BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hotze EM, Tweten RK. Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim Biophys Acta 2012;1818:1028-38. [PMID: 21835159 DOI: 10.1016/j.bbamem.2011.07.036] [Cited by in Crossref: 130] [Cited by in F6Publishing: 120] [Article Influence: 11.8] [Reference Citation Analysis]
Number Citing Articles
1 Ota K, Leonardi A, Mikelj M, Skočaj M, Wohlschlager T, Künzler M, Aebi M, Narat M, Križaj I, Anderluh G, Sepčić K, Maček P. Membrane cholesterol and sphingomyelin, and ostreolysin A are obligatory for pore-formation by a MACPF/CDC-like pore-forming protein, pleurotolysin B. Biochimie 2013;95:1855-64. [DOI: 10.1016/j.biochi.2013.06.012] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 5.6] [Reference Citation Analysis]
2 Chen J, Theoret JR, Shrestha A, Smedley JG 3rd, McClane BA. Cysteine-scanning mutagenesis supports the importance of Clostridium perfringens enterotoxin amino acids 80 to 106 for membrane insertion and pore formation. Infect Immun 2012;80:4078-88. [PMID: 22966051 DOI: 10.1128/IAI.00069-12] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
3 Kulma M, Kacprzyk-Stokowiec A, Traczyk G, Kwiatkowska K, Dadlez M. Fine-tuning of the stability of β-strands by Y181 in perfringolysin O directs the prepore to pore transition. Biochim Biophys Acta Biomembr 2019;1861:110-22. [PMID: 30463694 DOI: 10.1016/j.bbamem.2018.08.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
4 Hernández-Castañeda MA, Lavergne M, Casanova P, Nydegger B, Merten C, Subramanian BY, Matthey P, Lannes N, Mantel PY, Walch M. A Profound Membrane Reorganization Defines Susceptibility of Plasmodium falciparum Infected Red Blood Cells to Lysis by Granulysin and Perforin. Front Immunol 2021;12:643746. [PMID: 34093532 DOI: 10.3389/fimmu.2021.643746] [Reference Citation Analysis]
5 Vita GM, De Simone G, Leboffe L, Montagnani F, Mariotti D, Di Bella S, Luzzati R, Gori A, Ascenzi P, di Masi A. Human Serum Albumin Binds Streptolysin O (SLO) Toxin Produced by Group A Streptococcus and Inhibits Its Cytotoxic and Hemolytic Effects. Front Immunol 2020;11:507092. [PMID: 33363530 DOI: 10.3389/fimmu.2020.507092] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Lawrence SL, Feil SC, Holien JK, Kuiper MJ, Doughty L, Dolezal O, Mulhern TD, Tweten RK, Parker MW. Manipulating the Lewis antigen specificity of the cholesterol-dependent cytolysin lectinolysin. Front Immunol 2012;3:330. [PMID: 23181061 DOI: 10.3389/fimmu.2012.00330] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
7 Schubert E, Vetter IR, Prumbaum D, Penczek PA, Raunser S. Membrane insertion of α-xenorhabdolysin in near-atomic detail. Elife 2018;7:e38017. [PMID: 30010541 DOI: 10.7554/eLife.38017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.8] [Reference Citation Analysis]
8 Ostolaza H, González-Bullón D, Uribe KB, Martín C, Amuategi J, Fernandez-Martínez X. Membrane Permeabilization by Pore-Forming RTX Toxins: What Kind of Lesions Do These Toxins Form? Toxins (Basel) 2019;11:E354. [PMID: 31216745 DOI: 10.3390/toxins11060354] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
9 Putonti C, Thomas-White K, Crum E, Hilt EE, Price TK, Wolfe AJ. Genome Investigation of Urinary Gardnerella Strains and Their Relationship to Isolates of the Vaginal Microbiota. mSphere 2021;6:e00154-21. [PMID: 33980674 DOI: 10.1128/mSphere.00154-21] [Reference Citation Analysis]
10 Taylor SD, Sanders ME, Tullos NA, Stray SJ, Norcross EW, McDaniel LS, Marquart ME. The cholesterol-dependent cytolysin pneumolysin from Streptococcus pneumoniae binds to lipid raft microdomains in human corneal epithelial cells. PLoS One 2013;8:e61300. [PMID: 23577214 DOI: 10.1371/journal.pone.0061300] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
11 Alvarez C, Soto C, Cabezas S, Alvarado-Mesén J, Laborde R, Pazos F, Ros U, Hernández AM, Lanio ME. Panorama of the Intracellular Molecular Concert Orchestrated by Actinoporins, Pore-Forming Toxins from Sea Anemones. Toxins (Basel) 2021;13:567. [PMID: 34437438 DOI: 10.3390/toxins13080567] [Reference Citation Analysis]
12 Dunstone MA, Tweten RK. Packing a punch: the mechanism of pore formation by cholesterol dependent cytolysins and membrane attack complex/perforin-like proteins. Curr Opin Struct Biol 2012;22:342-9. [PMID: 22658510 DOI: 10.1016/j.sbi.2012.04.008] [Cited by in Crossref: 83] [Cited by in F6Publishing: 73] [Article Influence: 8.3] [Reference Citation Analysis]
13 Nestorovich EM, Bezrukov SM. Obstructing toxin pathways by targeted pore blockage. Chem Rev 2012;112:6388-430. [PMID: 23057504 DOI: 10.1021/cr300141q] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
