BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Benhar M. Nitric oxide and the thioredoxin system: a complex interplay in redox regulation. Biochimica et Biophysica Acta (BBA) - General Subjects 2015;1850:2476-84. [DOI: 10.1016/j.bbagen.2015.09.010] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 8.2] [Reference Citation Analysis]
Number Citing Articles
1 Yang CL, Wang J, Zou LL. Innate immune evasion strategies against Cryptococcal meningitis caused by Cryptococcus neoformans. Exp Ther Med 2017;14:5243-50. [PMID: 29285049 DOI: 10.3892/etm.2017.5220] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
2 Banerjee S, Ghosh S, Mandal A, Ghosh N, Sil PC. ROS-associated immune response and metabolism: a mechanistic approach with implication of various diseases. Arch Toxicol 2020;94:2293-317. [PMID: 32524152 DOI: 10.1007/s00204-020-02801-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
3 Bhatia V, Elnagary L, Dakshinamurti S. Tracing the path of inhaled nitric oxide: Biological consequences of protein nitrosylation. Pediatr Pulmonol 2021;56:525-38. [PMID: 33289321 DOI: 10.1002/ppul.25201] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Sánchez-villamil JP, D’annunzio V, Finocchietto P, Holod S, Rebagliati I, Pérez H, Peralta JG, Gelpi RJ, Poderoso JJ, Carreras MC. Cardiac-specific overexpression of thioredoxin 1 attenuates mitochondrial and myocardial dysfunction in septic mice. The International Journal of Biochemistry & Cell Biology 2016;81:323-34. [DOI: 10.1016/j.biocel.2016.08.045] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
5 Espinosa B, Arnér ESJ. Thioredoxin-related protein of 14 kDa as a modulator of redox signalling pathways. Br J Pharmacol 2019;176:544-53. [PMID: 30129655 DOI: 10.1111/bph.14479] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
6 Stomberski CT, Hess DT, Stamler JS. Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling. Antioxid Redox Signal 2019;30:1331-51. [PMID: 29130312 DOI: 10.1089/ars.2017.7403] [Cited by in Crossref: 78] [Cited by in F6Publishing: 73] [Article Influence: 26.0] [Reference Citation Analysis]
7 Talukdar D. Balancing Roles of Reactive Oxygen Species in Plants’ Response to Metalloid Exposure. In: Singh VP, Singh S, Tripathi DK, Prasad SM, Chauhan DK, editors. Reactive Oxygen Species in Plants. Chichester: John Wiley & Sons, Ltd; 2017. pp. 51-73. [DOI: 10.1002/9781119324928.ch3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
8 Liu R, Shi D, Zhang J, Li X, Han X, Yao X, Fang J. Virtual screening-guided discovery of thioredoxin reductase inhibitors. Toxicol Appl Pharmacol 2019;370:106-16. [PMID: 30898620 DOI: 10.1016/j.taap.2019.03.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
9 Jain P, von Toerne C, Lindermayr C, Bhatla SC. S-nitrosylation/denitrosylation as a regulatory mechanism of salt stress sensing in sunflower seedlings. Physiol Plantarum 2018;162:49-72. [DOI: 10.1111/ppl.12641] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
10 Kneeshaw S, Spoel SH. Thioredoxin-Dependent Decomposition of Protein S-Nitrosothiols. In: Mengel A, Lindermayr C, editors. Nitric Oxide. New York: Springer; 2018. pp. 281-97. [DOI: 10.1007/978-1-4939-7695-9_22] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
11 Stomberski CT, Zhou HL, Wang L, van den Akker F, Stamler JS. Molecular recognition of S-nitrosothiol substrate by its cognate protein denitrosylase. J Biol Chem 2019;294:1568-78. [PMID: 30538128 DOI: 10.1074/jbc.RA118.004947] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
12 Knany A, Engelman R, Hariri HA, Biswal S, Wolfenson H, Benhar M. S-nitrosocysteine and glutathione depletion synergize to induce cell death in human tumor cells: Insights into the redox and cytotoxic mechanisms. Free Radic Biol Med 2020;160:566-74. [PMID: 32898624 DOI: 10.1016/j.freeradbiomed.2020.08.026] [Reference Citation Analysis]
13 Miller MR, Koch SR, Choi H, Lamb FS, Stark RJ. Apoptosis signal-regulating kinase 1 (ASK1) inhibition reduces endothelial cytokine production without improving permeability after toll-like receptor 4 (TLR4) challenge. Transl Res 2021;235:115-28. [PMID: 33857660 DOI: 10.1016/j.trsl.2021.04.001] [Reference Citation Analysis]
14 Benhar M. Oxidants, Antioxidants and Thiol Redox Switches in the Control of Regulated Cell Death Pathways. Antioxidants (Basel) 2020;9:E309. [PMID: 32290499 DOI: 10.3390/antiox9040309] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 17.0] [Reference Citation Analysis]
