BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pancsa R, Schad E, Tantos A, Tompa P. Emergent functions of proteins in non-stoichiometric supramolecular assemblies. Biochim Biophys Acta Proteins Proteom 2019;1867:970-9. [PMID: 30826453 DOI: 10.1016/j.bbapap.2019.02.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Babinchak WM, Surewicz WK. Liquid-Liquid Phase Separation and Its Mechanistic Role in Pathological Protein Aggregation. J Mol Biol 2020;432:1910-25. [PMID: 32169484 DOI: 10.1016/j.jmb.2020.03.004] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 18.5] [Reference Citation Analysis]
2 Munari F, D'Onofrio M, Assfalg M. Solution NMR insights into dynamic supramolecular assemblies of disordered amyloidogenic proteins. Arch Biochem Biophys 2020;683:108304. [PMID: 32097611 DOI: 10.1016/j.abb.2020.108304] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Marin F. Mollusc shellomes: Past, present and future. J Struct Biol 2020;212:107583. [PMID: 32721585 DOI: 10.1016/j.jsb.2020.107583] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
4 Singh A, Phogat J, Yadav A, Dabur R. The dependency of autophagy and ubiquitin proteasome system during skeletal muscle atrophy. Biophys Rev 2021;13:203-19. [PMID: 33927785 DOI: 10.1007/s12551-021-00789-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Orti F, Navarro AM, Rabinovich A, Wodak SJ, Marino-Buslje C. Insight into membraneless organelles and their associated proteins: Drivers, Clients and Regulators. Comput Struct Biotechnol J 2021;19:3964-77. [PMID: 34377363 DOI: 10.1016/j.csbj.2021.06.042] [Reference Citation Analysis]
6 Popov AV, Grin IR, Dvornikova AP, Matkarimov BT, Groisman R, Saparbaev M, Zharkov DO. Reading Targeted DNA Damage in the Active Demethylation Pathway: Role of Accessory Domains of Eukaryotic AP Endonucleases and Thymine-DNA Glycosylases. Journal of Molecular Biology 2020;432:1747-68. [DOI: 10.1016/j.jmb.2019.12.020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
7 Harami GM, Kovács ZJ, Pancsa R, Pálinkás J, Baráth V, Tárnok K, Málnási-Csizmadia A, Kovács M. Phase separation by ssDNA binding protein controlled via protein-protein and protein-DNA interactions. Proc Natl Acad Sci U S A 2020;117:26206-17. [PMID: 33020264 DOI: 10.1073/pnas.2000761117] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
8 Parisi G, Palopoli N, Tosatto SCE, Fornasari MS, Tompa P. "Protein" no longer means what it used to. Curr Res Struct Biol 2021;3:146-52. [PMID: 34308370 DOI: 10.1016/j.crstbi.2021.06.002] [Reference Citation Analysis]
9 Farahi N, Lazar T, Wodak SJ, Tompa P, Pancsa R. Integration of Data from Liquid-Liquid Phase Separation Databases Highlights Concentration and Dosage Sensitivity of LLPS Drivers. Int J Mol Sci 2021;22:3017. [PMID: 33809541 DOI: 10.3390/ijms22063017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
10 Bratek-Skicki A, Pancsa R, Meszaros B, Van Lindt J, Tompa P. A guide to regulation of the formation of biomolecular condensates. FEBS J 2020;287:1924-35. [PMID: 32080961 DOI: 10.1111/febs.15254] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 10.5] [Reference Citation Analysis]
11 Sołtys K, Tarczewska A, Bystranowska D, Sozańska N. Getting Closer to Decrypting the Phase Transitions of Bacterial Biomolecules. Biomolecules 2022;12:907. [DOI: 10.3390/biom12070907] [Reference Citation Analysis]
12 Ahmed J, Meszaros A, Lazar T, Tompa P. DNA-binding domain as the minimal region driving RNA-dependent liquid-liquid phase separation of androgen receptor. Protein Sci 2021;30:1380-92. [PMID: 33938068 DOI: 10.1002/pro.4100] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Rotem-Bamberger S, Fahoum J, Keinan-Adamsky K, Tsaban T, Avraham O, Shalev DE, Chill JH, Schueler-Furman O. Structural insights into the role of the WW2 domain on tandem WW/PPxY-motif interactions of oxidoreductase WWOX. J Biol Chem 2022;:102145. [PMID: 35716775 DOI: 10.1016/j.jbc.2022.102145] [Reference Citation Analysis]
14 Cui H, Yang H, Abdel-Samie MA, Siva S, Lin L. Controlled-release casein/cinnamon essential oil nanospheres for the inactivation of Campylobacter jejuni in duck. Int J Food Microbiol 2021;341:109074. [PMID: 33508583 DOI: 10.1016/j.ijfoodmicro.2021.109074] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 André AAM, Spruijt E. Liquid-Liquid Phase Separation in Crowded Environments. Int J Mol Sci 2020;21:E5908. [PMID: 32824618 DOI: 10.3390/ijms21165908] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