14 van Pee K, Neuhaus A, D'Imprima E, Mills DJ, Kühlbrandt W, Yildiz Ö. CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin. Elife 2017;6:e23644. [PMID: 28323617 DOI: 10.7554/eLife.23644] [Cited by in Crossref: 78] [Cited by in F6Publishing: 44] [Article Influence: 15.6] [Reference Citation Analysis]
15 Rojko N, Dalla Serra M, Maček P, Anderluh G. Pore formation by actinoporins, cytolysins from sea anemones. Biochim Biophys Acta 2016;1858:446-56. [PMID: 26351738 DOI: 10.1016/j.bbamem.2015.09.007] [Cited by in Crossref: 71] [Cited by in F6Publishing: 66] [Article Influence: 10.1] [Reference Citation Analysis]
16 Cajnko MM, Marušić M, Kisovec M, Rojko N, Benčina M, Caserman S, Anderluh G. Listeriolysin O Affects the Permeability of Caco-2 Monolayer in a Pore-Dependent and Ca2+-Independent Manner. PLoS One 2015;10:e0130471. [PMID: 26087154 DOI: 10.1371/journal.pone.0130471] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
17 Gilbert RJ. Protein-lipid interactions and non-lamellar lipidic structures in membrane pore formation and membrane fusion. Biochim Biophys Acta 2016;1858:487-99. [PMID: 26654785 DOI: 10.1016/j.bbamem.2015.11.026] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 6.6] [Reference Citation Analysis]
18 Seveau S. Multifaceted activity of listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes. Subcell Biochem 2014;80:161-95. [PMID: 24798012 DOI: 10.1007/978-94-017-8881-6_9] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 6.0] [Reference Citation Analysis]
19 Kwiatkowska K, Marszałek-Sadowska E, Traczyk G, Koprowski P, Musielak M, Lugowska A, Kulma M, Grzelczyk A, Sobota A. Visualization of cholesterol deposits in lysosomes of Niemann-Pick type C fibroblasts using recombinant perfringolysin O. Orphanet J Rare Dis 2014;9:64. [PMID: 24775609 DOI: 10.1186/1750-1172-9-64] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
20 Budvytyte R, Pleckaityte M, Zvirbliene A, Vanderah DJ, Valincius G. Reconstitution of cholesterol-dependent vaginolysin into tethered phospholipid bilayers: implications for bioanalysis. PLoS One 2013;8:e82536. [PMID: 24349307 DOI: 10.1371/journal.pone.0082536] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
21 van der Goot GF. Introduction: brief historical overview. Subcell Biochem 2014;80:3-6. [PMID: 24798004 DOI: 10.1007/978-94-017-8881-6_1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Wade KR, Hotze EM, Kuiper MJ, Morton CJ, Parker MW, Tweten RK. An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin. Proc Natl Acad Sci U S A 2015;112:2204-9. [PMID: 25646411 DOI: 10.1073/pnas.1423754112] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
23 Cui Y, Märtlbauer E, Dietrich R, Luo H, Ding S, Zhu K. Multifaceted toxin profile, an approach toward a better understanding of probiotic Bacillus cereus. Crit Rev Toxicol 2019;49:342-56. [PMID: 31116061 DOI: 10.1080/10408444.2019.1609410] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
24 Popoff MR. Clostridial pore-forming toxins: Powerful virulence factors. Anaerobe 2014;30:220-38. [DOI: 10.1016/j.anaerobe.2014.05.014] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 6.8] [Reference Citation Analysis]
25 Schlumberger S, Kristan KČ, Ota K, Frangež R, Molgό J, Sepčić K, Benoit E, Maček P. Permeability characteristics of cell-membrane pores induced by ostreolysin A/pleurotolysin B, binary pore-forming proteins from the oyster mushroom. FEBS Letters 2014;588:35-40. [DOI: 10.1016/j.febslet.2013.10.038] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
26 Liu J, Fraire JC, De Smedt SC, Xiong R, Braeckmans K. Intracellular Labeling with Extrinsic Probes: Delivery Strategies and Applications. Small 2020;16:2000146. [DOI: 10.1002/smll.202000146] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
27 Hodel AW, Leung C, Dudkina NV, Saibil HR, Hoogenboom BW. Atomic force microscopy of membrane pore formation by cholesterol dependent cytolysins. Current Opinion in Structural Biology 2016;39:8-15. [DOI: 10.1016/j.sbi.2016.03.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
28 Lin Q, Wang T, Li H, London E. Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size. J Membr Biol 2015;248:517-27. [PMID: 25850715 DOI: 10.1007/s00232-015-9798-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
29 Cheerla R, Ayappa KG. Molecular Dynamics Study of Lipid and Cholesterol Reorganization Due to Membrane Binding and Pore Formation by Listeriolysin O. J Membrane Biol 2020;253:535-50. [DOI: 10.1007/s00232-020-00148-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
