BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj 2019;1863:1480-97. [PMID: 31121217 DOI: 10.1016/j.bbagen.2019.05.012] [Cited by in Crossref: 176] [Cited by in F6Publishing: 150] [Article Influence: 58.7] [Reference Citation Analysis]
Number Citing Articles
1 [DOI: 10.1101/2020.02.20.957472] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
2 Monticelli SR, Bryk P, Brewer MG, Aguilar HC, Norbury CC, Ward BM, Tscharke DC. An increase in glycoprotein concentration on extracellular virions dramatically alters vaccinia virus infectivity and pathogenesis without impacting immunogenicity. PLoS Pathog 2021;17:e1010177. [DOI: 10.1371/journal.ppat.1010177] [Reference Citation Analysis]
3 Zhong L, Zhu L, Cai ZW. Mass Spectrometry-based Proteomics and Glycoproteomics in COVID-19 Biomarkers Identification: A Mini-review. J Anal Test 2021;:1-16. [PMID: 34513131 DOI: 10.1007/s41664-021-00197-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Escalera-Zamudio M, Pond SLK, de la Viña NM, Gutiérrez B, Thézé J, Bowden TA, Pybus OG, Hulswit RJG. Identification of site-specific evolutionary trajectories shared across human betacoronaviruses. bioRxiv 2021:2021. [PMID: 34075377 DOI: 10.1101/2021.05.24.445313] [Reference Citation Analysis]
5 Wang X, Bie L, Gao J. Structural Insights into the Cofactor Role of Heparin/Heparan Sulfate in Binding between the SARS-CoV-2 Spike Protein and Host Angiotensin-Converting Enzyme II. J Chem Inf Model . [DOI: 10.1021/acs.jcim.1c01484] [Reference Citation Analysis]
6 Wang F, Kream RM, Stefano GB. An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development. Med Sci Monit 2020;26:e924700. [PMID: 32366816 DOI: 10.12659/MSM.924700] [Cited by in Crossref: 46] [Cited by in F6Publishing: 61] [Article Influence: 23.0] [Reference Citation Analysis]
7 Mahajan S, Choudhary S, Kumar P, Tomar S. Antiviral strategies targeting host factors and mechanisms obliging +ssRNA viral pathogens. Bioorg Med Chem 2021;46:116356. [PMID: 34416512 DOI: 10.1016/j.bmc.2021.116356] [Reference Citation Analysis]
8 Fogarty CA, Fadda E. Oligomannose N-Glycans 3D Architecture and Its Response to the FcγRIIIa Structural Landscape. J Phys Chem B 2021;125:2607-16. [PMID: 33661628 DOI: 10.1021/acs.jpcb.1c00304] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Pisoschi AM, Pop A, Iordache F, Stanca L, Geicu OI, Bilteanu L, Serban AI. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114175] [Reference Citation Analysis]
10 Ozdilek A, Avci FY. Glycosylation as a key parameter in the design of nucleic acid vaccines. Current Opinion in Structural Biology 2022;73:102348. [DOI: 10.1016/j.sbi.2022.102348] [Reference Citation Analysis]
11 Lardone RD, Garay YC, Parodi P, de la Fuente S, Angeloni G, Bravo EO, Schmider AK, Irazoqui FJ. How glycobiology can help us treat and beat the COVID-19 pandemic. J Biol Chem 2021;296:100375. [PMID: 33548227 DOI: 10.1016/j.jbc.2021.100375] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
12 Zhang K, Li S, Pintilie G, Chmielewski D, Schmid MF, Simmons G, Jin J, Chiu W. A 3.4-Å cryo-electron microscopy structure of the human coronavirus spike trimer computationally derived from vitrified NL63 virus particles. QRB Discov 2020;1:e11. [PMID: 34192263 DOI: 10.1017/qrd.2020.16] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Gao G, Li C, Fan W, Zhang M, Li X, Chen W, Li W, Liang R, Li Z, Zhu X. Brilliant glycans and glycosylation: Seq and ye shall find. Int J Biol Macromol 2021:S0141-8130(21)01713-X. [PMID: 34389387 DOI: 10.1016/j.ijbiomac.2021.08.054] [Reference Citation Analysis]
14 Wong NA, Saier MH Jr. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci 2021;22:1308. [PMID: 33525632 DOI: 10.3390/ijms22031308] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
15 Beeckmans S, Van Driessche E. Scrutinizing Coronaviruses Using Publicly Available Bioinformatic Tools: The Viral Structural Proteins as a Case Study. Front Mol Biosci 2021;8:671923. [PMID: 34109214 DOI: 10.3389/fmolb.2021.671923] [Reference Citation Analysis]
16 Stilhano RS, Costa AJ, Nishino MS, Shams S, Bartolomeo CS, Breithaupt-Faloppa AC, Silva EA, Ramirez AL, Prado CM, Ureshino RP. SARS-CoV-2 and the possible connection to ERs, ACE2, and RAGE: Focus on susceptibility factors. FASEB J 2020;34:14103-19. [PMID: 32965736 DOI: 10.1096/fj.202001394RR] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
17 Watanabe Y, Mendonça L, Allen ER, Howe A, Lee M, Allen JD, Chawla H, Pulido D, Donnellan F, Davies H, Ulaszewska M, Belij-Rammerstorfer S, Morris S, Krebs AS, Dejnirattisai W, Mongkolsapaya J, Supasa P, Screaton GR, Green CM, Lambe T, Zhang P, Gilbert SC, Crispin M. Native-like SARS-CoV-2 Spike Glycoprotein Expressed by ChAdOx1 nCoV-19/AZD1222 Vaccine. ACS Cent Sci 2021;7:594-602. [PMID: 34056089 DOI: 10.1021/acscentsci.1c00080] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
18 Fahmi M, Kitagawa H, Yasui G, Kubota Y, Ito M. The Functional Classification of ORF8 in SARS-CoV-2 Replication, Immune Evasion, and Viral Pathogenesis Inferred through Phylogenetic Profiling. Evol Bioinform Online 2021;17:11769343211003079. [PMID: 33795929 DOI: 10.1177/11769343211003079] [Reference Citation Analysis]
19 Shah P, Canziani GA, Carter EP, Chaiken I. The Case for S2: The Potential Benefits of the S2 Subunit of the SARS-CoV-2 Spike Protein as an Immunogen in Fighting the COVID-19 Pandemic. Front Immunol 2021;12:637651. [PMID: 33767706 DOI: 10.3389/fimmu.2021.637651] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
20 LeBlanc EV, Kim Y, Capicciotti CJ, Colpitts CC. Hepatitis C Virus Glycan-Dependent Interactions and the Potential for Novel Preventative Strategies. Pathogens 2021;10:685. [PMID: 34205894 DOI: 10.3390/pathogens10060685] [Reference Citation Analysis]
21 Oommen A, Cunningham S, Joshi L. Transcriptomic Analysis of Respiratory Tissue and Cell Line Models to Examine Glycosylation Machinery during SARS-CoV-2 Infection. Viruses 2021;13:82. [PMID: 33435561 DOI: 10.3390/v13010082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, Aoki K, Kellman BP, Bridger R, Barouch DH, Brindley MA, Lewis NE, Tiemeyer M, Chen B, Woods RJ, Wells L. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Cell Host Microbe 2020;28:586-601.e6. [PMID: 32841605 DOI: 10.1016/j.chom.2020.08.004] [Cited by in Crossref: 118] [Cited by in F6Publishing: 114] [Article Influence: 59.0] [Reference Citation Analysis]
23 Stevenson-Leggett P, Armstrong S, Keep S, Britton P, Bickerton E. Analysis of the avian coronavirus spike protein reveals heterogeneity in the glycans present. J Gen Virol 2021;102. [PMID: 34424155 DOI: 10.1099/jgv.0.001642] [Reference Citation Analysis]
24 Wilson IA, Stanfield RL. 50 Years of structural immunology. J Biol Chem 2021;296:100745. [PMID: 33957119 DOI: 10.1016/j.jbc.2021.100745] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
