BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Murgueitio MS, Ebner S, Hörtnagl P, Rakers C, Bruckner R, Henneke P, Wolber G, Santos-Sierra S. Enhanced immunostimulatory activity of in silico discovered agonists of Toll-like receptor 2 (TLR2). Biochim Biophys Acta Gen Subj 2017;1861:2680-9. [PMID: 28734965 DOI: 10.1016/j.bbagen.2017.07.011] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Kaur A, Kaushik D, Piplani S, Mehta SK, Petrovsky N, Salunke DB. TLR2 Agonistic Small Molecules: Detailed Structure-Activity Relationship, Applications, and Future Prospects. J Med Chem 2021;64:233-78. [PMID: 33346636 DOI: 10.1021/acs.jmedchem.0c01627] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
2 Drexel M, Kirchmair J, Santos-Sierra S. INH14, a Small-Molecule Urea Derivative, Inhibits the IKKα/β-Dependent TLR Inflammatory Response. Chembiochem 2019;20:710-7. [PMID: 30447158 DOI: 10.1002/cbic.201800647] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
3 Bermudez M, Grabowski M, Murgueitio MS, Tiemann M, Varga P, Rudolf T, Wolber G, Weindl G, Rademann J. Biological Characterization, Mechanistic Investigation and Structure-Activity Relationships of Chemically Stable TLR2 Antagonists. ChemMedChem 2020;15:1364-71. [PMID: 32333508 DOI: 10.1002/cmdc.202000060] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Santos-sierra S. Developments in anticancer vaccination: budding new adjuvants. Biological Chemistry 2020;401:435-46. [DOI: 10.1515/hsz-2019-0383] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Su L, Wang Y, Wang J, Mifune Y, Morin MD, Jones BT, Moresco EMY, Boger DL, Beutler B, Zhang H. Structural Basis of TLR2/TLR1 Activation by the Synthetic Agonist Diprovocim. J Med Chem 2019;62:2938-49. [PMID: 30829478 DOI: 10.1021/acs.jmedchem.8b01583] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
6 Moradi-Marjaneh R, Hassanian SM, Hasanzadeh M, Rezayi M, Maftouh M, Mehramiz M, Ferns GA, Khazaei M, Avan A. Therapeutic potential of toll-like receptors in treatment of gynecological cancers. IUBMB Life 2019;71:549-64. [PMID: 30729633 DOI: 10.1002/iub.2011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Morin MD, Wang Y, Jones BT, Mifune Y, Su L, Shi H, Moresco EMY, Zhang H, Beutler B, Boger DL. Diprovocims: A New and Exceptionally Potent Class of Toll-like Receptor Agonists. J Am Chem Soc 2018;140:14440-54. [PMID: 30272974 DOI: 10.1021/jacs.8b09223] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
8 Šribar D, Grabowski M, Murgueitio MS, Bermudez M, Weindl G, Wolber G. Identification and characterization of a novel chemotype for human TLR8 inhibitors. European Journal of Medicinal Chemistry 2019;179:744-52. [DOI: 10.1016/j.ejmech.2019.06.084] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
9 Wang Y, Su L, Morin MD, Jones BT, Mifune Y, Shi H, Wang KW, Zhan X, Liu A, Wang J, Li X, Tang M, Ludwig S, Hildebrand S, Zhou K, Siegwart DJ, Moresco EMY, Zhang H, Boger DL, Beutler B. Adjuvant effect of the novel TLR1/TLR2 agonist Diprovocim synergizes with anti-PD-L1 to eliminate melanoma in mice. Proc Natl Acad Sci U S A 2018;115:E8698-706. [PMID: 30150374 DOI: 10.1073/pnas.1809232115] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 14.3] [Reference Citation Analysis]
10 Wietzorrek G, Drexel M, Trieb M, Santos-sierra S. Anti-inflammatory activity of small-molecule antagonists of Toll-like receptor 2 (TLR2) in mice. Immunobiology 2019;224:1-9. [DOI: 10.1016/j.imbio.2018.11.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Lee J, Kim HJ, Nguyen TTH, Kim SC, Ree J, Choi TG, Sohng JK, Park YI. Emodin 8-O-glucoside primes macrophages more strongly than emodin aglycone via activation of phagocytic activity and TLR-2/MAPK/NF-κB signalling pathway. Int Immunopharmacol 2020;88:106936. [PMID: 32871479 DOI: 10.1016/j.intimp.2020.106936] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Carmona-Martínez V, Ruiz-Alcaraz AJ, Vera M, Guirado A, Martínez-Esparza M, García-Peñarrubia P. Therapeutic potential of pteridine derivatives: A comprehensive review. Med Res Rev 2019;39:461-516. [PMID: 30341778 DOI: 10.1002/med.21529] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
13 Zhao Z, Tao L, Liu A, Ma M, Li H, Zhao H, Yang J, Wang S, Jin Y, Shao X, Bao F. NF‑κB is a key modulator in the signaling pathway of Borrelia burgdorferi BmpA‑induced inflammatory chemokines in murine microglia BV2 cells. Mol Med Rep 2018;17:4953-8. [PMID: 29393443 DOI: 10.3892/mmr.2018.8526] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]