30 Johnson BB, Breña M, Anguita J, Heuck AP. Mechanistic Insights into the Cholesterol-dependent Binding of Perfringolysin O-based Probes and Cell Membranes. Sci Rep 2017;7:13793. [PMID: 29061991 DOI: 10.1038/s41598-017-14002-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
31 Luo M, Shao Z, Shen Y, Czajkowsky DM, Sun J. Novel experimental strategy for high resolution AFM imaging of membrane-associated bacterial toxins. J Shanghai Jiaotong Univ (Sci ) 2014;19:569-73. [DOI: 10.1007/s12204-014-1543-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
32 Ruan Y, Rezelj S, Bedina Zavec A, Anderluh G, Scheuring S. Listeriolysin O Membrane Damaging Activity Involves Arc Formation and Lineaction -- Implication for Listeria monocytogenes Escape from Phagocytic Vacuole. PLoS Pathog 2016;12:e1005597. [PMID: 27104344 DOI: 10.1371/journal.ppat.1005597] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 8.5] [Reference Citation Analysis]
33 Lin Q, London E. Altering hydrophobic sequence lengths shows that hydrophobic mismatch controls affinity for ordered lipid domains (rafts) in the multitransmembrane strand protein perfringolysin O. J Biol Chem 2013;288:1340-52. [PMID: 23150664 DOI: 10.1074/jbc.M112.415596] [Cited by in Crossref: 54] [Cited by in F6Publishing: 30] [Article Influence: 5.4] [Reference Citation Analysis]
34 Raila T, Penkauskas T, Jankunec M, Dreižas G, Meškauskas T, Valincius G. Electrochemical impedance of randomly distributed defects in tethered phospholipid bilayers: Finite element analysis. Electrochimica Acta 2019;299:863-74. [DOI: 10.1016/j.electacta.2018.12.148] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
35 Reboul CF, Mahmood K, Whisstock JC, Dunstone MA. Predicting giant transmembrane β-barrel architecture. Bioinformatics 2012;28:1299-302. [DOI: 10.1093/bioinformatics/bts152] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
36 Yuen AS, Kolappan S, Ng D, Craig L. Structure and secretion of CofJ, a putative colonization factor of enterotoxigenic Escherichia coli. Mol Microbiol 2013;90:898-918. [PMID: 24106767 DOI: 10.1111/mmi.12407] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
37 Wade KR, Tweten RK. The Apicomplexan CDC/MACPF-like pore-forming proteins. Curr Opin Microbiol 2015;26:48-52. [PMID: 26025132 DOI: 10.1016/j.mib.2015.05.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
38 Podobnik M, Savory P, Rojko N, Kisovec M, Wood N, Hambley R, Pugh J, Wallace EJ, McNeill L, Bruce M, Liko I, Allison TM, Mehmood S, Yilmaz N, Kobayashi T, Gilbert RJ, Robinson CV, Jayasinghe L, Anderluh G. Crystal structure of an invertebrate cytolysin pore reveals unique properties and mechanism of assembly. Nat Commun 2016;7:11598. [PMID: 27176125 DOI: 10.1038/ncomms11598] [Cited by in Crossref: 54] [Cited by in F6Publishing: 51] [Article Influence: 9.0] [Reference Citation Analysis]
39 Lella M, Mahalakshmi R. Metamorphic Proteins: Emergence of Dual Protein Folds from One Primary Sequence. Biochemistry 2017;56:2971-84. [DOI: 10.1021/acs.biochem.7b00375] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 6.6] [Reference Citation Analysis]
40 Cabezas S, Ho S, Ros U, Lanio ME, Alvarez C, van der Goot FG. Damage of eukaryotic cells by the pore-forming toxin sticholysin II: Consequences of the potassium efflux. Biochim Biophys Acta Biomembr 2017;1859:982-92. [PMID: 28173991 DOI: 10.1016/j.bbamem.2017.02.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 6.4] [Reference Citation Analysis]
41 Mozola CC, Caparon MG. Dual modes of membrane binding direct pore formation by Streptolysin O. Mol Microbiol 2015;97:1036-50. [PMID: 26059530 DOI: 10.1111/mmi.13085] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
42 Yang NJ, Liu DV, Sklaviadis D, Gui DY, Vander Heiden MG, Wittrup KD. Antibody-mediated neutralization of perfringolysin o for intracellular protein delivery. Mol Pharm 2015;12:1992-2000. [PMID: 25881713 DOI: 10.1021/mp500797n] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
43 Duport C, Alpha-Bazin B, Armengaud AJ. Advanced Proteomics as a Powerful Tool for Studying Toxins of Human Bacterial Pathogens. Toxins (Basel) 2019;11:E576. [PMID: 31590258 DOI: 10.3390/toxins11100576] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
44 Magouliotis DE, Tasiopoulou VS, Molyvdas PA, Gourgoulianis KI, Hatzoglou C, Zarogiannis SG. Airways microbiota: Hidden Trojan horses in asbestos exposed individuals? Med Hypotheses 2014;83:537-40. [PMID: 25262213 DOI: 10.1016/j.mehy.2014.09.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Maurer J, Hupp S, Bischoff C, Foertsch C, Mitchell TJ, Chakraborty T, Iliev AI. Distinct Neurotoxicity Profile of Listeriolysin O from Listeria monocytogenes. Toxins (Basel) 2017;9:E34. [PMID: 28098781 DOI: 10.3390/toxins9010034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
