BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yao J, Rock CO. Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta 2013;1831:495-502. [PMID: 22981714 DOI: 10.1016/j.bbalip.2012.08.018] [Cited by in Crossref: 106] [Cited by in F6Publishing: 91] [Article Influence: 10.6] [Reference Citation Analysis]
Number Citing Articles
1 Matanza XM, Osorio CR. Transcriptome changes in response to temperature in the fish pathogen Photobacterium damselae subsp. damselae: Clues to understand the emergence of disease outbreaks at increased seawater temperatures. PLoS One 2018;13:e0210118. [PMID: 30596794 DOI: 10.1371/journal.pone.0210118] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 4.8] [Reference Citation Analysis]
2 Vicente CM, Payero TD, Santos-Aberturas J, Barreales EG, de Pedro A, Aparicio JF. Pathway-specific regulation revisited: cross-regulation of multiple disparate gene clusters by PAS-LuxR transcriptional regulators. Appl Microbiol Biotechnol 2015;99:5123-35. [PMID: 25715784 DOI: 10.1007/s00253-015-6472-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
3 Yan Y, Wang H, Chen H, Lindström-battle A, Jiao R. Ecdysone and Insulin Signaling Play Essential Roles in Readjusting the Altered Body Size Caused by the dGPAT4 Mutation in Drosophila. Journal of Genetics and Genomics 2015;42:487-94. [DOI: 10.1016/j.jgg.2015.06.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
4 Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013;52:249-76. [PMID: 23500459 DOI: 10.1016/j.plipres.2013.02.002] [Cited by in Crossref: 238] [Cited by in F6Publishing: 198] [Article Influence: 26.4] [Reference Citation Analysis]
5 Allemann MN, Allen EE. Genetic regulation of the bacterial omega-3 polyunsaturated fatty acid biosynthesis pathway. J Bacteriol 2020:JB. [PMID: 32513681 DOI: 10.1128/JB.00050-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Ogawa T, Tanaka A, Kawamoto J, Kurihara T. Purification and characterization of 1-acyl-sn-glycerol-3-phosphate acyltransferase with a substrate preference for polyunsaturated fatty acyl donors from the eicosapentaenoic acid-producing bacterium Shewanella livingstonensis Ac10. J Biochem 2018;164:33-9. [PMID: 29415144 DOI: 10.1093/jb/mvy025] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
7 Blanken D, Foschepoth D, Serrão AC, Danelon C. Genetically controlled membrane synthesis in liposomes. Nat Commun 2020;11:4317. [PMID: 32859896 DOI: 10.1038/s41467-020-17863-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
8 Pokotylo I, Kravets V, Martinec J, Ruelland E. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog Lipid Res 2018;71:43-53. [PMID: 29842906 DOI: 10.1016/j.plipres.2018.05.003] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
9 Matsumoto K, Hara H, Fishov I, Mileykovskaya E, Norris V. The membrane: transertion as an organizing principle in membrane heterogeneity. Front Microbiol 2015;6:572. [PMID: 26124753 DOI: 10.3389/fmicb.2015.00572] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 5.7] [Reference Citation Analysis]
10 Demidenko A, Akberdin IR, Allemann M, Allen EE, Kalyuzhnaya MG. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1). Front Microbiol 2016;7:2167. [PMID: 28119683 DOI: 10.3389/fmicb.2016.02167] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 4.6] [Reference Citation Analysis]
11 Albesa-Jové D, Svetlíková Z, Tersa M, Sancho-Vaello E, Carreras-González A, Bonnet P, Arrasate P, Eguskiza A, Angala SK, Cifuente JO, Korduláková J, Jackson M, Mikušová K, Guerin ME. Structural basis for selective recognition of acyl chains by the membrane-associated acyltransferase PatA. Nat Commun 2016;7:10906. [PMID: 26965057 DOI: 10.1038/ncomms10906] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
