BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Alexeev CS, Drenichev MS, Dorinova EO, Esipov RS, Kulikova IV, Mikhailov SN. Use of nucleoside phosphorylases for the preparation of 5-modified pyrimidine ribonucleosides. Biochim Biophys Acta Proteins Proteom 2020;1868:140292. [PMID: 31676450 DOI: 10.1016/j.bbapap.2019.140292] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
Number Citing Articles
1 Kaspar F, Stone MRL, Neubauer P, Kurreck A. Route efficiency assessment and review of the synthesis of β-nucleosides via N -glycosylation of nucleobases. Green Chem 2021;23:37-50. [DOI: 10.1039/d0gc02665d] [Cited by in Crossref: 6] [Article Influence: 6.0] [Reference Citation Analysis]
2 Hellendahl KF, Kaspar F, Zhou X, Yang Z, Huang Z, Neubauer P, Kurreck A. Optimized Biocatalytic Synthesis of 2-Selenopyrimidine Nucleosides by Transglycosylation*. Chembiochem 2021;22:2002-9. [PMID: 33594780 DOI: 10.1002/cbic.202100067] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Gong Y, Chen L, Zhang W, Salter R. Transglycosylation in the Modification and Isotope Labeling of Pyrimidine Nucleosides. Org Lett 2020;22:5577-81. [PMID: 32628494 DOI: 10.1021/acs.orglett.0c01941] [Reference Citation Analysis]
4 Kaspar F, Neubauer P, Kurreck A. The Peculiar Case of the Hyper-thermostable Pyrimidine Nucleoside Phosphorylase from Thermus thermophilus*. Chembiochem 2021;22:1385-90. [PMID: 33258231 DOI: 10.1002/cbic.202000679] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
5 Artsemyeva JN, Remeeva EA, Buravskaya TN, Konstantinova ID, Esipov RS, Miroshnikov AI, Litvinko NM, Mikhailopulo IA. Anion exchange resins in phosphate form as versatile carriers for the reactions catalyzed by nucleoside phosphorylases. Beilstein J Org Chem 2020;16:2607-22. [PMID: 33133292 DOI: 10.3762/bjoc.16.212] [Reference Citation Analysis]