46 Sonnen AF, Henneke P. Structural biology of the membrane attack complex. Subcell Biochem 2014;80:83-116. [PMID: 24798009 DOI: 10.1007/978-94-017-8881-6_6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
47 Scott H, Huang W, Bann JG, Taylor DJ. Advances in structure determination by cryo-EM to unravel membrane-spanning pore formation. Protein Sci 2018;27:1544-56. [PMID: 30129169 DOI: 10.1002/pro.3454] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
48 Cassidy SK, O'Riordan MX. More than a pore: the cellular response to cholesterol-dependent cytolysins. Toxins (Basel) 2013;5:618-36. [PMID: 23584137 DOI: 10.3390/toxins5040618] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 6.8] [Reference Citation Analysis]
49 Stewart SE, D'angelo ME, Piantavigna S, Tabor RF, Martin LL, Bird PI. Assembly of streptolysin O pores assessed by quartz crystal microbalance and atomic force microscopy provides evidence for the formation of anchored but incomplete oligomers. Biochimica et Biophysica Acta (BBA) - Biomembranes 2015;1848:115-26. [DOI: 10.1016/j.bbamem.2014.10.012] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
50 Draberova L, Tumova M, Draber P. Molecular Mechanisms of Mast Cell Activation by Cholesterol-Dependent Cytolysins. Front Immunol 2021;12:670205. [PMID: 34248949 DOI: 10.3389/fimmu.2021.670205] [Reference Citation Analysis]
51 Mozola CC, Magassa N, Caparon MG. A novel cholesterol-insensitive mode of membrane binding promotes cytolysin-mediated translocation by Streptolysin O. Mol Microbiol 2014;94:675-87. [PMID: 25196983 DOI: 10.1111/mmi.12786] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
52 Farrand AJ, Hotze EM, Sato TK, Wade KR, Wimley WC, Johnson AE, Tweten RK. The Cholesterol-dependent Cytolysin Membrane-binding Interface Discriminates Lipid Environments of Cholesterol to Support β-Barrel Pore Insertion. J Biol Chem 2015;290:17733-44. [PMID: 26032415 DOI: 10.1074/jbc.M115.656769] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 4.1] [Reference Citation Analysis]
53 Lazzaro M, Krapf D, García Véscovi E. Selective blockage of Serratia marcescens ShlA by nickel inhibits the pore-forming toxin-mediated phenotypes in eukaryotic cells. Cell Microbiol 2019;21:e13045. [PMID: 31099073 DOI: 10.1111/cmi.13045] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
54 Abe M, Kobayashi T. Dynamics of sphingomyelin- and cholesterol-enriched lipid domains during cytokinesis. Methods Cell Biol 2017;137:15-24. [PMID: 28065303 DOI: 10.1016/bs.mcb.2016.03.030] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
55 Alvarez C, Pazos F, Soto C, Laborde R, Lanio ME. Pore-forming toxins from sea anemones: from protein-membrane interaction to its implications for developing biomedical applications. Elsevier; 2020. pp. 129-83. [DOI: 10.1016/bs.abl.2020.02.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Chalupowicz L, Barash I, Reuven M, Dror O, Sharabani G, Gartemann KH, Eichenlaub R, Sessa G, Manulis-Sasson S. Differential contribution of Clavibacter michiganensis ssp. michiganensis virulence factors to systemic and local infection in tomato. Mol Plant Pathol 2017;18:336-46. [PMID: 26992141 DOI: 10.1111/mpp.12400] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
57 Etxaniz A, González-Bullón D, Martín C, Ostolaza H. Membrane Repair Mechanisms against Permeabilization by Pore-Forming Toxins. Toxins (Basel) 2018;10:E234. [PMID: 29890730 DOI: 10.3390/toxins10060234] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
58 Rivera-de-Torre E, Palacios-Ortega J, Slotte JP, Gavilanes JG, Martínez-Del-Pozo Á, García-Linares S. Functional and Structural Variation among Sticholysins, Pore-Forming Proteins from the Sea Anemone Stichodactyla helianthus. Int J Mol Sci 2020;21:E8915. [PMID: 33255441 DOI: 10.3390/ijms21238915] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
59 Mesa-Galloso H, Pedrera L, Ros U. Pore-forming proteins: From defense factors to endogenous executors of cell death. Chem Phys Lipids 2021;234:105026. [PMID: 33309552 DOI: 10.1016/j.chemphyslip.2020.105026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
60 Reboul CF, Whisstock JC, Dunstone MA. A new model for pore formation by cholesterol-dependent cytolysins. PLoS Comput Biol 2014;10:e1003791. [PMID: 25144725 DOI: 10.1371/journal.pcbi.1003791] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
