BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Falahati M, Attar F, Sharifi M, Haertlé T, Berret JF, Khan RH, Saboury AA. A health concern regarding the protein corona, aggregation and disaggregation. Biochim Biophys Acta Gen Subj 2019;1863:971-91. [PMID: 30802594 DOI: 10.1016/j.bbagen.2019.02.012] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 10.7] [Reference Citation Analysis]
Number Citing Articles
1 Mousseau F, Oikonomou EK, Vacher A, Airiau M, Mornet S, Berret J. Revealing the pulmonary surfactant corona on silica nanoparticles by cryo-transmission electron microscopy. Nanoscale Adv 2020;2:642-7. [DOI: 10.1039/c9na00779b] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
2 Chen D, Parayath N, Ganesh S, Wang W, Amiji M. The role of apolipoprotein- and vitronectin-enriched protein corona on lipid nanoparticles for in vivo targeted delivery and transfection of oligonucleotides in murine tumor models. Nanoscale 2019;11:18806-24. [PMID: 31595922 DOI: 10.1039/c9nr05788a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
3 Pan Q, Ban Y, Khan S. Antioxidant activity of calycosin against α-synuclein amyloid fibrils-induced oxidative stress in neural-like cells as a model of preventive care studies in Parkinson's disease. Int J Biol Macromol 2021;182:91-7. [PMID: 33798579 DOI: 10.1016/j.ijbiomac.2021.03.186] [Reference Citation Analysis]
4 Wang S, Zheng J, Ma L, Petersen RB, Xu L, Huang K. Inhibiting protein aggregation with nanomaterials: The underlying mechanisms and impact factors. Biochim Biophys Acta Gen Subj 2021;1866:130061. [PMID: 34822925 DOI: 10.1016/j.bbagen.2021.130061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Czarnecka J, Kwiatkowski M, Wiśniewski M, Roszek K. Protein Corona Hinders N-CQDs Oxidative Potential and Favors Their Application as Nanobiocatalytic System. Int J Mol Sci 2021;22:8136. [PMID: 34360901 DOI: 10.3390/ijms22158136] [Reference Citation Analysis]
6 Berret JF, Graillot A. Versatile Coating Platform for Metal Oxide Nanoparticles: Applications to Materials and Biological Science. Langmuir 2022;38:5323-38. [PMID: 35483044 DOI: 10.1021/acs.langmuir.2c00338] [Reference Citation Analysis]
7 Khodabandeh A, Yakhchian R, Hasan A, Paray BA, Shahi F, Rasti B, Mirpour M, Sharifi M, Derakhshankhah H, Akhtari K, Zhang Z, Gong G, Zheng Y, Falahati M. Silybin as a potent inhibitor of a-synuclein aggregation and associated cytotoxicity against neuroblastoma cells induced by zinc oxide nanoparticles. Journal of Molecular Liquids 2020;310:113198. [DOI: 10.1016/j.molliq.2020.113198] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
8 Zhang W, Cho WC, Bloukh SH, Edis Z, Du W, He Y, Hu HY, Hagen TLMT, Falahati M. An overview on the exploring the interaction of inorganic nanoparticles with microtubules for the advancement of cancer therapeutics. Int J Biol Macromol 2022:S0141-8130(22)01134-5. [PMID: 35618086 DOI: 10.1016/j.ijbiomac.2022.05.150] [Reference Citation Analysis]
9 Wu L, Fu F, Wang W, Wang W, Huang Z, Huang Y, Pan X, Wu C. Plasma protein corona forming upon fullerene nanocomplex: Impact on both counterparts. Particuology 2022. [DOI: 10.1016/j.partic.2022.04.006] [Reference Citation Analysis]
10 Santacruz-Márquez R, González-De Los Santos M, Hernández-Ochoa I. Ovarian toxicity of nanoparticles. Reprod Toxicol 2021;103:79-95. [PMID: 34098047 DOI: 10.1016/j.reprotox.2021.06.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Rosli NA, Teow YH, Mahmoudi E. Current approaches for the exploration of antimicrobial activities of nanoparticles. Sci Technol Adv Mater 2021;22:885-907. [PMID: 34675754 DOI: 10.1080/14686996.2021.1978801] [Reference Citation Analysis]