12 Coleman GA, Pancost RD, Williams TA. Investigating the Origins of Membrane Phospholipid Biosynthesis Genes Using Outgroup-Free Rooting. Genome Biol Evol 2019;11:883-98. [PMID: 30753429 DOI: 10.1093/gbe/evz034] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
13 Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021;8:634438. [PMID: 34046426 DOI: 10.3389/fmolb.2021.634438] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Ahmad A, Akram W, Bashir Z, Shahzadi I, Wang R, Abbas HMK, Hu D, Ahmed S, Xu X, Li G, Wu T. Functional and Structural Analysis of a Novel Acyltransferase from Pathogenic Phytophthora melonis. ACS Omega 2021;6:1797-808. [PMID: 33521421 DOI: 10.1021/acsomega.0c03186] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Bhattacharya A, Cho CJ, Brea RJ, Devaraj NK. Expression of Fatty Acyl-CoA Ligase Drives One-Pot De Novo Synthesis of Membrane-Bound Vesicles in a Cell-Free Transcription-Translation System. J Am Chem Soc 2021;143:11235-42. [PMID: 34260248 DOI: 10.1021/jacs.1c05394] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Exterkate M, Caforio A, Stuart MCA, Driessen AJM. Growing Membranes In Vitro by Continuous Phospholipid Biosynthesis from Free Fatty Acids. ACS Synth Biol 2018;7:153-65. [PMID: 28922922 DOI: 10.1021/acssynbio.7b00265] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 6.8] [Reference Citation Analysis]
17 Gullett JM, Cuypers MG, Frank MW, White SW, Rock CO. A fatty acid-binding protein of Streptococcus pneumoniae facilitates the acquisition of host polyunsaturated fatty acids. J Biol Chem 2019;294:16416-28. [PMID: 31530637 DOI: 10.1074/jbc.RA119.010659] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 4.7] [Reference Citation Analysis]
18 Wu F, Speth DR, Philosof A, Crémière A, Narayanan A, Barco RA, Connon SA, Amend JP, Antoshechkin IA, Orphan VJ. Unique mobile elements and scalable gene flow at the prokaryote-eukaryote boundary revealed by circularized Asgard archaea genomes. Nat Microbiol 2022. [PMID: 35027677 DOI: 10.1038/s41564-021-01039-y] [Reference Citation Analysis]
19 Janßen HJ, Steinbüchel A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 2014;7:7. [PMID: 24405789 DOI: 10.1186/1754-6834-7-7] [Cited by in Crossref: 171] [Cited by in F6Publishing: 144] [Article Influence: 21.4] [Reference Citation Analysis]
20 Aktas M, Narberhaus F. Unconventional membrane lipid biosynthesis in Xanthomonas campestris: Lipid biosynthesis in Xanthomonas. Environ Microbiol 2015;17:3116-24. [DOI: 10.1111/1462-2920.12956] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
21 Parsons JB, Frank MW, Jackson P, Subramanian C, Rock CO. Incorporation of extracellular fatty acids by a fatty acid kinase-dependent pathway in Staphylococcus aureus. Mol Microbiol 2014;92:234-45. [PMID: 24673884 DOI: 10.1111/mmi.12556] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 7.9] [Reference Citation Analysis]
22 Yao J, Rock CO. How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics. J Biol Chem 2015;290:5940-6. [PMID: 25648887 DOI: 10.1074/jbc.R114.636241] [Cited by in Crossref: 65] [Cited by in F6Publishing: 38] [Article Influence: 9.3] [Reference Citation Analysis]
23 Shears MJ, Botté CY, Mcfadden GI. Fatty acid metabolism in the Plasmodium apicoplast: Drugs, doubts and knockouts. Molecular and Biochemical Parasitology 2015;199:34-50. [DOI: 10.1016/j.molbiopara.2015.03.004] [Cited by in Crossref: 55] [Cited by in F6Publishing: 40] [Article Influence: 7.9] [Reference Citation Analysis]