61 Hotze EM, Le HM, Sieber JR, Bruxvoort C, McInerney MJ, Tweten RK. Identification and characterization of the first cholesterol-dependent cytolysins from Gram-negative bacteria. Infect Immun 2013;81:216-25. [PMID: 23115036 DOI: 10.1128/IAI.00927-12] [Cited by in Crossref: 46] [Cited by in F6Publishing: 27] [Article Influence: 4.6] [Reference Citation Analysis]
62 Christie MP, Johnstone BA, Tweten RK, Parker MW, Morton CJ. Cholesterol-dependent cytolysins: from water-soluble state to membrane pore. Biophys Rev 2018;10:1337-48. [PMID: 30117093 DOI: 10.1007/s12551-018-0448-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
63 Mathieu J. Interactions between Autophagy and Bacterial Toxins: Targets for Therapy? Toxins (Basel) 2015;7:2918-58. [PMID: 26248079 DOI: 10.3390/toxins7082918] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
64 Matsumura T, Nishiyama A, Aiko M, Ainai A, Ikebe T, Chiba J, Ato M, Takahashi Y. An anti-perfringolysin O monoclonal antibody cross-reactive with streptolysin O protects against streptococcal toxic shock syndrome. BMC Res Notes 2020;13:419. [PMID: 32891180 DOI: 10.1186/s13104-020-05264-2] [Reference Citation Analysis]
65 Álvarez-Mena A, Cámara-Almirón J, de Vicente A, Romero D. Multifunctional Amyloids in the Biology of Gram-Positive Bacteria. Microorganisms 2020;8:E2020. [PMID: 33348645 DOI: 10.3390/microorganisms8122020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
66 Alvarez C, Ros U, Valle A, Pedrera L, Soto C, Hervis YP, Cabezas S, Valiente PA, Pazos F, Lanio ME. Biophysical and biochemical strategies to understand membrane binding and pore formation by sticholysins, pore-forming proteins from a sea anemone. Biophys Rev 2017;9:529-44. [PMID: 28853034 DOI: 10.1007/s12551-017-0316-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
67 Zhang W, Wang H, Wang B, Zhang Y, Hu Y, Ma B, Wang J. Replacing the 238th aspartic acid with an arginine impaired the oligomerization activity and inflammation-inducing property of pyolysin. Virulence 2018;9:1112-25. [PMID: 30067143 DOI: 10.1080/21505594.2018.1491256] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
68 Mondal AK, Chattopadhyay K. Taking Toll on Membranes: Curious Cases of Bacterial β-Barrel Pore-Forming Toxins. Biochemistry 2020;59:163-70. [DOI: 10.1021/acs.biochem.9b00783] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
69 Kozorog M, Sani M, Separovic F, Anderluh G. Listeriolysin O Binding Affects Cholesterol and Phospholipid Acyl Chain Dynamics in Fluid Cholesterol‐Rich Bilayers. Chem Eur J 2018;24:14220-5. [DOI: 10.1002/chem.201802575] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
70 Deng C, Liu L, Liu L, Wang Q, Guo X, Lee W, Li S, Zhang Y. A secreted pore‐forming protein modulates cellular endolysosomes to augment antigen presentation. FASEB j 2020;34:13609-25. [DOI: 10.1096/fj.202001176r] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Pleckaityte M. Cholesterol-Dependent Cytolysins Produced by Vaginal Bacteria: Certainties and Controversies. Front Cell Infect Microbiol 2019;9:452. [PMID: 31998661 DOI: 10.3389/fcimb.2019.00452] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
72 Sarangi NK, Basu JK. Pathways for creation and annihilation of nanoscale biomembrane domains reveal alpha and beta-toxin nanopore formation processes. Phys Chem Chem Phys 2018;20:29116-30. [DOI: 10.1039/c8cp05729j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
73 Kudryashova E, Seveau SM, Kudryashov DS. Targeting and inactivation of bacterial toxins by human defensins. Biol Chem 2017;398:1069-85. [PMID: 28593905 DOI: 10.1515/hsz-2017-0106] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
74 Jing W, Lo Pilato J, Kay C, Man SM. Activation mechanisms of inflammasomes by bacterial toxins. Cell Microbiol 2021;23:e13309. [PMID: 33426791 DOI: 10.1111/cmi.13309] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
75 Verherstraeten S, Goossens E, Valgaeren B, Pardon B, Timbermont L, Haesebrouck F, Ducatelle R, Deprez P, Wade KR, Tweten R, Van Immerseel F. Perfringolysin O: The Underrated Clostridium perfringens Toxin? Toxins (Basel) 2015;7:1702-21. [PMID: 26008232 DOI: 10.3390/toxins7051702] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 4.9] [Reference Citation Analysis]
76 Shoji A, Ikeya K, Aoyagi M, Takatsuji R, Yanagida A, Shibusawa Y, Sugawara M. Monitoring of cholesterol oxidation in a lipid bilayer membrane using streptolysin O as a sensing and signal transduction element. Journal of Pharmaceutical and Biomedical Analysis 2016;128:455-61. [DOI: 10.1016/j.jpba.2016.06.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