12 Bozorgi A, Khazaei M, Soleimani M, Jamalpoor Z. Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomater Sci 2021;9:4541-67. [PMID: 34075945 DOI: 10.1039/d1bm00504a] [Reference Citation Analysis]
13 Zhenxia Z, Min L, Peikui Y, Zikai C, Yaqun L, Junli W, Fenlian Y, Yuzhong Z. Inhibition of tau aggregation and associated cytotoxicity on neuron-like cells by calycosin. Int J Biol Macromol 2021;171:74-81. [PMID: 33301850 DOI: 10.1016/j.ijbiomac.2020.12.030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
14 Assenhöj M, Eriksson P, Dönnes P, Ljunggren SA, Marcusson-Ståhl M, Du Rietz A, Uvdal K, Karlsson H, Cederbrant K. Protein interaction, monocyte toxicity and immunogenic properties of cerium oxide crystals with 5% or 14% gadolinium, cobalt oxide and iron oxide nanoparticles - an interdisciplinary approach. Nanotoxicology 2021;15:1035-58. [PMID: 34468264 DOI: 10.1080/17435390.2021.1966115] [Reference Citation Analysis]
15 Wei X, Zhang X, Yang Z, Li L, Sui H. Osteoinductive potential and antibacterial characteristics of collagen coated iron oxide nanosphere containing strontium and hydroxyapatite in long term bone fractures. Arabian Journal of Chemistry 2021;14:102984. [DOI: 10.1016/j.arabjc.2020.102984] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
16 Fasoli E. Protein corona: Dr. Jekyll and Mr. Hyde of nanomedicine. Biotechnol Appl Biochem 2020. [PMID: 33007792 DOI: 10.1002/bab.2035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Sharifi M, Sohrabi MJ, Hosseinali SH, Hasan A, Kani PH, Talaei AJ, Karim AY, Nanakali NMQ, Salihi A, Aziz FM, Yan B, Khan RH, Saboury AA, Falahati M. Enzyme immobilization onto the nanomaterials: Application in enzyme stability and prodrug-activated cancer therapy. International Journal of Biological Macromolecules 2020;143:665-76. [DOI: 10.1016/j.ijbiomac.2019.12.064] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 16.5] [Reference Citation Analysis]
18 Ferreira D, Fontinha D, Martins C, Pires D, Fernandes AR, Baptista PV. Gold Nanoparticles for Vectorization of Nucleic Acids for Cancer Therapeutics. Molecules 2020;25:E3489. [PMID: 32751935 DOI: 10.3390/molecules25153489] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
19 Voltà-Durán E, Serna N, Sánchez-García L, Aviñó A, Sánchez JM, López-Laguna H, Cano-Garrido O, Casanova I, Mangues R, Eritja R, Vázquez E, Villaverde A, Unzueta U. Design and engineering of tumor-targeted, dual-acting cytotoxic nanoparticles. Acta Biomater 2021;119:312-22. [PMID: 33189955 DOI: 10.1016/j.actbio.2020.11.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
20 Mousseau F, Berret JF, Oikonomou EK. Design and Applications of a Fluorescent Labeling Technique for Lipid and Surfactant Preformed Vesicles. ACS Omega 2019;4:10485-93. [PMID: 31460145 DOI: 10.1021/acsomega.9b01094] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