24 Reithuber E, Nannapaneni P, Rzhepishevska O, Lindgren AEG, Ilchenko O, Normark S, Almqvist F, Henriques-Normark B, Mellroth P. The Bactericidal Fatty Acid Mimetic 2CCA-1 Selectively Targets Pneumococcal Extracellular Polyunsaturated Fatty Acid Metabolism. mBio 2020;11:e03027-20. [PMID: 33323510 DOI: 10.1128/mBio.03027-20] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Daffé M, Crick DC, Jackson M. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids. Microbiol Spectr 2014;2:MGM2-0021-2013. [PMID: 26104202 DOI: 10.1128/microbiolspec.MGM2-0021-2013] [Cited by in Crossref: 54] [Cited by in F6Publishing: 35] [Article Influence: 9.0] [Reference Citation Analysis]
26 Radka CD, Frank MW, Rock CO, Yao J. Fatty acid activation and utilization by Alistipes finegoldii, a representative Bacteroidetes resident of the human gut microbiome. Mol Microbiol 2020;113:807-25. [PMID: 31876062 DOI: 10.1111/mmi.14445] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
27 Pang D, Liao S, Wang W, Mu L, Li E, Shen W, Liu F, Zou Y. Destruction of the cell membrane and inhibition of cell phosphatidic acid biosynthesis in Staphylococcus aureus : an explanation for the antibacterial mechanism of morusin. Food Funct 2019;10:6438-46. [DOI: 10.1039/c9fo01233h] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 5.3] [Reference Citation Analysis]
28 Berdejo D, Pagán E, Merino N, García-Gonzalo D, Pagán R. Emerging mutant populations of Listeria monocytogenes EGD-e under selective pressure of Thymbra capitata essential oil question its use in food preservation. Food Res Int 2021;145:110403. [PMID: 34112406 DOI: 10.1016/j.foodres.2021.110403] [Reference Citation Analysis]
29 Toyotake Y, Nishiyama M, Yokoyama F, Ogawa T, Kawamoto J, Kurihara T. A Novel Lysophosphatidic Acid Acyltransferase of Escherichia coli Produces Membrane Phospholipids with a cis-vaccenoyl Group and Is Related to Flagellar Formation. Biomolecules 2020;10:E745. [PMID: 32403425 DOI: 10.3390/biom10050745] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Yao J, Rock CO. Therapeutic Targets in Chlamydial Fatty Acid and Phospholipid Synthesis. Front Microbiol 2018;9:2291. [PMID: 30319589 DOI: 10.3389/fmicb.2018.02291] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
31 Nurlinawati, Vanoirbeek K, Aertsen A, Michiels CW. Role of 1-acyl-sn-glycerol-3-phosphate acyltransferase in psychrotrophy and stress tolerance of Serratia plymuthica RVH1. Res Microbiol 2015;166:28-37. [PMID: 25446612 DOI: 10.1016/j.resmic.2014.11.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
32 Dowhan W, Bogdanov M. Eugene P. Kennedy's Legacy: Defining Bacterial Phospholipid Pathways and Function. Front Mol Biosci 2021;8:666203. [PMID: 33842554 DOI: 10.3389/fmolb.2021.666203] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Kaczmarzyk D, Cengic I, Yao L, Hudson EP. Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metab Eng 2018;45:59-66. [PMID: 29199103 DOI: 10.1016/j.ymben.2017.11.014] [Cited by in Crossref: 70] [Cited by in F6Publishing: 56] [Article Influence: 14.0] [Reference Citation Analysis]
34 Han J, Shi W, Xu X, Wang S, Zhang S, He L, Sun X, Zhang Y. Conditions and mutations affecting Staphylococcus aureus L-form formation. Microbiology 2015;161:57-66. [DOI: 10.1099/mic.0.082354-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
35 Yao J, Rock CO. Bacterial fatty acid metabolism in modern antibiotic discovery. Biochim Biophys Acta Mol Cell Biol Lipids 2017;1862:1300-9. [PMID: 27668701 DOI: 10.1016/j.bbalip.2016.09.014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
