, Schulte R, Ardenkjaer‐larsen JH, Comment A, Frøkiær J, Ringgaard S, Bertelsen LB, Ladekarl M, Weber B. Pilot Study Experiences With Hyperpolarized [1‐ 13 C]pyruvate MRI in Pancreatic Cancer Patients. J Magn Reson Imaging 2019;51:961-3. [DOI: 10.1002/jmri.26888] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
43 Sun Y, Ren D, Yang C, Yang W, Zhao J, Zhou Y, Jin X, Wu H. TRIM15 promotes the invasion and metastasis of pancreatic cancer cells by mediating APOA1 ubiquitination and degradation. Biochim Biophys Acta Mol Basis Dis 2021;1867:166213. [PMID: 34311082 DOI: 10.1016/j.bbadis.2021.166213] [Reference Citation Analysis]
44 Fu X, Tang N, Xie WQ, Mao L, Qiu YD. MUC1 promotes glycolysis through inhibiting BRCA1 expression in pancreatic cancer. Chin J Nat Med 2020;18:178-85. [PMID: 32245587 DOI: 10.1016/S1875-5364(20)30019-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
45 Xu R, Yang J, Ren B, Wang H, Yang G, Chen Y, You L, Zhao Y. Reprogramming of Amino Acid Metabolism in Pancreatic Cancer: Recent Advances and Therapeutic Strategies. Front Oncol 2020;10:572722. [PMID: 33117704 DOI: 10.3389/fonc.2020.572722] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
46 Carvalho TMA, Di Molfetta D, Greco MR, Koltai T, Alfarouk KO, Reshkin SJ, Cardone RA. Tumor Microenvironment Features and Chemoresistance in Pancreatic Ductal Adenocarcinoma: Insights into Targeting Physicochemical Barriers and Metabolism as Therapeutic Approaches. Cancers (Basel) 2021;13:6135. [PMID: 34885243 DOI: 10.3390/cancers13236135] [Reference Citation Analysis]
47 Chen Q, Pu N, Yin H, Zhang J, Zhao G, Lou W, Wu W. A metabolism-relevant signature as a predictor for prognosis and therapeutic response in pancreatic cancer. Exp Biol Med (Maywood) 2021;:15353702211049220. [PMID: 34632851 DOI: 10.1177/15353702211049220] [Reference Citation Analysis]
48 Schlick K, Hohla F, Hamacher F, Hackl H, Hufnagl C, Markus S, Magnes T, Gampenrieder SP, Melchardt T, Stättner S, Hauser-Kronberger C, Greil R, Rinnerthaler G. Overcoming negative predictions of microRNA expressions to gemcitabine response with FOLFIRINOX in advanced pancreatic cancer patients. Future Sci OA 2020;7:FSO644. [PMID: 33437513 DOI: 10.2144/fsoa-2020-0128] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Słotwiński R, Lech G, Słotwińska SM. Molecular aspects of pancreatic cancer: focus on reprogrammed metabolism in a nutrient-deficient environment and potential therapeutic targets. Cent Eur J Immunol 2021;46:258-63. [PMID: 34764796 DOI: 10.5114/ceji.2021.107027] [Reference Citation Analysis]
50 Moro L. Mitochondrial DNA and MitomiR Variations in Pancreatic Cancer: Potential Diagnostic and Prognostic Biomarkers. Int J Mol Sci 2021;22:9692. [PMID: 34575852 DOI: 10.3390/ijms22189692] [Reference Citation Analysis]
51 Principe DR, Korc M, Kamath SD, Munshi HG, Rana A. Trials and tribulations of pancreatic cancer immunotherapy. Cancer Lett 2021;504:1-14. [PMID: 33549709 DOI: 10.1016/j.canlet.2021.01.031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
52 Najafi M, Goradel NH, Farhood B, Salehi E, Solhjoo S, Toolee H, Kharazinejad E, Mortezaee K. Tumor microenvironment: Interactions and therapy. J Cell Physiol. 2019;234:5700-5721. [PMID: 30378106 DOI: 10.1002/jcp.27425] [Cited by in Crossref: 71] [Cited by in F6Publishing: 74] [Article Influence: 17.8] [Reference Citation Analysis]
53 Atay S. Integrated transcriptome meta-analysis of pancreatic ductal adenocarcinoma and matched adjacent pancreatic tissues. PeerJ 2020;8:e10141. [PMID: 33194391 DOI: 10.7717/peerj.10141] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
54 Turkez H, Tozlu OO, Arslan ME, Mardinoglu A. Safety and Efficacy Assessments to Take Antioxidants in Glioblastoma Therapy: From In Vitro Experiences to Animal and Clinical Studies. Neurochem Int 2021;150:105168. [PMID: 34450218 DOI: 10.1016/j.neuint.2021.105168] [Reference Citation Analysis]
55 Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci. 2019;234:116781. [PMID: 31430455 DOI: 10.1016/j.lfs.2019.116781] [Cited by in Crossref: 59] [Cited by in F6Publishing: 65] [Article Influence: 19.7] [Reference Citation Analysis]
56 Xia T, Chen XY, Zhang YN. MicroRNAs as biomarkers and perspectives in the therapy of pancreatic cancer. Mol Cell Biochem 2021. [PMID: 34324119 DOI: 10.1007/s11010-021-04233-y] [Reference Citation Analysis]
57 Masoud R, Reyes-Castellanos G, Lac S, Garcia J, Dou S, Shintu L, Abdel Hadi N, Gicquel T, El Kaoutari A, Diémé B, Tranchida F, Cormareche L, Borge L, Gayet O, Pasquier E, Dusetti N, Iovanna J, Carrier A. Targeting Mitochondrial Complex I Overcomes Chemoresistance in High OXPHOS Pancreatic Cancer. Cell Rep Med 2020;1:100143. [PMID: 33294863 DOI: 10.1016/j.xcrm.2020.100143] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
58 Gampala S, Shah F, Lu X, Moon HR, Babb O, Umesh Ganesh N, Sandusky G, Hulsey E, Armstrong L, Mosely AL, Han B, Ivan M, Yeh JJ, Kelley MR, Zhang C, Fishel ML. Ref-1 redox activity alters cancer cell metabolism in pancreatic cancer: exploiting this novel finding as a potential target. J Exp Clin Cancer Res 2021;40:251. [PMID: 34376225 DOI: 10.1186/s13046-021-02046-x] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
59 Rademaker G, Costanza B, Anania S, Agirman F, Maloujahmoum N, Di Valentin E, Goval JJ, Bellahcène A, Castronovo V, Peulen O. Myoferlin Contributes to the Metastatic Phenotype of Pancreatic Cancer Cells by Enhancing Their Migratory Capacity through the Control of Oxidative Phosphorylation. Cancers (Basel) 2019;11:E853. [PMID: 31248212 DOI: 10.3390/cancers11060853] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]