21 Ahmadabad LE, Kalantari FS, Liu H, Hasan A, Gamasaee NA, Edis Z, Attar F, Ale-Ebrahim M, Rouhollah F, Babadaei MMN, Sharifi M, Shahpasand K, Akhtari K, Falahati M, Cai Y. Hydrothermal method-based synthesized tin oxide nanoparticles: Albumin binding and antiproliferative activity against K562 cells. Mater Sci Eng C Mater Biol Appl 2021;119:111649. [PMID: 33321685 DOI: 10.1016/j.msec.2020.111649] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Goorabjavari SVM, Golmohamadi F, Haririmonfared S, Ahmadi H, Golisani S, Yari H, Hasan A, Edis Z, Ale-ebrahim M, Sharifi M, Rasti B, Nemati F, Falahati M. Thermodynamic and anticancer properties of inorganic zinc oxide nanoparticles synthesized through co-precipitation method. Journal of Molecular Liquids 2021;330:115602. [DOI: 10.1016/j.molliq.2021.115602] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
23 Mulvihill JJ, Cunnane EM, Ross AM, Duskey JT, Tosi G, Grabrucker AM. Drug delivery across the blood-brain barrier: recent advances in the use of nanocarriers. Nanomedicine (Lond). 2020;15:205-214. [PMID: 31916480 DOI: 10.2217/nnm-2019-0367] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 14.0] [Reference Citation Analysis]
24 Thai LP, Mousseau F, Oikonomou E, Radiom M, Berret JF. Effect of Nanoparticles on the Bulk Shear Viscosity of a Lung Surfactant Fluid. ACS Nano 2020;14:466-75. [PMID: 31854968 DOI: 10.1021/acsnano.9b06293] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
25 Moradi M, Razavi R, Omer AK, Farhangfar A, Mcclements DJ. Interactions between nanoparticle-based food additives and other food ingredients: A review of current knowledge. Trends in Food Science & Technology 2022;120:75-87. [DOI: 10.1016/j.tifs.2022.01.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
26 Jouya Talaei A, Zarei N, Hasan A, Haj Bloukh S, Edis Z, Abbasi Gamasaee N, Heidarzadeh M, Mahdi Nejadi Babadaei M, Shahpasand K, Sharifi M, Akhatri K, Khan S, Xue M, Falahati M. Fabrication of inorganic alumina particles at nanoscale by a pulsed laser ablation technique in liquid and exploring their protein binding, anticancer and antipathogenic activities. Arabian Journal of Chemistry 2021;14:102923. [DOI: 10.1016/j.arabjc.2020.102923] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Li J, Gao G, Tang X, Yu M, He M, Sun T. Isomeric Effect of Nano-Inhibitors on Aβ40 Fibrillation at The Nano-Bio Interface. ACS Appl Mater Interfaces 2021;13:4894-904. [PMID: 33486955 DOI: 10.1021/acsami.0c21906] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Clemente Z, Silva GH, de Souza Nunes MC, Martinez DST, Maurer-Morelli CV, Thomaz AA, Castro VLSS. Exploring the mechanisms of graphene oxide behavioral and morphological changes in zebrafish. Environ Sci Pollut Res Int 2019;26:30508-23. [PMID: 31463743 DOI: 10.1007/s11356-019-05870-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
29 Bhunia AK, Kamilya T, Saha S. Study of the Adsorption of Human Hemoglobin to Silver (Ag) Nanoparticle Surface for the Detection of the Unfolding of Hemoglobin. Plasmonics. [DOI: 10.1007/s11468-022-01603-0] [Reference Citation Analysis]
30 Jaragh-Alhadad LA, Falahati M. Tin oxide nanoparticles trigger the formation of amyloid β oligomers/protofibrils and underlying neurotoxicity as a marker of Alzheimer's diseases. Int J Biol Macromol 2022;204:154-60. [PMID: 35124024 DOI: 10.1016/j.ijbiomac.2022.01.190] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Sharifi M, Rezayat SM, Akhtari K, Hasan A, Falahati M. Fabrication and evaluation of anti-cancer efficacy of lactoferrin-coated maghemite and magnetite nanoparticles. Journal of Biomolecular Structure and Dynamics 2020;38:2945-54. [DOI: 10.1080/07391102.2019.1650114] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