36 de Azevedo-Martins AC, Ocaña K, de Souza W, Vasconcelos ATR, Teixeira MMG, Camargo EP, Alves JMP, Motta MCM. The Importance of Glycerophospholipid Production to the Mutualist Symbiosis of Trypanosomatids. Pathogens 2021;11:41. [PMID: 35055989 DOI: 10.3390/pathogens11010041] [Reference Citation Analysis]
37 Groenewold MK, Massmig M, Hebecker S, Danne L, Magnowska Z, Nimtz M, Narberhaus F, Jahn D, Heinz DW, Jänsch L, Moser J. A phosphatidic acid-binding protein is important for lipid homeostasis and adaptation to anaerobic biofilm conditions in Pseudomonas aeruginosa. Biochemical Journal 2018;475:1885-907. [DOI: 10.1042/bcj20180257] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
38 Allemann MN, Allen EE. Genetic Suppression of Lethal Mutations in Fatty Acid Biosynthesis Mediated by a Secondary Lipid Synthase. Appl Environ Microbiol 2021;87:e0003521. [PMID: 33837011 DOI: 10.1128/AEM.00035-21] [Reference Citation Analysis]
39 Sastre DE, Basso LGM, Trastoy B, Cifuente JO, Contreras X, Gueiros-Filho F, de Mendoza D, Navarro MVAS, Guerin ME. Membrane fluidity adjusts the insertion of the transacylase PlsX to regulate phospholipid biosynthesis in Gram-positive bacteria. J Biol Chem 2020;295:2136-47. [PMID: 31796629 DOI: 10.1074/jbc.RA119.011122] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
40 Sastre DE, Pulschen AA, Basso LGM, Benites Pariente JS, Marques Netto CGC, Machinandiarena F, Albanesi D, Navarro MVAS, de Mendoza D, Gueiros-Filho FJ. The phosphatidic acid pathway enzyme PlsX plays both catalytic and channeling roles in bacterial phospholipid synthesis. J Biol Chem 2020;295:2148-59. [PMID: 31919098 DOI: 10.1074/jbc.RA119.011147] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
41 Parsons JB, Frank MW, Eleveld MJ, Schalkwijk J, Broussard TC, de Jonge MI, Rock CO. A thioesterase bypasses the requirement for exogenous fatty acids in the plsX deletion of Streptococcus pneumoniae. Mol Microbiol 2015;96:28-41. [PMID: 25534847 DOI: 10.1111/mmi.12916] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
42 Armbruster KM, Meredith TC. Identification of the Lyso-Form N-Acyl Intramolecular Transferase in Low-GC Firmicutes. J Bacteriol 2017;199:e00099-17. [PMID: 28320885 DOI: 10.1128/JB.00099-17] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 4.2] [Reference Citation Analysis]
43 Bhattacharya A, Brea RJ, Devaraj NK. De novo vesicle formation and growth: an integrative approach to artificial cells. Chem Sci 2017;8:7912-22. [PMID: 29619165 DOI: 10.1039/c7sc02339a] [Cited by in Crossref: 28] [Cited by in F6Publishing: 6] [Article Influence: 5.6] [Reference Citation Analysis]
44 Uehling J, Gryganskyi A, Hameed K, Tschaplinski T, Misztal PK, Wu S, Desirò A, Vande Pol N, Du Z, Zienkiewicz A, Zienkiewicz K, Morin E, Tisserant E, Splivallo R, Hainaut M, Henrissat B, Ohm R, Kuo A, Yan J, Lipzen A, Nolan M, LaButti K, Barry K, Goldstein AH, Labbé J, Schadt C, Tuskan G, Grigoriev I, Martin F, Vilgalys R, Bonito G. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens. Environ Microbiol 2017;19:2964-83. [PMID: 28076891 DOI: 10.1111/1462-2920.13669] [Cited by in Crossref: 92] [Cited by in F6Publishing: 71] [Article Influence: 18.4] [Reference Citation Analysis]
45 Sancho-Vaello E, Albesa-Jové D, Rodrigo-Unzueta A, Guerin ME. Structural basis of phosphatidyl-myo-inositol mannosides biosynthesis in mycobacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2017;1862:1355-67. [PMID: 27826050 DOI: 10.1016/j.bbalip.2016.11.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
46 Law JD, Daniel J. The mycobacterial Rv1551 glycerol-3-phosphate acyltransferase enhances phospholipid biosynthesis in cell lysates of Escherichia coli. Microbial Pathogenesis 2017;113:269-75. [DOI: 10.1016/j.micpath.2017.10.050] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