25 Praissman JL, Wells L. Getting more for less: new software solutions for glycoproteomics. Nat Methods 2020;17:1081-2. [PMID: 33106675 DOI: 10.1038/s41592-020-00987-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Reis CA, Tauber R, Blanchard V. Glycosylation is a key in SARS-CoV-2 infection. J Mol Med (Berl) 2021;99:1023-31. [PMID: 34023935 DOI: 10.1007/s00109-021-02092-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
27 Chumakov K, Avidan MS, Benn CS, Bertozzi SM, Blatt L, Chang AY, Jamison DT, Khader SA, Kottilil S, Netea MG, Sparrow A, Gallo RC. Old vaccines for new infections: Exploiting innate immunity to control COVID-19 and prevent future pandemics. Proc Natl Acad Sci U S A 2021;118:e2101718118. [PMID: 34006644 DOI: 10.1073/pnas.2101718118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Gruszewska E, Grytczuk A, Chrostek L. Glycosylation in viral hepatitis. Biochim Biophys Acta Gen Subj 2021;1865:129997. [PMID: 34474116 DOI: 10.1016/j.bbagen.2021.129997] [Reference Citation Analysis]
29 Guo W, Lakshminarayanan H, Rodriguez-Palacios A, Salata RA, Xu K, Draz MS. Glycan Nanostructures of Human Coronaviruses. Int J Nanomedicine 2021;16:4813-30. [PMID: 34290504 DOI: 10.2147/IJN.S302516] [Reference Citation Analysis]
30 Xu WK, Gou Y, Lozano MM, Dudley JP. Unconventional p97/VCP-Mediated Endoplasmic Reticulum-to-Endosome Trafficking of a Retroviral Protein. J Virol 2021;95:e0053121. [PMID: 33952644 DOI: 10.1128/JVI.00531-21] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Olvera A, Cedeño S, Llano A, Mothe B, Sanchez J, Arsequell G, Brander C. Does Antigen Glycosylation Impact the HIV-Specific T Cell Immunity? Front Immunol 2020;11:573928. [PMID: 33552045 DOI: 10.3389/fimmu.2020.573928] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Goud VR, Chakraborty R, Chakraborty A, Lavudi K, Patnaik S, Sharma S, Patnaik S. A bioinformatic approach of targeting SARS-CoV-2 replication by silencing a conserved alternative reserve of the orf8 gene using host miRNAs. Comput Biol Med 2022;145:105436. [PMID: 35366472 DOI: 10.1016/j.compbiomed.2022.105436] [Reference Citation Analysis]
33 Hoffmann D, Mereiter S, Jin Oh Y, Monteil V, Elder E, Zhu R, Canena D, Hain L, Laurent E, Grünwald-Gruber C, Klausberger M, Jonsson G, Kellner MJ, Novatchkova M, Ticevic M, Chabloz A, Wirnsberger G, Hagelkruys A, Altmann F, Mach L, Stadlmann J, Oostenbrink C, Mirazimi A, Hinterdorfer P, Penninger JM. Identification of lectin receptors for conserved SARS-CoV-2 glycosylation sites. EMBO J 2021;:e108375. [PMID: 34375000 DOI: 10.15252/embj.2021108375] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Li Y, Liu D, Wang Y, Su W, Liu G, Dong W. The Importance of Glycans of Viral and Host Proteins in Enveloped Virus Infection. Front Immunol 2021;12:638573. [PMID: 33995356 DOI: 10.3389/fimmu.2021.638573] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Barros EP, Casalino L, Gaieb Z, Dommer AC, Wang Y, Fallon L, Raguette L, Belfon K, Simmerling C, Amaro RE. The flexibility of ACE2 in the context of SARS-CoV-2 infection. Biophys J 2021;120:1072-84. [PMID: 33189680 DOI: 10.1016/j.bpj.2020.10.036] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 16.0] [Reference Citation Analysis]
36 Karwelat D, Schmeck B, Ringel M, Benedikter BJ, Hübner K, Beinborn I, Maisner A, Schulte LN, Vollmeister E. Influenza virus-mediated suppression of bronchial Chitinase-3-like 1 secretion promotes secondary pneumococcal infection. FASEB J 2020;34:16432-48. [PMID: 33095949 DOI: 10.1096/fj.201902988RR] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Wandall HH, Nielsen MAI, King-Smith S, de Haan N, Bagdonaite I. Global functions of O-glycosylation: promises and challenges in O-glycobiology. FEBS J 2021. [PMID: 34346177 DOI: 10.1111/febs.16148] [Reference Citation Analysis]
38 Ng WM, Sahin M, Krumm SA, Seow J, Zeltina A, Harlos K, Paesen GC, Pinschewer DD, Doores KJ, Bowden TA. Contrasting Modes of New World Arenavirus Neutralization by Immunization-Elicited Monoclonal Antibodies. mBio 2022;:e0265021. [PMID: 35315691 DOI: 10.1128/mbio.02650-21] [Reference Citation Analysis]
39 Kohli E, Causse S, Baverel V, Dubrez L, Borges-Bonan N, Demidov O, Garrido C. Endoplasmic Reticulum Chaperones in Viral Infection: Therapeutic Perspectives. Microbiol Mol Biol Rev 2021;:e0003521. [PMID: 34643441 DOI: 10.1128/MMBR.00035-21] [Reference Citation Analysis]
40 Abhinand CS, Nair AS, Krishnamurthy A, Oommen OV, Sudhakaran PR. Potential protease inhibitors and their combinations to block SARS-CoV-2. J Biomol Struct Dyn 2020;:1-15. [PMID: 32924827 DOI: 10.1080/07391102.2020.1819881] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 2020;369:330-3. [PMID: 32366695 DOI: 10.1126/science.abb9983] [Cited by in Crossref: 494] [Cited by in F6Publishing: 484] [Article Influence: 247.0] [Reference Citation Analysis]
42 Shajahan A, Supekar NT, Gleinich AS, Azadi P. Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology 2020;30:981-8. [PMID: 32363391 DOI: 10.1093/glycob/cwaa042] [Cited by in Crossref: 173] [Cited by in F6Publishing: 172] [Article Influence: 86.5] [Reference Citation Analysis]
43 Zhang XL, Qu H. The Role of Glycosylation in Infectious Diseases. Adv Exp Med Biol 2021;1325:219-37. [PMID: 34495538 DOI: 10.1007/978-3-030-70115-4_11] [Reference Citation Analysis]
44 Moreira RA, Guzman HV, Boopathi S, Baker JL, Poma AB. Characterization of Structural and Energetic Differences between Conformations of the SARS-CoV-2 Spike Protein. Materials (Basel) 2020;13:E5362. [PMID: 33255977 DOI: 10.3390/ma13235362] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 13.5] [Reference Citation Analysis]
45 Tapia B, Yagudayeva G, Bravo MF, Thakur K, Braunschweig AB, Marianski M. Binding of synthetic carbohydrate receptors to enveloped virus glycans: Insights from molecular dynamics simulations. Carbohydrate Research 2022. [DOI: 10.1016/j.carres.2022.108574] [Reference Citation Analysis]
46 Rahman S, Montero MTV, Rowe K, Kirton R, Kunik F Jr. Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence. Expert Rev Clin Pharmacol 2021;14:601-21. [PMID: 33705239 DOI: 10.1080/17512433.2021.1902303] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Wu ZL, Ertelt JM. Fluorescent glycan fingerprinting of SARS2 spike proteins. Sci Rep 2021;11:20428. [PMID: 34650101 DOI: 10.1038/s41598-021-98919-4] [Reference Citation Analysis]
48 Brun J, Vasiljevic S, Gangadharan B, Hensen M, V Chandran A, Hill ML, Kiappes JL, Dwek RA, Alonzi DS, Struwe WB, Zitzmann N. Assessing Antigen Structural Integrity through Glycosylation Analysis of the SARS-CoV-2 Viral Spike. ACS Cent Sci 2021;7:586-93. [PMID: 34056088 DOI: 10.1021/acscentsci.1c00058] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