16 Bianchi G, Longhi S, Grandori R, Brocca S. Relevance of Electrostatic Charges in Compactness, Aggregation, and Phase Separation of Intrinsically Disordered Proteins. Int J Mol Sci. 2020;21. [PMID: 32867340 DOI: 10.3390/ijms21176208] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
17 Babinchak WM, Dumm BK, Venus S, Boyko S, Putnam AA, Jankowsky E, Surewicz WK. Small molecules as potent biphasic modulators of protein liquid-liquid phase separation. Nat Commun 2020;11:5574. [PMID: 33149109 DOI: 10.1038/s41467-020-19211-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
18 Sapra KT, Qin Z, Dubrovsky-Gaupp A, Aebi U, Müller DJ, Buehler MJ, Medalia O. Nonlinear mechanics of lamin filaments and the meshwork topology build an emergent nuclear lamina. Nat Commun 2020;11:6205. [PMID: 33277502 DOI: 10.1038/s41467-020-20049-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
19 Pancsa R, Vranken W, Mészáros B. Computational resources for identifying and describing proteins driving liquid-liquid phase separation. Brief Bioinform 2021:bbaa408. [PMID: 33517364 DOI: 10.1093/bib/bbaa408] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
20 Barracchia CG, Parolini F, Volpe A, Gori D, Munari F, Capaldi S, D'Onofrio M, Assfalg M. Camouflaged Fluorescent Silica Nanoparticles Target Aggregates and Condensates of the Amyloidogenic Protein Tau. Bioconjug Chem 2022. [PMID: 35686491 DOI: 10.1021/acs.bioconjchem.2c00168] [Reference Citation Analysis]
21 Sołtys K, Ożyhar A. Transcription Regulators and Membraneless Organelles Challenges to Investigate Them. Int J Mol Sci 2021;22:12758. [PMID: 34884563 DOI: 10.3390/ijms222312758] [Reference Citation Analysis]
22 Parolini F, Tira R, Barracchia CG, Munari F, Capaldi S, D'Onofrio M, Assfalg M. Ubiquitination of Alzheimer's-related tau protein affects liquid-liquid phase separation in a site- and cofactor-dependent manner. Int J Biol Macromol 2022;201:173-81. [PMID: 35016968 DOI: 10.1016/j.ijbiomac.2021.12.191] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Mészáros B, Erdős G, Szabó B, Schád É, Tantos Á, Abukhairan R, Horváth T, Murvai N, Kovács OP, Kovács M, Tosatto SCE, Tompa P, Dosztányi Z, Pancsa R. PhaSePro: the database of proteins driving liquid-liquid phase separation. Nucleic Acids Res 2020;48:D360-7. [PMID: 31612960 DOI: 10.1093/nar/gkz848] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 11.5] [Reference Citation Analysis]
24 Li J, Zhang M, Ma W, Yang B, Lu H, Zhou F, Zhang L. Post-translational modifications in liquid-liquid phase separation: a comprehensive review. Mol Biomed 2022;3:13. [PMID: 35543798 DOI: 10.1186/s43556-022-00075-2] [Reference Citation Analysis]
25 Bienz M. Head-to-Tail Polymerization in the Assembly of Biomolecular Condensates. Cell 2020;182:799-811. [DOI: 10.1016/j.cell.2020.07.037] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
26 Raasakka A, Kursula P. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells 2020;9:E470. [PMID: 32085570 DOI: 10.3390/cells9020470] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Shoup D, Roth A, Thapa R, Puchalla J, Rye HS. Development and application of multicolor burst analysis spectroscopy. Biophys J 2021;120:2192-204. [PMID: 33831389 DOI: 10.1016/j.bpj.2021.03.035] [Reference Citation Analysis]
28 Farhadi SA, Liu R, Becker MW, Phelps EA, Hudalla GA. Physical tuning of galectin-3 signaling. Proc Natl Acad Sci U S A 2021;118:e2024117118. [PMID: 33941700 DOI: 10.1073/pnas.2024117118] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Tong X, Tang R, Xu J, Wang W, Zhao Y, Yu X, Shi S. Liquid-liquid phase separation in tumor biology. Signal Transduct Target Ther 2022;7:221. [PMID: 35803926 DOI: 10.1038/s41392-022-01076-x] [Reference Citation Analysis]
30 Baker K, Kwok E, Reardon P, Rodriguez DJ, Rolland AD, Wilson JW, Prell JS, Nyarko A. Yorkie-Warts Complexes are an Ensemble of Interconverting Conformers Formed by Multivalent Interactions. J Mol Biol 2021;433:166776. [PMID: 33383033 DOI: 10.1016/j.jmb.2020.166776] [Reference Citation Analysis]