47 Dang C, Walkup JGV, Hungate BA, Franklin RB, Schwartz E, Morrissey EM. Phylogenetic organization in the assimilation of chemically distinct substrates by soil bacteria. Environ Microbiol 2021. [PMID: 34811865 DOI: 10.1111/1462-2920.15843] [Reference Citation Analysis]
48 Pang D, Wang W, Li E, Shen W, Mu L, Liao S, Liu F. Sanggenon D from root bark of mulberry inhibits the growth of Staphylococcus aureus by moderating the fatty acid biosynthesis system. Industrial Crops and Products 2019;140:111719. [DOI: 10.1016/j.indcrop.2019.111719] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Danchik C, Wang S, Karakousis PC. Targeting the Mycobacterium tuberculosis Stringent Response as a Strategy for Shortening Tuberculosis Treatment. Front Microbiol 2021;12:744167. [PMID: 34690990 DOI: 10.3389/fmicb.2021.744167] [Reference Citation Analysis]
50 Röttig A, Strittmatter CS, Schauer J, Hiessl S, Poehlein A, Daniel R, Steinbüchel A. Role of Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase in Oleaginous Streptomyces sp. Strain G25. Appl Environ Microbiol 2016;82:5969-81. [PMID: 27474711 DOI: 10.1128/AEM.01719-16] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
51 Danchin A, Sekowska A. The logic of metabolism. Perspectives in Science 2015;6:15-26. [DOI: 10.1016/j.pisc.2015.05.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
52 Liu X, Yin Y, Wu J, Liu Z. Structure and mechanism of an intramembrane liponucleotide synthetase central for phospholipid biosynthesis. Nat Commun 2014;5:4244. [PMID: 24968740 DOI: 10.1038/ncomms5244] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 4.6] [Reference Citation Analysis]
53 Sangith N, Kumar S, Sankaran K. Evidence to Suggest Bacterial Lipoprotein Diacylglyceryl Transferase (Lgt) is a Weakly Associated Inner Membrane Protein. J Membrane Biol 2019;252:563-75. [DOI: 10.1007/s00232-019-00076-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
54 Vences-Guzmán MÁ, Guan Z, Escobedo-Hinojosa WI, Bermúdez-Barrientos JR, Geiger O, Sohlenkamp C. Discovery of a bifunctional acyltransferase responsible for ornithine lipid synthesis in Serratia proteamaculans. Environ Microbiol 2015;17:1487-96. [PMID: 25040623 DOI: 10.1111/1462-2920.12562] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
55 Driscoll TP, Verhoeve VI, Guillotte ML, Lehman SS, Rennoll SA, Beier-Sexton M, Rahman MS, Azad AF, Gillespie JJ. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells. mBio 2017;8:e00859-17. [PMID: 28951473 DOI: 10.1128/mBio.00859-17] [Cited by in Crossref: 54] [Cited by in F6Publishing: 39] [Article Influence: 10.8] [Reference Citation Analysis]
56 Yao J, Cherian PT, Frank MW, Rock CO. Chlamydia trachomatis Relies on Autonomous Phospholipid Synthesis for Membrane Biogenesis. J Biol Chem 2015;290:18874-88. [PMID: 25995447 DOI: 10.1074/jbc.M115.657148] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 4.1] [Reference Citation Analysis]
57 Dong H, Cronan JE. Temperature regulation of membrane composition in the Firmicute, Enterococcus faecalis, parallels that of Escherichia coli. Environ Microbiol 2021;23:2683-91. [PMID: 33830615 DOI: 10.1111/1462-2920.15512] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Uttlová P, Pinkas D, Bechyňková O, Fišer R, Svobodová J, Seydlová G. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure. Biochim Biophys Acta 2016;1858:2965-71. [PMID: 27620333 DOI: 10.1016/j.bbamem.2016.09.006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