49 Logette E, Lorin C, Favreau C, Oshurko E, Coggan JS, Casalegno F, Sy MF, Monney C, Bertschy M, Delattre E, Fonta PA, Krepl J, Schmidt S, Keller D, Kerrien S, Scantamburlo E, Kaufmann AK, Markram H. A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Front Public Health 2021;9:695139. [PMID: 34395368 DOI: 10.3389/fpubh.2021.695139] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Ghorbani M, Brooks BR, Klauda JB. Exploring dynamics and network analysis of spike glycoprotein of SARS-COV-2. bioRxiv 2020:2020. [PMID: 33024973 DOI: 10.1101/2020.09.28.317206] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
51 Ohyama Y, Nakajima K, Renfrow MB, Novak J, Takahashi K. Mass spectrometry for the identification and analysis of highly complex glycosylation of therapeutic or pathogenic proteins. Expert Rev Proteomics 2020;17:275-96. [PMID: 32406805 DOI: 10.1080/14789450.2020.1769479] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Martínez-Vicente P, Farré D, Engel P, Angulo A. Divergent Traits and Ligand-Binding Properties of the Cytomegalovirus CD48 Gene Family. Viruses 2020;12:E813. [PMID: 32731344 DOI: 10.3390/v12080813] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Cramer J, Aliu B, Jiang X, Sharpe T, Pang L, Hadorn A, Rabbani S, Ernst B. Poly-l-lysine Glycoconjugates Inhibit DC-SIGN-mediated Attachment of Pandemic Viruses. ChemMedChem 2021;16:2345-53. [PMID: 34061468 DOI: 10.1002/cmdc.202100348] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Lin N, Verma D, Saini N, Arbi R, Munir M, Jovic M, Turak A. Antiviral nanoparticles for sanitizing surfaces: A roadmap to self-sterilizing against COVID-19. Nano Today 2021;40:101267. [PMID: 34404999 DOI: 10.1016/j.nantod.2021.101267] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Ojha R, Prajapati VK. Cognizance of posttranslational modifications in vaccines: A way to enhanced immunogenicity. J Cell Physiol 2021. [PMID: 34170014 DOI: 10.1002/jcp.30483] [Reference Citation Analysis]
56 Kassi EN, Papavassiliou KA, Papavassiliou AG. Defective Anti-oxidant System: An Aggravating Factor for COVID-19 Patients Outcome? Arch Med Res 2020;51:726-7. [PMID: 32471702 DOI: 10.1016/j.arcmed.2020.05.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
57 Mori T, Jung J, Kobayashi C, Dokainish HM, Re S, Sugita Y. Elucidation of interactions regulating conformational stability and dynamics of SARS-CoV-2 S-protein. Biophys J 2021;120:1060-71. [PMID: 33484712 DOI: 10.1016/j.bpj.2021.01.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
58 Korolenko TA, Bgatova NP, Ovsyukova MV, Shintyapina A, Vetvicka V. Hypolipidemic Effects of β-Glucans, Mannans, and Fucoidans: Mechanism of Action and Their Prospects for Clinical Application. Molecules 2020;25:E1819. [PMID: 32316136 DOI: 10.3390/molecules25081819] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
59 Zhang J, Peng Q, Zhao W, Sun W, Yang J, Liu N. Proteomics in Influenza Research: The Emerging Role of Posttranslational Modifications. J Proteome Res 2021;20:110-21. [PMID: 33348980 DOI: 10.1021/acs.jproteome.0c00778] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
60 Lin S, Lowary TL. Synthesis of a Highly Branched Nonasaccharide Chlorella Virus N-Glycan Using a "Counterclockwise" Assembly Approach. Org Lett 2020;22:7645-9. [PMID: 32940477 DOI: 10.1021/acs.orglett.0c02839] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
61 Casalino L, Gaieb Z, Goldsmith JA, Hjorth CK, Dommer AC, Harbison AM, Fogarty CA, Barros EP, Taylor BC, McLellan JS, Fadda E, Amaro RE. Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein. ACS Cent Sci 2020;6:1722-34. [PMID: 33140034 DOI: 10.1021/acscentsci.0c01056] [Cited by in Crossref: 224] [Cited by in F6Publishing: 169] [Article Influence: 112.0] [Reference Citation Analysis]
62 Guo L, Liang Y, Li H, Zheng H, Yang Z, Chen Y, Zhao X, Li J, Li B, Shi H, Sun M, Liu L. Epigenetic glycosylation of SARS-CoV-2 impact viral infection through DC&L-SIGN receptors. iScience 2021;24:103426. [PMID: 34786539 DOI: 10.1016/j.isci.2021.103426] [Reference Citation Analysis]
63 Zheng L, Ma Y, Chen M, Wu G, Yan C, Zhang XE. SARS-CoV-2 spike protein receptor-binding domain N-glycans facilitate viral internalization in respiratory epithelial cells. Biochem Biophys Res Commun 2021;579:69-75. [PMID: 34592572 DOI: 10.1016/j.bbrc.2021.09.053] [Reference Citation Analysis]
64 Eldrid CFS, Allen JD, Newby ML, Crispin M. Suppression of O-Linked Glycosylation of the SARS-CoV-2 Spike by Quaternary Structural Restraints. Anal Chem 2021;93:14392-400. [PMID: 34670086 DOI: 10.1021/acs.analchem.1c01772] [Reference Citation Analysis]
65 [DOI: 10.1101/2021.04.01.438036] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
66 Teng S, Sobitan A, Rhoades R, Liu D, Tang Q. Systemic effects of missense mutations on SARS-CoV-2 spike glycoprotein stability and receptor-binding affinity. Brief Bioinform 2021;22:1239-53. [PMID: 33006605 DOI: 10.1093/bib/bbaa233] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 15.0] [Reference Citation Analysis]
67 Okoh OS, Nii-Trebi NI, Jakkari A, Olaniran TT, Senbadejo TY, Kafintu-Kwashie AA, Dairo EO, Ganiyu TO, Akaninyene IE, Ezediuno LO, Adeosun IJ, Ockiya MA, Jimah EM, Spiro DJ, Oladipo EK, Trovão NS. Epidemiology and genetic diversity of SARS-CoV-2 lineages circulating in Africa. medRxiv 2021:2021. [PMID: 34031660 DOI: 10.1101/2021.05.17.21257341] [Reference Citation Analysis]
68 Spirescu VA, Chircov C, Grumezescu AM, Andronescu E. Polymeric Nanoparticles for Antimicrobial Therapies: An Up-To-Date Overview. Polymers (Basel) 2021;13:724. [PMID: 33673451 DOI: 10.3390/polym13050724] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
69 Ghorbani M, Brooks BR, Klauda JB. Exploring dynamics and network analysis of spike glycoprotein of SARS-COV-2. Biophys J 2021;120:2902-13. [PMID: 33705760 DOI: 10.1016/j.bpj.2021.02.047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
70 Sun Z, Ren K, Zhang X, Chen J, Jiang Z, Jiang J, Ji F, Ouyang X, Li L. Mass Spectrometry Analysis of Newly Emerging Coronavirus HCoV-19 Spike Protein and Human ACE2 Reveals Camouflaging Glycans and Unique Post-Translational Modifications. Engineering (Beijing) 2020. [PMID: 32904601 DOI: 10.1016/j.eng.2020.07.014] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
71 Fischer W, Giorgi EE, Chakraborty S, Nguyen K, Bhattacharya T, Theiler J, Goloboff PA, Yoon H, Abfalterer W, Foley BT, Tegally H, San JE, de Oliveira T, Gnanakaran S, Korber B; Network for Genomic Surveillance in South Africa (NGS-SA). HIV-1 and SARS-CoV-2: Patterns in the evolution of two pandemic pathogens. Cell Host Microbe 2021;29:1093-110. [PMID: 34242582 DOI: 10.1016/j.chom.2021.05.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