15 Zhang J, Li X, Han X, Liu R, Fang J. Targeting the Thioredoxin System for Cancer Therapy. Trends Pharmacol Sci 2017;38:794-808. [PMID: 28648527 DOI: 10.1016/j.tips.2017.06.001] [Cited by in Crossref: 146] [Cited by in F6Publishing: 145] [Article Influence: 36.5] [Reference Citation Analysis]
16 Bignon E, Allega MF, Lucchetta M, Tiberti M, Papaleo E. Computational Structural Biology of S-nitrosylation of Cancer Targets. Front Oncol 2018;8:272. [PMID: 30155439 DOI: 10.3389/fonc.2018.00272] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
17 Engelman R, Ziv T, Arnér ESJ, Benhar M. Inhibitory nitrosylation of mammalian thioredoxin reductase 1: Molecular characterization and evidence for its functional role in cellular nitroso-redox imbalance. Free Radic Biol Med 2016;97:375-85. [PMID: 27377780 DOI: 10.1016/j.freeradbiomed.2016.06.032] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
18 Maddalena LA, Selim SM, Fonseca J, Messner H, McGowan S, Stuart JA. Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture. Biochem Biophys Res Commun 2017;493:246-51. [PMID: 28899780 DOI: 10.1016/j.bbrc.2017.09.037] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
19 Udayantha HMV, Samaraweera AV, Nadarajapillai K, Sandamalika WMG, Lim C, Yang H, Lee S, Lee J. Molecular characterization and immune regulatory, antioxidant, and antiapoptotic activities of thioredoxin domain-containing protein 17 (TXNDC17) in yellowtail clownfish (Amphiprion clarkii). Fish Shellfish Immunol 2021;115:75-85. [PMID: 34091036 DOI: 10.1016/j.fsi.2021.05.021] [Reference Citation Analysis]
20 Zhao Y, He M, Ding J, Xi Q, Loake GJ, Zheng W. Regulation of Anticancer Styrylpyrone Biosynthesis in the Medicinal Mushroom Inonotus obliquus Requires Thioredoxin Mediated Transnitrosylation of S-nitrosoglutathione Reductase. Sci Rep 2016;6:37601. [PMID: 27869186 DOI: 10.1038/srep37601] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
21 Zhang J, Liu Y, Shi D, Hu G, Zhang B, Li X, Liu R, Han X, Yao X, Fang J. Synthesis of naphthazarin derivatives and identification of novel thioredoxin reductase inhibitor as potential anticancer agent. Eur J Med Chem 2017;140:435-47. [PMID: 28987605 DOI: 10.1016/j.ejmech.2017.09.027] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
22 Benhar M. Application of a Thioredoxin-Trapping Mutant for Analysis of the Cellular Nitrosoproteome. Methods Enzymol 2017;585:285-94. [PMID: 28109434 DOI: 10.1016/bs.mie.2016.09.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
23 Zhang X, Wang J, Zubarev RA. Slight Deuterium Enrichment in Water Acts as an Antioxidant: Is Deuterium a Cell Growth Regulator? Mol Cell Proteomics 2020;19:1790-804. [PMID: 32769093 DOI: 10.1074/mcp.RA120.002231] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
24 Benhar M, Shytaj IL, Stamler JS, Savarino A. Dual targeting of the thioredoxin and glutathione systems in cancer and HIV. J Clin Invest 2016;126:1630-9. [PMID: 27135880 DOI: 10.1172/JCI85339] [Cited by in Crossref: 92] [Cited by in F6Publishing: 31] [Article Influence: 18.4] [Reference Citation Analysis]
25 Monteiro HP, Rodrigues EG, Amorim Reis AK, Longo LS, Ogata FT, Moretti AI, da Costa PE, Teodoro AC, Toledo MS, Stern A. Nitric oxide and interactions with reactive oxygen species in the development of melanoma, breast, and colon cancer: A redox signaling perspective. Nitric Oxide 2019;89:1-13. [DOI: 10.1016/j.niox.2019.04.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
26 Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA. When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress. Front Plant Sci 2016;7:471. [PMID: 27148300 DOI: 10.3389/fpls.2016.00471] [Cited by in Crossref: 144] [Cited by in F6Publishing: 92] [Article Influence: 28.8] [Reference Citation Analysis]
27 Zhao Y, He M, Xi Q, Ding J, Hao B, Keller NP, Zheng W. Reversible S-nitrosylation limits over synthesis of fungal styrylpyrone upon nitric oxide burst. Appl Microbiol Biotechnol 2016;100:4123-34. [DOI: 10.1007/s00253-016-7442-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
28 Dominiak A, Wilkaniec A, Wroczyński P, Jęśko H, Adamczyk A. Protective Effects of Selol Against Sodium Nitroprusside-Induced Cell Death and Oxidative Stress in PC12 Cells. Neurochem Res 2016;41:3215-26. [PMID: 27590497 DOI: 10.1007/s11064-016-2046-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