77 Zaitseva J, Vaknin D, Krebs C, Doroghazi J, Milam SL, Balasubramanian D, Duck NB, Freigang J. Structure-function characterization of an insecticidal protein GNIP1Aa, a member of an MACPF and β-tripod families. Proc Natl Acad Sci U S A 2019;116:2897-906. [PMID: 30728296 DOI: 10.1073/pnas.1815547116] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
78 Adams W, Bhowmick R, Bou Ghanem EN, Wade K, Shchepetov M, Weiser JN, McCormick BA, Tweten RK, Leong JM. Pneumolysin Induces 12-Lipoxygenase-Dependent Neutrophil Migration during Streptococcus pneumoniae Infection. J Immunol 2020;204:101-11. [PMID: 31776202 DOI: 10.4049/jimmunol.1800748] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
79 Feil SC, Ascher DB, Kuiper MJ, Tweten RK, Parker MW. Structural studies of Streptococcus pyogenes streptolysin O provide insights into the early steps of membrane penetration. J Mol Biol 2014;426:785-92. [PMID: 24316049 DOI: 10.1016/j.jmb.2013.11.020] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 4.7] [Reference Citation Analysis]
80 Cajnko MM, Mikelj M, Turk T, Podobnik M, Anderluh G. Membrane interactions and cellular effects of MACPF/CDC proteins. Subcell Biochem 2014;80:119-44. [PMID: 24798010 DOI: 10.1007/978-94-017-8881-6_7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
81 Tenenbaum T, Asmat TM, Seitz M, Schroten H, Schwerk C. Biological activities of suilysin: role in Streptococcus suis pathogenesis. Future Microbiol 2016;11:941-54. [PMID: 27357518 DOI: 10.2217/fmb-2016-0028] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 7.0] [Reference Citation Analysis]
82 Guerra AJ, Zhang O, Bahr CME, Huynh MH, DelProposto J, Brown WC, Wawrzak Z, Koropatkin NM, Carruthers VB. Structural basis of Toxoplasma gondii perforin-like protein 1 membrane interaction and activity during egress. PLoS Pathog 2018;14:e1007476. [PMID: 30513119 DOI: 10.1371/journal.ppat.1007476] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
83 Rojko N, Anderluh G. How Lipid Membranes Affect Pore Forming Toxin Activity. Acc Chem Res 2015;48:3073-9. [DOI: 10.1021/acs.accounts.5b00403] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 6.1] [Reference Citation Analysis]
84 Kozorog M, Sani MA, Lenarčič Živković M, Ilc G, Hodnik V, Separovic F, Plavec J, Anderluh G. 19F NMR studies provide insights into lipid membrane interactions of listeriolysin O, a pore forming toxin from Listeria monocytogenes. Sci Rep 2018;8:6894. [PMID: 29720597 DOI: 10.1038/s41598-018-24692-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
85 Sato TK, Tweten RK, Johnson AE. Disulfide-bond scanning reveals assembly state and β-strand tilt angle of the PFO β-barrel. Nat Chem Biol 2013;9:383-9. [PMID: 23563525 DOI: 10.1038/nchembio.1228] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.9] [Reference Citation Analysis]
86 Wade KR, Hotze EM, Briles DE, Tweten RK. Mouse, but not human, ApoB-100 lipoprotein cholesterol is a potent innate inhibitor of Streptococcus pneumoniae pneumolysin. PLoS Pathog 2014;10:e1004353. [PMID: 25188225 DOI: 10.1371/journal.ppat.1004353] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
87 Chiu FF, Leng CH, Ding YJ, Chang JC, Chang LS, Lien SP, Chen HW, Siu LK, Liu SJ. Domain 4 of pneumolysin from Streptococcus pneumoniae is a multifunctional domain contributing TLR4 activating and hemolytic activity. Biochem Biophys Res Commun 2019;517:596-602. [PMID: 31395343 DOI: 10.1016/j.bbrc.2019.07.063] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
88 Tabata A, Ohkura K, Ohkubo Y, Tomoyasu T, Ohkuni H, Whiley RA, Nagamune H. The diversity of receptor recognition in cholesterol-dependent cytolysins. Microbiol Immunol 2014;58:155-71. [PMID: 24401114 DOI: 10.1111/1348-0421.12131] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
89 Peraro MD, van der Goot FG. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 2016;14:77-92. [DOI: 10.1038/nrmicro.2015.3] [Cited by in Crossref: 353] [Cited by in F6Publishing: 311] [Article Influence: 50.4] [Reference Citation Analysis]
90 Ota K, Butala M, Viero G, Dalla Serra M, Sepčić K, Maček P. Fungal MACPF-like proteins and aegerolysins: bi-component pore-forming proteins? Subcell Biochem 2014;80:271-91. [PMID: 24798017 DOI: 10.1007/978-94-017-8881-6_14] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
91 Marchioretto M, Podobnik M, Dalla Serra M, Anderluh G. What planar lipid membranes tell us about the pore-forming activity of cholesterol-dependent cytolysins. Biophysical Chemistry 2013;182:64-70. [DOI: 10.1016/j.bpc.2013.06.015] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
92 Lipkin R, Lazaridis T. Computational studies of peptide-induced membrane pore formation. Philos Trans R Soc Lond B Biol Sci 2017;372:20160219. [PMID: 28630158 DOI: 10.1098/rstb.2016.0219] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