72 Verma AK. Cordycepin: a bioactive metabolite of Cordyceps militaris and polyadenylation inhibitor with therapeutic potential against COVID-19. J Biomol Struct Dyn 2020;:1-8. [PMID: 33225826 DOI: 10.1080/07391102.2020.1850352] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
73 Gong Y, Qin S, Dai L, Tian Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther 2021;6:396. [PMID: 34782609 DOI: 10.1038/s41392-021-00809-8] [Reference Citation Analysis]
74 [DOI: 10.1101/2021.01.04.425340] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
75 Lindahl G. Subdominance in Antibody Responses: Implications for Vaccine Development. Microbiol Mol Biol Rev 2020;85:e00078-20. [PMID: 33239435 DOI: 10.1128/MMBR.00078-20] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
76 Breiman A, Ruvoën-Clouet N, Deleers M, Beauvais T, Jouand N, Rocher J, Bovin N, Labarrière N, El Kenz H, Le Pendu J. Low Levels of Natural Anti-α-N-Acetylgalactosamine (Tn) Antibodies Are Associated With COVID-19. Front Microbiol 2021;12:641460. [PMID: 33643275 DOI: 10.3389/fmicb.2021.641460] [Reference Citation Analysis]
77 Caradonna TM, Schmidt AG. Protein engineering strategies for rational immunogen design. NPJ Vaccines 2021;6:154. [PMID: 34921149 DOI: 10.1038/s41541-021-00417-1] [Reference Citation Analysis]
78 Pourrajab F. Targeting the glycans: A paradigm for host-targeted and COVID-19 drug design. J Cell Mol Med 2021. [PMID: 34028178 DOI: 10.1111/jcmm.16585] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
79 Puhm F, Flamand L, Boilard E. Platelet extracellular vesicles in COVID-19: Potential markers and makers. J Leukoc Biol 2021. [PMID: 34730839 DOI: 10.1002/JLB.3MIR0221-100R] [Reference Citation Analysis]
80 Huang HC, Lai YJ, Liao CC, Yang WF, Huang KB, Lee IJ, Chou WC, Wang SH, Wang LH, Hsu JM, Sun CP, Kuo CT, Wang J, Hsiao TC, Yang PJ, Lee TA, Huang W, Li FA, Shen CY, Lin YL, Tao MH, Li CW. Targeting conserved N-glycosylation blocks SARS-CoV-2 variant infection in vitro. EBioMedicine 2021;74:103712. [PMID: 34839261 DOI: 10.1016/j.ebiom.2021.103712] [Reference Citation Analysis]
81 Rajendaran S, Jothi A, Anbazhagan V. Targeting the glycan of receptor binding domain with jacalin as a novel approach to develop a treatment against COVID-19. R Soc Open Sci 2020;7:200844. [PMID: 33047045 DOI: 10.1098/rsos.200844] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
82 Farnós O, Venereo-Sánchez A, Xu X, Chan C, Dash S, Chaabane H, Sauvageau J, Brahimi F, Saragovi U, Leclerc D, Kamen AA. Rapid High-Yield Production of Functional SARS-CoV-2 Receptor Binding Domain by Viral and Non-Viral Transient Expression for Pre-Clinical Evaluation. Vaccines (Basel) 2020;8:E654. [PMID: 33158147 DOI: 10.3390/vaccines8040654] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
83 Neupane B, Fendereski M, Nazneen F, Guo YL, Bai F. Murine Trophoblast Stem Cells and Their Differentiated Cells Attenuate Zika Virus In Vitro by Reducing Glycosylation of the Viral Envelope Protein. Cells 2021;10:3085. [PMID: 34831310 DOI: 10.3390/cells10113085] [Reference Citation Analysis]
84 Gil C, Ginex T, Maestro I, Nozal V, Barrado-Gil L, Cuesta-Geijo MÁ, Urquiza J, Ramírez D, Alonso C, Campillo NE, Martinez A. COVID-19: Drug Targets and Potential Treatments. J Med Chem 2020;63:12359-86. [PMID: 32511912 DOI: 10.1021/acs.jmedchem.0c00606] [Cited by in Crossref: 119] [Cited by in F6Publishing: 97] [Article Influence: 59.5] [Reference Citation Analysis]
85 Watanabe Y, Mendonça L, Allen ER, Howe A, Lee M, Allen JD, Chawla H, Pulido D, Donnellan F, Davies H, Ulaszewska M, Belij-Rammerstorfer S, Morris S, Krebs AS, Dejnirattisai W, Mongkolsapaya J, Supasa P, Screaton GR, Green CM, Lambe T, Zhang P, Gilbert SC, Crispin M. Native-like SARS-CoV-2 spike glycoprotein expressed by ChAdOx1 nCoV-19/AZD1222 vaccine. bioRxiv 2021:2021. [PMID: 33501433 DOI: 10.1101/2021.01.15.426463] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 10.0] [Reference Citation Analysis]
86 Wang D, Zhou B, Keppel TR, Solano M, Baudys J, Goldstein J, Finn MG, Fan X, Chapman AP, Bundy JL, Woolfitt AR, Osman SH, Pirkle JL, Wentworth DE, Barr JR. N-glycosylation profiles of the SARS-CoV-2 spike D614G mutant and its ancestral protein characterized by advanced mass spectrometry. Sci Rep 2021;11:23561. [PMID: 34876606 DOI: 10.1038/s41598-021-02904-w] [Reference Citation Analysis]
87 Umashankar V, Deshpande SH, Hegde HV, Singh I, Chattopadhyay D. Phytochemical Moieties From Indian Traditional Medicine for Targeting Dual Hotspots on SARS-CoV-2 Spike Protein: An Integrative in-silico Approach. Front Med (Lausanne) 2021;8:672629. [PMID: 34026798 DOI: 10.3389/fmed.2021.672629] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
88 Seitz C, Casalino L, Konecny R, Huber G, Amaro RE, McCammon JA. Multiscale Simulations Examining Glycan Shield Effects on Drug Binding to Influenza Neuraminidase. Biophys J 2020;119:2275-89. [PMID: 33130120 DOI: 10.1016/j.bpj.2020.10.024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
89 Klinakis A, Cournia Z, Rampias T. N-terminal domain mutations of the spike protein are structurally implicated in epitope recognition in emerging SARS-CoV-2 strains. Comput Struct Biotechnol J 2021. [PMID: 34630935 DOI: 10.1016/j.csbj.2021.10.004] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 de Queiroz NMGP, Marinho FV, Chagas MA, Leite LCC, Homan EJ, de Magalhães MTQ, Oliveira SC. Vaccines for COVID-19: perspectives from nucleic acid vaccines to BCG as delivery vector system. Microbes Infect 2020;22:515-24. [PMID: 32961274 DOI: 10.1016/j.micinf.2020.09.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
91 Kurhade SE, Weiner JD, Gao FP, Farrell MP. Functionalized High Mannose-Specific Lectins for the Discovery of Type I Mannosidase Inhibitors. Angew Chem Int Ed Engl 2021;60:12313-8. [PMID: 33728787 DOI: 10.1002/anie.202101249] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Margolin E, Crispin M, Meyers A, Chapman R, Rybicki EP. A Roadmap for the Molecular Farming of Viral Glycoprotein Vaccines: Engineering Glycosylation and Glycosylation-Directed Folding. Front Plant Sci 2020;11:609207. [PMID: 33343609 DOI: 10.3389/fpls.2020.609207] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
93 Ramírez Hernández E, Hernández-Zimbrón LF, Martínez Zúñiga N, Leal-García JJ, Ignacio Hernández V, Ucharima-Corona LE, Pérez Campos E, Zenteno E. The Role of the SARS-CoV-2 S-Protein Glycosylation in the Interaction of SARS-CoV-2/ACE2 and Immunological Responses. Viral Immunol 2021;34:165-73. [PMID: 33605822 DOI: 10.1089/vim.2020.0174] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
94 May DG, Martin-Sancho L, Anschau V, Liu S, Chrisopulos RJ, Scott KL, Halfmann CT, Peña RD, Pratt D, Campos AR, Roux KJ. A BioID-derived proximity interactome for SARS-CoV-2 proteins. bioRxiv 2021:2021. [PMID: 34580671 DOI: 10.1101/2021.09.17.460814] [Reference Citation Analysis]