59 Yao J, Bruhn DF, Frank MW, Lee RE, Rock CO. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria. J Biol Chem 2016;291:171-81. [PMID: 26567338 DOI: 10.1074/jbc.M115.699462] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
60 Loyola-machado AC, Azevedo-martins AC, Catta-preta CMC, de Souza W, Galina A, Motta MCM. The Symbiotic Bacterium Fuels the Energy Metabolism of the Host Trypanosomatid Strigomonas culicis. Protist 2017;168:253-69. [DOI: 10.1016/j.protis.2017.02.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
61 Jiang Y, Qin M, Guo Z. Substrate Recognition and Catalytic Mechanism of the Phosphate Acyltransferase PlsX from Bacillus subtilis. Chembiochem 2020;21:2019-28. [PMID: 32180316 DOI: 10.1002/cbic.202000015] [Reference Citation Analysis]
62 Bhattacharya A, Brea RJ, Niederholtmeyer H, Devaraj NK. A minimal biochemical route towards de novo formation of synthetic phospholipid membranes. Nat Commun 2019;10:300. [PMID: 30655537 DOI: 10.1038/s41467-018-08174-x] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 14.0] [Reference Citation Analysis]
63 López-lara IM, Geiger O. Bacterial lipid diversity. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2017;1862:1287-99. [DOI: 10.1016/j.bbalip.2016.10.007] [Cited by in Crossref: 50] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
64 Smith LC, Lun CM. The SpTransformer Gene Family (Formerly Sp185/333) in the Purple Sea Urchin and the Functional Diversity of the Anti-Pathogen rSpTransformer-E1 Protein. Front Immunol 2017;8:725. [PMID: 28713368 DOI: 10.3389/fimmu.2017.00725] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
65 Jain S, Caforio A, Driessen AJ. Biosynthesis of archaeal membrane ether lipids. Front Microbiol 2014;5:641. [PMID: 25505460 DOI: 10.3389/fmicb.2014.00641] [Cited by in Crossref: 81] [Cited by in F6Publishing: 68] [Article Influence: 10.1] [Reference Citation Analysis]
66 Soupene E, Kuypers FA. Phosphatidylserine decarboxylase CT699, lysophospholipid acyltransferase CT775, and acyl-ACP synthase CT776 provide membrane lipid diversity to Chlamydia trachomatis. Sci Rep 2017;7:15767. [PMID: 29150677 DOI: 10.1038/s41598-017-16116-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
67 Xu L, Coleman-derr D. Causes and consequences of a conserved bacterial root microbiome response to drought stress. Current Opinion in Microbiology 2019;49:1-6. [DOI: 10.1016/j.mib.2019.07.003] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 9.3] [Reference Citation Analysis]
68 Yao J, Ericson ME, Frank MW, Rock CO. Enoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes. Infect Immun 2016;84:3597-607. [PMID: 27736774 DOI: 10.1128/IAI.00647-16] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
69 Abdul Rahim N, Zhu Y, Cheah SE, Johnson MD, Yu HH, Sidjabat HE, Butler MS, Cooper MA, Fu J, Paterson DL, Nation RL, Boyce JD, Creek DJ, Bergen PJ, Velkov T, Li J. Synergy of the Polymyxin-Chloramphenicol Combination against New Delhi Metallo-β-Lactamase-Producing Klebsiella pneumoniae Is Predominately Driven by Chloramphenicol. ACS Infect Dis 2021;7:1584-95. [PMID: 33834753 DOI: 10.1021/acsinfecdis.0c00661] [Reference Citation Analysis]
70 Hussein M, Allobawi R, Levou I, Blaskovich MAT, Rao GG, Li J, Velkov T. Mechanisms Underlying Synergistic Killing of Polymyxin B in Combination with Cannabidiol against Acinetobacter baumannii: A Metabolomic Study. Pharmaceutics 2022;14:786. [DOI: 10.3390/pharmaceutics14040786] [Reference Citation Analysis]
71 Kingston AW, Zhao H, Cook GM, Helmann JD. Accumulation of heptaprenyl diphosphate sensitizes Bacillus subtilis to bacitracin: implications for the mechanism of resistance mediated by the BceAB transporter. Mol Microbiol 2014;93:37-49. [PMID: 24806199 DOI: 10.1111/mmi.12637] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