29 López-Grueso MJ, González-Ojeda R, Requejo-Aguilar R, McDonagh B, Fuentes-Almagro CA, Muntané J, Bárcena JA, Padilla CA. Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches. Redox Biol 2019;21:101049. [PMID: 30639960 DOI: 10.1016/j.redox.2018.11.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
30 Das KC, Kundumani-Sridharan V, Subramani J. Role of Thioredoxin in Age-Related Hypertension. Curr Hypertens Rep 2018;20:6. [PMID: 29445879 DOI: 10.1007/s11906-018-0815-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Williams BL, Wiebler JM, Lee RE Jr, Costanzo JP. Nitric oxide metabolites in hypoxia, freezing, and hibernation of the wood frog, Rana sylvatica. J Comp Physiol B 2018;188:957-66. [PMID: 30209557 DOI: 10.1007/s00360-018-1182-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Wolosker H. The Neurobiology of d -Serine Signaling. Apprentices to Genius: A tribute to Solomon H. Snyder. Elsevier; 2018. pp. 325-48. [DOI: 10.1016/bs.apha.2017.08.010] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
33 Monteiro HP, Ogata FT, Stern A. Thioredoxin promotes survival signaling events under nitrosative/oxidative stress associated with cancer development. Biomed J 2017;40:189-99. [PMID: 28918907 DOI: 10.1016/j.bj.2017.06.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
34 McDonagh B. Detection of ROS Induced Proteomic Signatures by Mass Spectrometry. Front Physiol 2017;8:470. [PMID: 28736529 DOI: 10.3389/fphys.2017.00470] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
35 Pérez-pérez ME, Mauriès A, Maes A, Tourasse NJ, Hamon M, Lemaire SD, Marchand CH. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation. Molecular Plant 2017;10:1107-25. [DOI: 10.1016/j.molp.2017.07.009] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
36 Benhar M. Roles of mammalian glutathione peroxidase and thioredoxin reductase enzymes in the cellular response to nitrosative stress. Free Radical Biology and Medicine 2018;127:160-4. [DOI: 10.1016/j.freeradbiomed.2018.01.028] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 9.7] [Reference Citation Analysis]
37 Ben-Lulu S, Ziv T, Weisman-Shomer P, Benhar M. Nitrosothiol-Trapping-Based Proteomic Analysis of S-Nitrosylation in Human Lung Carcinoma Cells. PLoS One 2017;12:e0169862. [PMID: 28081246 DOI: 10.1371/journal.pone.0169862] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
38 Wu Z, Hou Y, Hu S, Bazer FW, Meininger CJ, McNeal CJ, Wu G. Catabolism and safety of supplemental L-arginine in animals. Amino Acids 2016;48:1541-52. [PMID: 27156062 DOI: 10.1007/s00726-016-2245-9] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 9.0] [Reference Citation Analysis]
39 Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019;31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 19.0] [Reference Citation Analysis]
40 Jain P, Bhatla SC. Molecular mechanisms accompanying nitric oxide signalling through tyrosine nitration and S-nitrosylation of proteins in plants. Functional Plant Biol 2018;45:70. [DOI: 10.1071/fp16279] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 5.3] [Reference Citation Analysis]
41 Kalinina E, Novichkova M. Glutathione in Protein Redox Modulation through S-Glutathionylation and S-Nitrosylation. Molecules 2021;26:E435. [PMID: 33467703 DOI: 10.3390/molecules26020435] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
42 Zaffagnini M, De Mia M, Morisse S, Di Giacinto N, Marchand CH, Maes A, Lemaire SD, Trost P. Protein S-nitrosylation in photosynthetic organisms: A comprehensive overview with future perspectives. Biochim Biophys Acta 2016;1864:952-66. [PMID: 26861774 DOI: 10.1016/j.bbapap.2016.02.006] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 10.2] [Reference Citation Analysis]
43 Lancaster JR Jr. How are nitrosothiols formed de novo in vivo? Arch Biochem Biophys 2017;617:137-44. [PMID: 27794428 DOI: 10.1016/j.abb.2016.10.015] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
44 Lee SE, Stewart CP, Schulze KJ, Cole RN, Wu LS, Yager JD, Groopman JD, Khatry SK, Adhikari RK, Christian P, West KP Jr. The Plasma Proteome Is Associated with Anthropometric Status of Undernourished Nepalese School-Aged Children. J Nutr 2017;147:304-13. [PMID: 28148680 DOI: 10.3945/jn.116.243014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]