95 Deimel LP, Xue X, Sattentau QJ. Glycans in HIV-1 vaccine design – engaging the shield. Trends in Microbiology 2022. [DOI: 10.1016/j.tim.2022.02.004] [Reference Citation Analysis]
96 Barros EP, Casalino L, Gaieb Z, Dommer AC, Wang Y, Fallon L, Raguette L, Belfon K, Simmerling C, Amaro RE. The flexibility of ACE2 in the context of SARS-CoV-2 infection. bioRxiv 2020:2020. [PMID: 32995769 DOI: 10.1101/2020.09.16.300459] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
97 Zhang Y, Zhao W, Mao Y, Chen Y, Wang S, Zhong Y, Su T, Gong M, Du D, Lu X, Cheng J, Yang H. Site-specific N-glycosylation Characterization of Recombinant SARS-CoV-2 Spike Proteins. Mol Cell Proteomics 2020;:100058. [PMID: 33077685 DOI: 10.1074/mcp.RA120.002295] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
98 Russo L. Glycans and diagnostics in nanomedicine. Nanomedicine (Lond) 2021;16:1839-42. [PMID: 34348476 DOI: 10.2217/nnm-2021-0173] [Reference Citation Analysis]
99 Arend P. Why blood group A individuals are at risk whereas blood group O individuals are protected from SARS-CoV-2 (COVID-19) infection: A hypothesis regarding how the virus invades the human body via ABO(H) blood group-determining carbohydrates. Immunobiology 2021;226:152027. [PMID: 33706067 DOI: 10.1016/j.imbio.2020.152027] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
100 Lenza MP, Oyenarte I, Diercks T, Quintana JI, Gimeno A, Coelho H, Diniz A, Peccati F, Delgado S, Bosch A, Valle M, Millet O, Abrescia NGA, Palazón A, Marcelo F, Jiménez‐osés G, Jiménez‐barbero J, Ardá A, Ereño‐orbea J. Structural Characterization of N‐Linked Glycans in the Receptor Binding Domain of the SARS‐CoV‐2 Spike Protein and their Interactions with Human Lectins. Angew Chem 2020;132:23971-9. [DOI: 10.1002/ange.202011015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
101 Casalino L, Gaieb Z, Goldsmith JA, Hjorth CK, Dommer AC, Harbison AM, Fogarty CA, Barros EP, Taylor BC, McLellan JS, Fadda E, Amaro RE. Beyond Shielding: The Roles of Glycans in SARS-CoV-2 Spike Protein. bioRxiv 2020:2020. [PMID: 32577644 DOI: 10.1101/2020.06.11.146522] [Cited by in Crossref: 26] [Cited by in F6Publishing: 7] [Article Influence: 13.0] [Reference Citation Analysis]
102 Galili U. COVID-19 variants as moving targets and how to stop them by glycoengineered whole-virus vaccines. Virulence 2021;12:1717-20. [PMID: 34304693 DOI: 10.1080/21505594.2021.1939924] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
103 Shahid M, Shahzad-Ul-Hussan S. Structural insights of key enzymes into therapeutic intervention against SARS-CoV-2. J Struct Biol 2021;213:107690. [PMID: 33383190 DOI: 10.1016/j.jsb.2020.107690] [Reference Citation Analysis]
104 Safavi A, Kefayat A, Mahdevar E, Abiri A, Ghahremani F. Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine 2020;38:7612-28. [PMID: 33082015 DOI: 10.1016/j.vaccine.2020.10.016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
105 Xu Y, Li Y, You X, Pei C, Wang Z, Jiao S, Zhao X, Lin X, Lü Y, Jin C, Gao GF, Li J, Wang Q, Du Y. Novel Insights Into the Sulfated Glucuronic Acid-Based Anti-SARS-CoV-2 Mechanism of Exopolysaccharides From Halophilic Archaeon Haloarcula hispanica. Front Chem 2022;10:871509. [DOI: 10.3389/fchem.2022.871509] [Reference Citation Analysis]
106 Miller LM, Barnes LF, Raab SA, Draper BE, El-baba TJ, Lutomski CA, Robinson CV, Clemmer DE, Jarrold MF. Heterogeneity of Glycan Processing on Trimeric SARS-CoV-2 Spike Protein Revealed by Charge Detection Mass Spectrometry. J Am Chem Soc 2021;143:3959-66. [DOI: 10.1021/jacs.1c00353] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
107 Huang JY, Wang HC, Chen YC, Wang PS, Lin SJ, Chang YS, Liu KF, Lo CF. A shrimp glycosylase protein, PmENGase, interacts with WSSV envelope protein VP41B and is involved in WSSV pathogenesis. Dev Comp Immunol 2020;108:103667. [PMID: 32147468 DOI: 10.1016/j.dci.2020.103667] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
108 Illiano A, Pinto G, Melchiorre C, Carpentieri A, Faraco V, Amoresano A. Protein Glycosylation Investigated by Mass Spectrometry: An Overview. Cells 2020;9:E1986. [PMID: 32872358 DOI: 10.3390/cells9091986] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
109 Lee CD, Watanabe Y, Wu NC, Han J, Kumar S, Pholcharee T, Seabright GE, Allen JD, Lin CW, Yang JR, Liu MT, Wu CY, Ward AB, Crispin M, Wilson IA. A cross-neutralizing antibody between HIV-1 and influenza virus. PLoS Pathog 2021;17:e1009407. [PMID: 33750987 DOI: 10.1371/journal.ppat.1009407] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
110 Murugavelu P, Perween R, Shrivastava T, Singh V, Ahmad Parray H, Singh S, Chiranjivi AK, Thiruvengadam R, Singh S, Yadav N, Jakhar K, Sonar S, Mani S, Bhattacharyya S, Sharma C, Vishwakarma P, Khatri R, Kumar Panchal A, Das S, Ahmed S, Samal S, Kshetrapal P, Bhatnagar S, Luthra K, Kumar R. Non-neutralizing SARS CoV-2 directed polyclonal antibodies demonstrate cross-reactivity with the HA glycans of influenza virus. Int Immunopharmacol 2021;99:108020. [PMID: 34426117 DOI: 10.1016/j.intimp.2021.108020] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
111 Chiodin G, Allen JD, Bryant DJ, Rock P, Martino EA, Valle-Argos B, Duriez PJ, Watanabe Y, Henderson I, Blachly JS, McCann KJ, Strefford JC, Packham G, Geijtenbeek TBH, Figdor CG, Wright GW, Staudt LM, Burack R, Bowden TA, Crispin M, Stevenson FK, Forconi F. Insertion of atypical glycans into the tumor antigen-binding site identifies DLBCLs with distinct origin and behavior. Blood 2021;138:1570-82. [PMID: 34424958 DOI: 10.1182/blood.2021012052] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
112 Borah P, Deb PK, Al-Shar'i NA, Dahabiyeh LA, Venugopala KN, Singh V, Shinu P, Hussain S, Deka S, Chandrasekaran B, Jaradat DMM. Perspectives on RNA Vaccine Candidates for COVID-19. Front Mol Biosci 2021;8:635245. [PMID: 33869282 DOI: 10.3389/fmolb.2021.635245] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
113 Lenza MP, Oyenarte I, Diercks T, Quintana JI, Gimeno A, Coelho H, Diniz A, Peccati F, Delgado S, Bosch A, Valle M, Millet O, Abrescia NGA, Palazón A, Marcelo F, Jiménez-Osés G, Jiménez-Barbero J, Ardá A, Ereño-Orbea J. Structural Characterization of N-Linked Glycans in the Receptor Binding Domain of the SARS-CoV-2 Spike Protein and their Interactions with Human Lectins. Angew Chem Int Ed Engl 2020;59:23763-71. [PMID: 32915505 DOI: 10.1002/anie.202011015] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 13.0] [Reference Citation Analysis]
114 Evans DeWald L, Starr C, Butters T, Treston A, Warfield KL. Iminosugars: A host-targeted approach to combat Flaviviridae infections. Antiviral Res 2020;184:104881. [PMID: 32768411 DOI: 10.1016/j.antiviral.2020.104881] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