93 Sonnen AF, Plitzko JM, Gilbert RJ. Incomplete pneumolysin oligomers form membrane pores. Open Biol 2014;4:140044. [PMID: 24759615 DOI: 10.1098/rsob.140044] [Cited by in Crossref: 66] [Cited by in F6Publishing: 61] [Article Influence: 8.3] [Reference Citation Analysis]
94 Gilbert RJC, Mikelj M, Dalla Serra M, Froelich CJ, Anderluh G. Effects of MACPF/CDC proteins on lipid membranes. Cell Mol Life Sci 2013;70:2083-98. [DOI: 10.1007/s00018-012-1153-8] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 6.3] [Reference Citation Analysis]
95 Li H, Zhao X, Deng X, Wang J, Song M, Niu X, Peng L. Insights into structure and activity of natural compound inhibitors of pneumolysin. Sci Rep 2017;7:42015. [PMID: 28165051 DOI: 10.1038/srep42015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
96 Ros U, García-Sáez AJ. More Than a Pore: The Interplay of Pore-Forming Proteins and Lipid Membranes. J Membr Biol 2015;248:545-61. [PMID: 26087906 DOI: 10.1007/s00232-015-9820-y] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 7.4] [Reference Citation Analysis]
97 Cosentino K, Ros U, García-Sáez AJ. Assembling the puzzle: Oligomerization of α-pore forming proteins in membranes. Biochim Biophys Acta 2016;1858:457-66. [PMID: 26375417 DOI: 10.1016/j.bbamem.2015.09.013] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 7.0] [Reference Citation Analysis]
98 Hernández-Flores KG, Vivanco-Cid H. Biological effects of listeriolysin O: implications for vaccination. Biomed Res Int 2015;2015:360741. [PMID: 25874208 DOI: 10.1155/2015/360741] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
99 Senior MJ, Wallace MI. Fluorescence Imaging of MACPF/CDC Proteins: New Techniques and Their Application. In: Anderluh G, Gilbert R, editors. MACPF/CDC Proteins - Agents of Defence, Attack and Invasion. Dordrecht: Springer Netherlands; 2014. pp. 293-319. [DOI: 10.1007/978-94-017-8881-6_15] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
100 Costa FLS, De Lima ME, Figueiredo SG, Ferreira RS, Prates NS, Sakamoto T, Salas CE. Sequence analysis of the cDNA encoding for SpCTx: a lethal factor from scorpionfish venom (Scorpaena plumieri). J Venom Anim Toxins Incl Trop Dis 2018;24:24. [PMID: 30181739 DOI: 10.1186/s40409-018-0158-7] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
101 Preta G, Lotti V, Cronin JG, Sheldon IM. Protective role of the dynamin inhibitor Dynasore against the cholesterol-dependent cytolysin of Trueperella pyogenes. FASEB J 2015;29:1516-28. [PMID: 25550455 DOI: 10.1096/fj.14-265207] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 4.8] [Reference Citation Analysis]
102 Weiland MH, Qian Y, Sodetz JM. Membrane pore formation by human complement: functional importance of the transmembrane β-hairpin (TMH) segments of C8α and C9. Mol Immunol 2014;57:310-6. [PMID: 24239861 DOI: 10.1016/j.molimm.2013.10.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
103 Hotze EM, Wilson-Kubalek E, Farrand AJ, Bentsen L, Parker MW, Johnson AE, Tweten RK. Monomer-monomer interactions propagate structural transitions necessary for pore formation by the cholesterol-dependent cytolysins. J Biol Chem 2012;287:24534-43. [PMID: 22645132 DOI: 10.1074/jbc.M112.380139] [Cited by in Crossref: 43] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
104 Rezelj S, Kozorog M, Švigelj T, Ulrih NP, Žnidaršič N, Podobnik M, Anderluh G. Cholesterol Enriched Archaeosomes as a Molecular System for Studying Interactions of Cholesterol-Dependent Cytolysins with Membranes. J Membrane Biol 2018;251:491-505. [DOI: 10.1007/s00232-018-0018-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
105 Leung C, Dudkina NV, Lukoyanova N, Hodel AW, Farabella I, Pandurangan AP, Jahan N, Pires Damaso M, Osmanović D, Reboul CF, Dunstone MA, Andrew PW, Lonnen R, Topf M, Saibil HR, Hoogenboom BW. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. Elife 2014;3:e04247. [PMID: 25457051 DOI: 10.7554/eLife.04247] [Cited by in Crossref: 107] [Cited by in F6Publishing: 56] [Article Influence: 13.4] [Reference Citation Analysis]
106 Baruch M, Hertzog BB, Ravins M, Anand A, Cheng CY, Biswas D, Tirosh B, Hanski E. Induction of endoplasmic reticulum stress and unfolded protein response constitutes a pathogenic strategy of group A streptococcus. Front Cell Infect Microbiol 2014;4:105. [PMID: 25136516 DOI: 10.3389/fcimb.2014.00105] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