72 Guillotte ML, Gillespie JJ, Chandler CE, Rahman MS, Ernst RK, Azad AF. Rickettsia Lipid A Biosynthesis Utilizes the Late Acyltransferase LpxJ for Secondary Fatty Acid Addition. J Bacteriol 2018;200:e00334-18. [PMID: 30012728 DOI: 10.1128/JB.00334-18] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
73 Deng R, Yang K, Lin D. Pentachlorophenol and ciprofloxacin present dissimilar joint toxicities with carbon nanotubes to Bacillus subtilis. Environ Pollut 2021;270:116071. [PMID: 33218776 DOI: 10.1016/j.envpol.2020.116071] [Reference Citation Analysis]
74 Porrini L, Cybulski LE, Altabe SG, Mansilla MC, de Mendoza D. Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor. Microbiologyopen 2014;3:213-24. [PMID: 24574048 DOI: 10.1002/mbo3.154] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
75 Robertson RM, Yao J, Gajewski S, Kumar G, Martin EW, Rock CO, White SW. A two-helix motif positions the lysophosphatidic acid acyltransferase active site for catalysis within the membrane bilayer. Nat Struct Mol Biol 2017;24:666-71. [PMID: 28714993 DOI: 10.1038/nsmb.3436] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
76 Blanco P, Corona F, Martinez JL. Mechanisms and phenotypic consequences of acquisition of tigecycline resistance by Stenotrophomonas maltophilia. J Antimicrob Chemother 2019;74:3221-30. [PMID: 31369109 DOI: 10.1093/jac/dkz326] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
77 Yao J, Rock CO. Exogenous fatty acid metabolism in bacteria. Biochimie 2017;141:30-9. [PMID: 28668270 DOI: 10.1016/j.biochi.2017.06.015] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 9.6] [Reference Citation Analysis]
78 Fatma Z, Hartman H, Poolman MG, Fell DA, Srivastava S, Shakeel T, Yazdani SS. Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production. Metabolic Engineering 2018;46:1-12. [DOI: 10.1016/j.ymben.2018.01.002] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
79 Johnston RD, Woodall BM, Harrison J, Campagna SR, Fozo EM. Removal of peptidoglycan and inhibition of active cellular processes leads to daptomycin tolerance in Enterococcus faecalis. PLoS One 2021;16:e0254796. [PMID: 34297729 DOI: 10.1371/journal.pone.0254796] [Reference Citation Analysis]
80 Lindner SE, Sartain MJ, Hayes K, Harupa A, Moritz RL, Kappe SH, Vaughan AM. Enzymes involved in plastid-targeted phosphatidic acid synthesis are essential for Plasmodium yoelii liver-stage development. Mol Microbiol 2014;91:679-93. [PMID: 24330260 DOI: 10.1111/mmi.12485] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 3.9] [Reference Citation Analysis]
81 Bayley H, Exterkate M, Driessen AJ. Continuous expansion of a synthetic minimal cellular membrane. Emerging Topics in Life Sciences 2019;3:543-9. [DOI: 10.1042/etls20190020] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
82 Li X, Liu L, Ji J, Chen Q, Hua X, Jiang Y, Feng Y, Yu Y. Tigecycline resistance in Acinetobacter baumannii mediated by frameshift mutation in plsC, encoding 1-acyl-sn-glycerol-3-phosphate acyltransferase. Eur J Clin Microbiol Infect Dis 2015;34:625-31. [PMID: 25407371 DOI: 10.1007/s10096-014-2272-y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
83 Khanal S, Brea RJ, Burkart MD, Devaraj NK. Chemoenzymatic Generation of Phospholipid Membranes Mediated by Type I Fatty Acid Synthase. J Am Chem Soc 2021;143:8533-7. [PMID: 33978402 DOI: 10.1021/jacs.1c02121] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
84 Li Z, Tang Y, Wu Y, Zhao S, Bao J, Luo Y, Li D. Structural insights into the committed step of bacterial phospholipid biosynthesis. Nat Commun 2017;8:1691. [PMID: 29167463 DOI: 10.1038/s41467-017-01821-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