115 Miura K, Hakamata W. Development of Fluorescent Substrate for Glycan Processing Glycosidase, and Screening of the Novel Glycosidase Inhibitor. TIGG 2020;32:J177-80. [DOI: 10.4052/tigg.1977.4j] [Reference Citation Analysis]
116 Sobitan A, Mahase V, Rhoades R, Williams D, Liu D, Xie Y, Li L, Tang Q, Teng S. Computational Saturation Mutagenesis of SARS-CoV-1 Spike Glycoprotein: Stability, Binding Affinity, and Comparison With SARS-CoV-2. Front Mol Biosci 2021;8:784303. [PMID: 34957216 DOI: 10.3389/fmolb.2021.784303] [Reference Citation Analysis]
117 Su L, Feng Y, Wei K, Xu X, Liu R, Chen G. Carbohydrate-Based Macromolecular Biomaterials. Chem Rev 2021. [PMID: 34338501 DOI: 10.1021/acs.chemrev.0c01338] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
118 Hurdiss DL, Drulyte I, Lang Y, Shamorkina TM, Pronker MF, van Kuppeveld FJM, Snijder J, de Groot RJ. Cryo-EM structure of coronavirus-HKU1 haemagglutinin esterase reveals architectural changes arising from prolonged circulation in humans. Nat Commun 2020;11:4646. [PMID: 32938911 DOI: 10.1038/s41467-020-18440-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
119 Huang Y, Harris BS, Minami SA, Jung S, Shah PS, Nandi S, McDonald KA, Faller R. SARS-CoV-2 spike binding to ACE2 is stronger and longer ranged due to glycan interaction. Biophys J 2021:S0006-3495(21)03893-5. [PMID: 34883069 DOI: 10.1016/j.bpj.2021.12.002] [Reference Citation Analysis]
120 Vallbracht M, Klupp BG, Mettenleiter TC. Influence of N-glycosylation on Expression and Function of Pseudorabies Virus Glycoprotein gB. Pathogens 2021;10:61. [PMID: 33445487 DOI: 10.3390/pathogens10010061] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Chang D, Klein JA, Nalehua MR, Hackett WE, Zaia J. Data-independent acquisition mass spectrometry for site-specific glycoproteomics characterization of SARS-CoV-2 spike protein. Anal Bioanal Chem 2021;413:7305-18. [PMID: 34635934 DOI: 10.1007/s00216-021-03643-7] [Reference Citation Analysis]
122 Miura K, Hakamata W. Development of Fluorescent Substrate for Glycan Processing Glycosidase, and Screening of the Novel Glycosidase Inhibitor. TIGG 2020;32:E201-4. [DOI: 10.4052/tigg.1977.4e] [Reference Citation Analysis]
123 Bhatt AN, Kumar A, Rai Y, Kumari N, Vedagiri D, Harshan KH, Chinnadurai V, Chandna S. Glycolytic inhibitor 2-deoxy-d-glucose attenuates SARS-CoV-2 multiplication in host cells and weakens the infective potential of progeny virions. Life Sci 2022;:120411. [PMID: 35181310 DOI: 10.1016/j.lfs.2022.120411] [Reference Citation Analysis]
124 Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. All Life 2022;15:378-433. [DOI: 10.1080/26895293.2022.2049901] [Reference Citation Analysis]
125 Otto DP, de Villiers MM. Layer-By-Layer Nanocoating of Antiviral Polysaccharides on Surfaces to Prevent Coronavirus Infections. Molecules 2020;25:E3415. [PMID: 32731428 DOI: 10.3390/molecules25153415] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
126 Franco EJ, Pires de Mello CP, Brown AN. Antiviral Evaluation of UV-4B and Interferon-Alpha Combination Regimens against Dengue Virus. Viruses 2021;13:771. [PMID: 33925551 DOI: 10.3390/v13050771] [Reference Citation Analysis]
127 Tharappel AM, Samrat SK, Li Z, Li H. Targeting Crucial Host Factors of SARS-CoV-2. ACS Infect Dis 2020;6:2844-65. [PMID: 33112126 DOI: 10.1021/acsinfecdis.0c00456] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
128 Kuhn JH, Pān H, Chiu CY, Stremlau M. Human Tibroviruses: Commensals or Lethal Pathogens? Viruses 2020;12:E252. [PMID: 32106547 DOI: 10.3390/v12030252] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
129 Margolin E, Allen JD, Verbeek M, van Diepen M, Ximba P, Chapman R, Meyers A, Williamson AL, Crispin M, Rybicki E. Site-Specific Glycosylation of Recombinant Viral Glycoproteins Produced in Nicotiana benthamiana. Front Plant Sci 2021;12:709344. [PMID: 34367227 DOI: 10.3389/fpls.2021.709344] [Reference Citation Analysis]
130 Serris A, Stass R, Bignon EA, Muena NA, Manuguerra JC, Jangra RK, Li S, Chandran K, Tischler ND, Huiskonen JT, Rey FA, Guardado-Calvo P. The Hantavirus Surface Glycoprotein Lattice and Its Fusion Control Mechanism. Cell 2020;183:442-456.e16. [PMID: 32937107 DOI: 10.1016/j.cell.2020.08.023] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
131 Cheudjeu A. Antiviral strategies should focus on stimulating the biosynthesis of heparan sulfates, not their inhibition. Life Sci 2021;277:119508. [PMID: 33865880 DOI: 10.1016/j.lfs.2021.119508] [Reference Citation Analysis]
132 [DOI: 10.1101/2020.03.28.013276] [Cited by in Crossref: 26] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
133 Escobar EE, Wang S, Goswami R, Lanzillotti MB, Li L, McLellan JS, Brodbelt JS. Analysis of Viral Spike Protein N-Glycosylation Using Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022. [PMID: 35388686 DOI: 10.1021/acs.analchem.1c04874] [Reference Citation Analysis]
134 Bouwman KM, Habraeken N, Laconi A, Berends AJ, Groenewoud L, Alders M, Kemp V, Verheije MH. N-glycosylation of infectious bronchitis virus M41 spike determines receptor specificity. J Gen Virol 2020;101:599-608. [PMID: 32213247 DOI: 10.1099/jgv.0.001408] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
135 Critcher M, Hassan AA, Huang ML. Seeing the forest through the trees: characterizing the glycoproteome. Trends in Biochemical Sciences 2022. [DOI: 10.1016/j.tibs.2022.02.007] [Reference Citation Analysis]
136 Bravo MF, Lema MA, Marianski M, Braunschweig AB. Flexible Synthetic Carbohydrate Receptors as Inhibitors of Viral Attachment. Biochemistry 2021;60:999-1018. [PMID: 33094998 DOI: 10.1021/acs.biochem.0c00732] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
137 Spillings BL, Day CJ, Garcia-Minambres A, Aggarwal A, Condon ND, Haselhorst T, Purcell DFJ, Turville SG, Stow JL, Jennings MP, Mak J. Host glycocalyx captures HIV proximal to the cell surface via oligomannose-GlcNAc glycan-glycan interactions to support viral entry. Cell Rep 2022;38:110296. [PMID: 35108536 DOI: 10.1016/j.celrep.2022.110296] [Reference Citation Analysis]
138 Ahmed MN, Jahan R, Nissapatorn V, Wilairatana P, Rahmatullah M. Plant lectins as prospective antiviral biomolecules in the search for COVID-19 eradication strategies. Biomed Pharmacother 2021;146:112507. [PMID: 34891122 DOI: 10.1016/j.biopha.2021.112507] [Reference Citation Analysis]
139 Wang Q, Wang Y, Yang S, Lin C, Aliyu L, Chen Y, Parsons L, Tian Y, Jia H, Pekosz A, Betenbaugh MJ, Cipollo JF. A Linkage-specific Sialic Acid Labeling Strategy Reveals Different Site-specific Glycosylation Patterns in SARS-CoV-2 Spike Protein Produced in CHO and HEK Cell Substrates. Front Chem 2021;9:735558. [PMID: 34631661 DOI: 10.3389/fchem.2021.735558] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