107 Preta G, Jankunec M, Heinrich F, Griffin S, Sheldon IM, Valincius G. Tethered bilayer membranes as a complementary tool for functional and structural studies: The pyolysin case. Biochim Biophys Acta 2016;1858:2070-80. [PMID: 27211243 DOI: 10.1016/j.bbamem.2016.05.016] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
108 Puri M, La Pietra L, Mraheil MA, Lucas R, Chakraborty T, Pillich H. Listeriolysin O Regulates the Expression of Optineurin, an Autophagy Adaptor That Inhibits the Growth of Listeria monocytogenes. Toxins (Basel) 2017;9:E273. [PMID: 28872615 DOI: 10.3390/toxins9090273] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
109 Zilnyte M, Venclovas Č, Zvirbliene A, Pleckaityte M. The cytolytic activity of vaginolysin strictly depends on cholesterol and is potentiated by human CD59. Toxins (Basel) 2015;7:110-28. [PMID: 25590277 DOI: 10.3390/toxins7010110] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
110 Randis TM, Zaklama J, LaRocca TJ, Los FC, Lewis EL, Desai P, Rampersaud R, Amaral FE, Ratner AJ. Vaginolysin drives epithelial ultrastructural responses to Gardnerella vaginalis. Infect Immun 2013;81:4544-50. [PMID: 24082080 DOI: 10.1128/IAI.00627-13] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
111 Anderluh G, Kisovec M, Kraševec N, Gilbert RJ. Distribution of MACPF/CDC proteins. Subcell Biochem 2014;80:7-30. [PMID: 24798005 DOI: 10.1007/978-94-017-8881-6_2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
112 Morton CJ, Sani M, Parker MW, Separovic F. Cholesterol-Dependent Cytolysins: Membrane and Protein Structural Requirements for Pore Formation: Focus Review. Chem Rev 2019;119:7721-36. [DOI: 10.1021/acs.chemrev.9b00090] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
113 Li S, Liu L, Guo X, Zhang Y, Xiang Y, Wang Q, Lee W, Zhang Y. Host Pore-Forming Protein Complex Neutralizes the Acidification of Endocytic Organelles to Counteract Intracellular Pathogens. The Journal of Infectious Diseases 2017;215:1753-63. [DOI: 10.1093/infdis/jix183] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
114 Bischofberger M, Iacovache I, van der Goot FG. Pathogenic pore-forming proteins: function and host response. Cell Host Microbe 2012;12:266-75. [PMID: 22980324 DOI: 10.1016/j.chom.2012.08.005] [Cited by in Crossref: 141] [Cited by in F6Publishing: 125] [Article Influence: 15.7] [Reference Citation Analysis]
115 Johnstone BA, Christie MP, Morton CJ, Parker MW. X-ray crystallography shines a light on pore-forming toxins. Methods Enzymol 2021;649:1-46. [PMID: 33712183 DOI: 10.1016/bs.mie.2021.01.001] [Reference Citation Analysis]
116 Tankovic J, Timinskas A, Janulaitiene M, Zilnyte M, Baudel JL, Maury E, Zvirbliene A, Pleckaityte M. Gardnerella vaginalis bacteremia associated with severe acute encephalopathy in a young female patient. Anaerobe 2017;47:132-4. [PMID: 28546029 DOI: 10.1016/j.anaerobe.2017.05.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
117 Czajkowsky DM, Sun J, Shao Z. Single molecule compression reveals intra-protein forces drive cytotoxin pore formation. Elife 2015;4:e08421. [PMID: 26652734 DOI: 10.7554/eLife.08421] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 1.6] [Reference Citation Analysis]
118 Kacprzyk-Stokowiec A, Kulma M, Traczyk G, Kwiatkowska K, Sobota A, Dadlez M. Crucial role of perfringolysin O D1 domain in orchestrating structural transitions leading to membrane-perforating pores: a hydrogen-deuterium exchange study. J Biol Chem 2014;289:28738-52. [PMID: 25164812 DOI: 10.1074/jbc.M114.577981] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
119 Lukoyanova N, Kondos SC, Farabella I, Law RH, Reboul CF, Caradoc-Davies TT, Spicer BA, Kleifeld O, Traore DA, Ekkel SM, Voskoboinik I, Trapani JA, Hatfaludi T, Oliver K, Hotze EM, Tweten RK, Whisstock JC, Topf M, Saibil HR, Dunstone MA. Conformational changes during pore formation by the perforin-related protein pleurotolysin. PLoS Biol 2015;13:e1002049. [PMID: 25654333 DOI: 10.1371/journal.pbio.1002049] [Cited by in Crossref: 84] [Cited by in F6Publishing: 79] [Article Influence: 12.0] [Reference Citation Analysis]
120 Song Y, Kenworthy AK, Sanders CR. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Sci 2014;23:1-22. [PMID: 24155031 DOI: 10.1002/pro.2385] [Cited by in Crossref: 86] [Cited by in F6Publishing: 81] [Article Influence: 9.6] [Reference Citation Analysis]
121 Sarangi NK, P II, Ayappa KG, Visweswariah SS, Basu JK. Super-resolution Stimulated Emission Depletion-Fluorescence Correlation Spectroscopy Reveals Nanoscale Membrane Reorganization Induced by Pore-Forming Proteins. Langmuir 2016;32:9649-57. [PMID: 27564541 DOI: 10.1021/acs.langmuir.6b01848] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 5.5] [Reference Citation Analysis]