85 Parsons JB, Yao J, Jackson P, Frank M, Rock CO. Phosphatidylglycerol homeostasis in glycerol-phosphate auxotrophs of Staphylococcus aureus. BMC Microbiol 2013;13:260. [PMID: 24238430 DOI: 10.1186/1471-2180-13-260] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
86 Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Akseer R, Lim SE, Lai KS. Disruption of KPC-producing Klebsiella pneumoniae membrane via induction of oxidative stress by cinnamon bark (Cinnamomum verum J. Presl) essential oil. PLoS One 2019;14:e0214326. [PMID: 30939149 DOI: 10.1371/journal.pone.0214326] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
87 Rodman N, Martinez J, Fung S, Nakanouchi J, Myers AL, Harris CM, Dang E, Fernandez JS, Liu C, Mendoza AM, Jimenez V, Nikolaidis N, Brennan CA, Bonomo RA, Sieira R, Ramirez MS. Human Pleural Fluid Elicits Pyruvate and Phenylalanine Metabolism in Acinetobacter baumannii to Enhance Cytotoxicity and Immune Evasion. Front Microbiol 2019;10:1581. [PMID: 31379769 DOI: 10.3389/fmicb.2019.01581] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
88 Orive-Milla N, Delmulle T, de Mey M, Faijes M, Planas A. Metabolic engineering for glycoglycerolipids production in E. coli: Tuning phosphatidic acid and UDP-glucose pathways. Metab Eng 2020;61:106-19. [PMID: 32492511 DOI: 10.1016/j.ymben.2020.05.010] [Reference Citation Analysis]
89 Frank MW, Yao J, Batte JL, Gullett JM, Subramanian C, Rosch JW, Rock CO. Host Fatty Acid Utilization by Staphylococcus aureus at the Infection Site. mBio 2020;11:e00920-20. [PMID: 32430471 DOI: 10.1128/mBio.00920-20] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
90 Exterkate M, Driessen AJM. Synthetic Minimal Cell: Self-Reproduction of the Boundary Layer. ACS Omega 2019;4:5293-303. [PMID: 30949617 DOI: 10.1021/acsomega.8b02955] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
91 Lun CM, Samuel RL, Gillmor SD, Boyd A, Smith LC. The Recombinant Sea Urchin Immune Effector Protein, rSpTransformer-E1, Binds to Phosphatidic Acid and Deforms Membranes. Front Immunol 2017;8:481. [PMID: 28553283 DOI: 10.3389/fimmu.2017.00481] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
92 Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016;69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
93 Scott A, Noga MJ, de Graaf P, Westerlaken I, Yildirim E, Danelon C. Cell-Free Phospholipid Biosynthesis by Gene-Encoded Enzymes Reconstituted in Liposomes. PLoS One 2016;11:e0163058. [PMID: 27711229 DOI: 10.1371/journal.pone.0163058] [Cited by in Crossref: 63] [Cited by in F6Publishing: 44] [Article Influence: 10.5] [Reference Citation Analysis]
94 Pang D, Huang Z, Li Q, Wang E, Liao S, Li E, Zou Y, Wang W. Antibacterial Mechanism of Cinnamaldehyde: Modulation of Biosynthesis of Phosphatidylethanolamine and Phosphatidylglycerol in Staphylococcus aureus and Escherichia coli. J Agric Food Chem 2021;69:13628-36. [PMID: 34739242 DOI: 10.1021/acs.jafc.1c04977] [Reference Citation Analysis]
95 Liu J, Li TT, Liang QL, Elsheikha HM, Zhao DY, Zhang ZW, Xu XP, Zhu XQ, Wang M. Characterization of functions in parasite growth and virulence of four Toxoplasma gondii genes involved in lipid synthesis by CRISPR-Cas9 system. Parasitol Res 2021;120:3749-59. [PMID: 34499198 DOI: 10.1007/s00436-021-07308-3] [Reference Citation Analysis]
96 Doi Y. Glycerol metabolism and its regulation in lactic acid bacteria. Appl Microbiol Biotechnol 2019;103:5079-93. [DOI: 10.1007/s00253-019-09830-y] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]