140 Williams SJ, Goddard-Borger ED. α-glucosidase inhibitors as host-directed antiviral agents with potential for the treatment of COVID-19. Biochem Soc Trans 2020;48:1287-95. [PMID: 32510142 DOI: 10.1042/BST20200505] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
141 Galili U. Biosynthesis of α-Gal Epitopes (Galα1-3Galβ1-4GlcNAc-R) and Their Unique Potential in Future α-Gal Therapies. Front Mol Biosci 2021;8:746883. [PMID: 34805272 DOI: 10.3389/fmolb.2021.746883] [Reference Citation Analysis]
142 Watanabe T, Yagi H, Yanaka S, Yamaguchi T, Kato K. Comprehensive characterization of oligosaccharide conformational ensembles with conformer classification by free-energy landscape via reproductive kernel Hilbert space. Phys Chem Chem Phys 2021;23:9753-60. [PMID: 33881019 DOI: 10.1039/d0cp06448c] [Reference Citation Analysis]
143 Dobrica MO, Lazar C, Branza-Nichita N. N-Glycosylation and N-Glycan Processing in HBV Biology and Pathogenesis. Cells 2020;9:E1404. [PMID: 32512942 DOI: 10.3390/cells9061404] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
144 Xu W, Wang M, Yu D, Zhang X. Variations in SARS-CoV-2 Spike Protein Cell Epitopes and Glycosylation Profiles During Global Transmission Course of COVID-19. Front Immunol 2020;11:565278. [PMID: 33013929 DOI: 10.3389/fimmu.2020.565278] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 9.5] [Reference Citation Analysis]
145 Thornlow DN, Macintyre AN, Oguin TH, Karlsson AB, Stover EL, Lynch HE, Sempowski GD, Schmidt AG. Altering the Immunogenicity of Hemagglutinin Immunogens by Hyperglycosylation and Disulfide Stabilization. Front Immunol 2021;12:737973. [PMID: 34691043 DOI: 10.3389/fimmu.2021.737973] [Reference Citation Analysis]
146 Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, Aoki K, Kellman BP, Bridger R, Barouch DH, Brindley MA, Lewis NE, Tiemeyer M, Chen B, Woods RJ, Wells L. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. bioRxiv. 2020;. [PMID: 32743578 DOI: 10.1101/2020.06.25.172403] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
147 Mohammad S, Bouchama A, Mohammad Alharbi B, Rashid M, Saleem Khatlani T, Gaber NS, Malik SS. SARS-CoV-2 ORF8 and SARS-CoV ORF8ab: Genomic Divergence and Functional Convergence. Pathogens 2020;9:E677. [PMID: 32825438 DOI: 10.3390/pathogens9090677] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
148 De Coninck T, Gistelinck K, Janse van Rensburg HC, Van den Ende W, Van Damme EJM. Sweet Modifications Modulate Plant Development. Biomolecules 2021;11:756. [PMID: 34070047 DOI: 10.3390/biom11050756] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
149 Kumbhar PS, Pandya AK, Manjappa AS, Disouza JI, Patravale VB. Carbohydrates-based diagnosis, prophylaxis and treatment of infectious diseases: Special emphasis on COVID-19. Carbohydrate Polymer Technologies and Applications 2021;2:100052. [DOI: 10.1016/j.carpta.2021.100052] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
150 Gadanec LK, McSweeney KR, Qaradakhi T, Ali B, Zulli A, Apostolopoulos V. Can SARS-CoV-2 Virus Use Multiple Receptors to Enter Host Cells? Int J Mol Sci 2021;22:992. [PMID: 33498183 DOI: 10.3390/ijms22030992] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 16.0] [Reference Citation Analysis]
151 Shivatare SS, Wong CH. Synthetic Carbohydrate Chemistry and Translational Medicine. J Org Chem 2020;85:15780-800. [PMID: 33125238 DOI: 10.1021/acs.joc.0c01834] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
152 Berrio A, Gartner V, Wray GA. Positive selection within the genomes of SARS-CoV-2 and other Coronaviruses independent of impact on protein function. PeerJ 2020;8:e10234. [PMID: 33088633 DOI: 10.7717/peerj.10234] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 9.5] [Reference Citation Analysis]
153 Sikora M, von Bülow S, Blanc FEC, Gecht M, Covino R, Hummer G. Computational epitope map of SARS-CoV-2 spike protein. PLoS Comput Biol 2021;17:e1008790. [PMID: 33793546 DOI: 10.1371/journal.pcbi.1008790] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 13.0] [Reference Citation Analysis]
154 Wang D, Baudys J, Bundy JL, Solano M, Keppel T, Barr JR. Comprehensive Analysis of the Glycan Complement of SARS-CoV-2 Spike Proteins Using Signature Ions-Triggered Electron-Transfer/Higher-Energy Collisional Dissociation (EThcD) Mass Spectrometry. Anal Chem 2020;92:14730-9. [PMID: 33064451 DOI: 10.1021/acs.analchem.0c03301] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 10.5] [Reference Citation Analysis]
155 Pokhrel S, Kraemer BR, Burkholz S, Mochly-Rosen D. Natural variants in SARS-CoV-2 Spike protein pinpoint structural and functional hotspots with implications for prophylaxis and therapeutic strategies. Sci Rep 2021;11:13120. [PMID: 34162970 DOI: 10.1038/s41598-021-92641-x] [Reference Citation Analysis]
156 Matoba Y, Sato Y, Oda K, Hatori Y, Morimoto K. Lectins engineered to favor a glycan-binding conformation have enhanced antiviral activity. J Biol Chem 2021;296:100698. [PMID: 33895142 DOI: 10.1016/j.jbc.2021.100698] [Reference Citation Analysis]
157 Ruhnau J, Grote V, Juarez-Osorio M, Bruder D, Mahour R, Rapp E, Rexer TFT, Reichl U. Cell-Free Glycoengineering of the Recombinant SARS-CoV-2 Spike Glycoprotein. Front Bioeng Biotechnol 2021;9:699025. [PMID: 34485255 DOI: 10.3389/fbioe.2021.699025] [Reference Citation Analysis]
158 Li X, Xu Z, Hong X, Zhang Y, Zou X. Databases and Bioinformatic Tools for Glycobiology and Glycoproteomics. Int J Mol Sci 2020;21:E6727. [PMID: 32937895 DOI: 10.3390/ijms21186727] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
159 Artese A, Svicher V, Costa G, Salpini R, Di Maio VC, Alkhatib M, Ambrosio FA, Santoro MM, Assaraf YG, Alcaro S, Ceccherini-Silberstein F. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug Resist Updat 2020;53:100721. [PMID: 33132205 DOI: 10.1016/j.drup.2020.100721] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 13.0] [Reference Citation Analysis]
160 Hariharan V, Kane RS. Glycosylation as a tool for rational vaccine design. Biotechnol Bioeng 2020;117:2556-70. [PMID: 32330286 DOI: 10.1002/bit.27361] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
161 Whitehead B, Boysen AT, Mardahl M, Nejsum P. Unique glycan and lipid composition of helminth-derived extracellular vesicles may reveal novel roles in host-parasite interactions. Int J Parasitol 2020;50:647-54. [PMID: 32526222 DOI: 10.1016/j.ijpara.2020.03.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
162 Obeng EM, Dzuvor CKO, Danquah MK. Anti-SARS-CoV-1 and -2 nanobody engineering towards avidity-inspired therapeutics. Nano Today 2022;42:101350. [PMID: 34840592 DOI: 10.1016/j.nantod.2021.101350] [Reference Citation Analysis]
163 Nascimento da Silva LC, Mendonça JSP, de Oliveira WF, Batista KLR, Zagmignan A, Viana IFT, Dos Santos Correia MT. Exploring lectin-glycan interactions to combat COVID-19: Lessons acquired from other enveloped viruses. Glycobiology 2021;31:358-71. [PMID: 33094324 DOI: 10.1093/glycob/cwaa099] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