32 Mousavi M, Hakimian S, Mustafa TA, Aziz FM, Salihi A, Ale-Ebrahim M, Mirpour M, Rasti B, Akhtari K, Shahpasand K, Abou-Zied OK, Falahati M. The interaction of silica nanoparticles with catalase and human mesenchymal stem cells: biophysical, theoretical and cellular studies. Int J Nanomedicine 2019;14:5355-68. [PMID: 31409992 DOI: 10.2147/IJN.S210136] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
33 Avellán-llaguno RD, Zhang X, Zhao P, Velez A, Cruz M, Kikuchi J, Dong S, Huang Q. Differential aggregation of polystyrene and titanium dioxide nanoparticles under various salinity conditions and against multiple proteins types. Environ Sci Pollut Res. [DOI: 10.1007/s11356-022-20729-6] [Reference Citation Analysis]
34 Jaragh-Alhadad LA, Falahati M. Copper oxide nanoparticles promote amyloid-β-triggered neurotoxicity through formation of oligomeric species as a prelude to Alzheimer's diseases. Int J Biol Macromol 2022;207:121-9. [PMID: 35259430 DOI: 10.1016/j.ijbiomac.2022.03.006] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Li X, Li Q, Zhang Y, Bai Y, Cao Y, Yang Y, Zang L, Huang M, Sui R. Nickel oxide nanoparticles increase α-synuclein amyloid formation and relevant overexpression of inflammatory mediators in microglia as a marker of Parkinson's disease. Arabian Journal of Chemistry 2021;14:103380. [DOI: 10.1016/j.arabjc.2021.103380] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Martín-contreras M, Navarro-marchal SA, Peula-garcía JM, Jódar-reyes AB. Progress and Hurdles of Therapeutic Nanosystems against Cancer. Pharmaceutics 2022;14:388. [DOI: 10.3390/pharmaceutics14020388] [Reference Citation Analysis]
37 Srivastava I, Khan MS, Dighe K, Alafeef M, Wang Z, Banerjee T, Ghonge T, Grove LM, Bashir R, Pan D. On‐Chip Electrical Monitoring of Real‐Time “Soft” and “Hard” Protein Corona Formation on Carbon Nanoparticles. Small Methods 2020;4:2000099. [DOI: 10.1002/smtd.202000099] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
38 Randhawa S, Abidi SMS, Dar AI, Acharya A. The curious cases of nanoparticle induced amyloidosis during protein corona formation and anti-amyloidogenic nanomaterials: Paradox or prejudice? Int J Biol Macromol 2021;193:1009-20. [PMID: 34728302 DOI: 10.1016/j.ijbiomac.2021.10.195] [Reference Citation Analysis]
39 Falahati M, Sharifi M, Hagen TLMT. Explaining chemical clues of metal organic framework-nanozyme nano-/micro-motors in targeted treatment of cancers: benchmarks and challenges. J Nanobiotechnology 2022;20:153. [PMID: 35331244 DOI: 10.1186/s12951-022-01375-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Zhang L, Wang Z, Yuan X, Sui R, Falahati M. Evaluation of heptelidic acid as a potential inhibitor for tau aggregation-induced Alzheimer's disease and associated neurotoxicity. Int J Biol Macromol 2021;183:1155-61. [PMID: 33971235 DOI: 10.1016/j.ijbiomac.2021.05.018] [Reference Citation Analysis]
41 Bolaños K, Sánchez-Navarro M, Tapia-Arellano A, Giralt E, Kogan MJ, Araya E. Oligoarginine Peptide Conjugated to BSA Improves Cell Penetration of Gold Nanorods and Nanoprisms for Biomedical Applications. Pharmaceutics 2021;13:1204. [PMID: 34452165 DOI: 10.3390/pharmaceutics13081204] [Reference Citation Analysis]
42 Janani B, Raju LL, Thomas AM, Alyemeni MN, Dudin GA, Wijaya L, Alsahli AA, Ahmad P, Khan SS. Impact of bovine serum albumin - A protein corona on toxicity of ZnO NPs in environmental model systems of plant, bacteria, algae and crustaceans. Chemosphere 2021;270:128629. [PMID: 33168289 DOI: 10.1016/j.chemosphere.2020.128629] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]