164 Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific analysis of the SARS-CoV-2 glycan shield. bioRxiv 2020:2020. [PMID: 32511336 DOI: 10.1101/2020.03.26.010322] [Cited by in Crossref: 65] [Cited by in F6Publishing: 20] [Article Influence: 32.5] [Reference Citation Analysis]
165 Jang H, Lee DH, Kang HG, Lee SJ. Concanavalin A targeting N-linked glycans in spike proteins influence viral interactions. Dalton Trans 2020;49:13538-43. [PMID: 33001090 DOI: 10.1039/d0dt02932g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
166 Galili U. Host Synthesized Carbohydrate Antigens on Viral Glycoproteins as "Achilles' Heel" of Viruses Contributing to Anti-Viral Immune Protection. Int J Mol Sci 2020;21:E6702. [PMID: 32933166 DOI: 10.3390/ijms21186702] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
167 Harvey DJ, Struwe WB, Behrens AJ, Vasiljevic S, Crispin M. Formation and fragmentation of doubly and triply charged ions in the negative ion spectra of neutral N-glycans from viral and other glycoproteins. Anal Bioanal Chem 2021. [PMID: 34342671 DOI: 10.1007/s00216-021-03480-8] [Reference Citation Analysis]
168 May DG, Martin-sancho L, Anschau V, Liu S, Chrisopulos RJ, Scott KL, Halfmann CT, Díaz Peña R, Pratt D, Campos AR, Roux KJ. A BioID-Derived Proximity Interactome for SARS-CoV-2 Proteins. Viruses 2022;14:611. [DOI: 10.3390/v14030611] [Reference Citation Analysis]
169 Zhao X, Chen H, Wang H. Glycans of SARS-CoV-2 Spike Protein in Virus Infection and Antibody Production. Front Mol Biosci 2021;8:629873. [PMID: 33928117 DOI: 10.3389/fmolb.2021.629873] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
170 Li S. Cryo-electron tomography of enveloped viruses. Trends Biochem Sci 2021:S0968-0004(21)00185-7. [PMID: 34511334 DOI: 10.1016/j.tibs.2021.08.005] [Reference Citation Analysis]
171 Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect 2020;9:601-4. [PMID: 32178593 DOI: 10.1080/22221751.2020.1739565] [Cited by in Crossref: 267] [Cited by in F6Publishing: 246] [Article Influence: 133.5] [Reference Citation Analysis]
172 Kumar V, Kancharla S, Jena MK. In silico virtual screening-based study of nutraceuticals predicts the therapeutic potentials of folic acid and its derivatives against COVID-19. Virusdisease 2021;:1-9. [PMID: 33532517 DOI: 10.1007/s13337-020-00643-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
173 Zhang DY, Wang J, Dokholyan NV. Prefusion spike protein stabilization through computational mutagenesis. Proteins 2021;89:399-408. [PMID: 33231324 DOI: 10.1002/prot.26025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
174 Allen JD, Chawla H, Samsudin F, Zuzic L, Shivgan AT, Watanabe Y, He WT, Callaghan S, Song G, Yong P, Brouwer PJM, Song Y, Cai Y, Duyvesteyn HME, Malinauskas T, Kint J, Pino P, Wurm MJ, Frank M, Chen B, Stuart DI, Sanders RW, Andrabi R, Burton DR, Li S, Bond PJ, Crispin M. Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation. Biochemistry 2021;60:2153-69. [PMID: 34213308 DOI: 10.1021/acs.biochem.1c00279] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
175 Kremsreiter SM, Kroell AH, Weinberger K, Boehm H. Glycan-Lectin Interactions in Cancer and Viral Infections and How to Disrupt Them. Int J Mol Sci 2021;22:10577. [PMID: 34638920 DOI: 10.3390/ijms221910577] [Reference Citation Analysis]
176 Tian Y, Parsons LM, Jankowska E, Cipollo JF. Site-Specific Glycosylation Patterns of the SARS-CoV-2 Spike Protein Derived From Recombinant Protein and Viral WA1 and D614G Strains. Front Chem 2021;9:767448. [PMID: 34869209 DOI: 10.3389/fchem.2021.767448] [Reference Citation Analysis]
177 Sharma P, McAlinden KD, Ghavami S, Deshpande DA. Chloroquine: Autophagy inhibitor, antimalarial, bitter taste receptor agonist in fight against COVID-19, a reality check? Eur J Pharmacol 2021;897:173928. [PMID: 33545161 DOI: 10.1016/j.ejphar.2021.173928] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
178 Rowland R, Brandariz-Nuñez A. Analysis of the Role of N-Linked Glycosylation in Cell Surface Expression, Function, and Binding Properties of SARS-CoV-2 Receptor ACE2. Microbiol Spectr 2021;9:e0119921. [PMID: 34494876 DOI: 10.1128/Spectrum.01199-21] [Reference Citation Analysis]
179 Requena D, Médico A, Chacón RD, Ramírez M, Marín-Sánchez O. Identification of Novel Candidate Epitopes on SARS-CoV-2 Proteins for South America: A Review of HLA Frequencies by Country. Front Immunol 2020;11:2008. [PMID: 33013857 DOI: 10.3389/fimmu.2020.02008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
180 Kumar R, Mehta D, Mishra N, Nayak D, Sunil S. Role of Host-Mediated Post-Translational Modifications (PTMs) in RNA Virus Pathogenesis. Int J Mol Sci 2020;22:E323. [PMID: 33396899 DOI: 10.3390/ijms22010323] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
181 Re S, Mizuguchi K. Glycan Cluster Shielding and Antibody Epitopes on Lassa Virus Envelop Protein. J Phys Chem B 2021;125:2089-97. [PMID: 33606939 DOI: 10.1021/acs.jpcb.0c11516] [Reference Citation Analysis]
182 Vankadari N, Shepherd DC, Carter SD, Ghosal D. Three-dimensional insights into human enveloped viruses in vitro and in situ. Biochemical Society Transactions 2022. [DOI: 10.1042/bst20210433] [Reference Citation Analysis]
183 Shajahan A, Pepi LE, Rouhani DS, Heiss C, Azadi P. Glycosylation of SARS-CoV-2: structural and functional insights. Anal Bioanal Chem 2021. [PMID: 34235568 DOI: 10.1007/s00216-021-03499-x] [Reference Citation Analysis]
184 Rahnama S, Azimzadeh Irani M, Amininasab M, Ejtehadi MR. S494 O-glycosylation site on the SARS-CoV-2 RBD affects the virus affinity to ACE2 and its infectivity; a molecular dynamics study. Sci Rep 2021;11:15162. [PMID: 34312429 DOI: 10.1038/s41598-021-94602-w] [Reference Citation Analysis]
185 Wijayasinghe YS, Bhansali MP, Borkar MR, Chaturbhuj GU, Muntean BS, Viola RE, Bhansali PR. A Comprehensive Biological and Synthetic Perspective on 2-Deoxy-d-Glucose (2-DG), A Sweet Molecule with Therapeutic and Diagnostic Potentials. J Med Chem 2022;65:3706-28. [PMID: 35192360 DOI: 10.1021/acs.jmedchem.1c01737] [Reference Citation Analysis]
186 Wörner TP, Shamorkina TM, Snijder J, Heck AJR. Mass Spectrometry-Based Structural Virology. Anal Chem 2021;93:620-40. [PMID: 33275424 DOI: 10.1021/acs.analchem.0c04339] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
187 Nance ML, Labonte JW, Adolf-Bryfogle J, Gray JJ. Development and Evaluation of GlycanDock: A Protein-Glycoligand Docking Refinement Algorithm in Rosetta. J Phys Chem B 2021. [PMID: 34133179 DOI: 10.1021/acs.jpcb.1c00910] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
188 [DOI: 10.1101/2020.11.16.384594] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]