BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ghezzi P. Protein glutathionylation in health and disease. Biochimica et Biophysica Acta (BBA) - General Subjects 2013;1830:3165-72. [DOI: 10.1016/j.bbagen.2013.02.009] [Cited by in Crossref: 105] [Cited by in F6Publishing: 106] [Article Influence: 11.7] [Reference Citation Analysis]
Number Citing Articles
1 Nitti M, Marengo B, Furfaro AL, Pronzato MA, Marinari UM, Domenicotti C, Traverso N. Hormesis and Oxidative Distress: Pathophysiology of Reactive Oxygen Species and the Open Question of Antioxidant Modulation and Supplementation. Antioxidants (Basel) 2022;11:1613. [PMID: 36009331 DOI: 10.3390/antiox11081613] [Reference Citation Analysis]
2 Ma Y, Zhu S, Yi M, Zhang W, Xue Y, Liu X, Deng H. Profiling Glutathionylome in CD38-Mediated Epithelial-Mesenchymal Transition. J Proteome Res 2022. [PMID: 35420434 DOI: 10.1021/acs.jproteome.1c00893] [Reference Citation Analysis]
3 Zhu B, Bryant DT, Akbarinejad A, Travas-sejdic J, Pilkington LI. A novel electrochemical conducting polymer sensor for the rapid, selective and sensitive detection of biothiols. Polym Chem . [DOI: 10.1039/d1py01394g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
4 Behl T, Rana T, Alotaibi GH, Shamsuzzaman M, Naqvi M, Sehgal A, Singh S, Sharma N, Almoshari Y, Abdellatif AAH, Iqbal MS, Bhatia S, Al-Harrasi A, Bungau S. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomed Pharmacother 2021;146:112545. [PMID: 34922112 DOI: 10.1016/j.biopha.2021.112545] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
5 Kalous KS, Wynia-Smith SL, Smith BC. Sirtuin Oxidative Post-translational Modifications. Front Physiol 2021;12:763417. [PMID: 34899389 DOI: 10.3389/fphys.2021.763417] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Wongtrakul J, Thongtan T, Kumrapich B, Saisawang C, Ketterman AJ. Neuroprotective effects of Withania somnifera in the SH-SY5Y Parkinson cell model. Heliyon 2021;7:e08172. [PMID: 34765761 DOI: 10.1016/j.heliyon.2021.e08172] [Reference Citation Analysis]
7 Subramani J, Kundumani-Sridharan V, Das KC. Chaperone-Mediated Autophagy of eNOS in Myocardial Ischemia-Reperfusion Injury. Circ Res 2021;129:930-45. [PMID: 34547902 DOI: 10.1161/CIRCRESAHA.120.317921] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
8 Sanz-Morello B, Ahmadi H, Vohra R, Saruhanian S, Freude KK, Hamann S, Kolko M. Oxidative Stress in Optic Neuropathies. Antioxidants (Basel) 2021;10:1538. [PMID: 34679672 DOI: 10.3390/antiox10101538] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
9 Tejchman K, Kotfis K, Sieńko J. Biomarkers and Mechanisms of Oxidative Stress-Last 20 Years of Research with an Emphasis on Kidney Damage and Renal Transplantation. Int J Mol Sci 2021;22:8010. [PMID: 34360776 DOI: 10.3390/ijms22158010] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
10 Wang S, Huang Y, Guan X. Fluorescent Probes for Live Cell Thiol Detection. Molecules 2021;26:3575. [PMID: 34208153 DOI: 10.3390/molecules26123575] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
11 Deka B, Barge SR, Bharadwaj S, Kashyap B, Manna P, Borah JC, Talukdar NC. Beneficial effect of the methanolic leaf extract of Allium hookeri on stimulating glutathione biosynthesis and preventing impaired glucose metabolism in type 2 diabetes. Arch Biochem Biophys 2021;708:108961. [PMID: 34118216 DOI: 10.1016/j.abb.2021.108961] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
12 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. J Exp Bot 2021;72:830-47. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Cited by in Crossref: 11] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
13 Aoyama K. Glutathione in the Brain. Int J Mol Sci 2021;22:5010. [PMID: 34065042 DOI: 10.3390/ijms22095010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 24] [Article Influence: 1.0] [Reference Citation Analysis]
14 Pal D, Rai A, Checker R, Patwardhan RS, Singh B, Sharma D, Sandur SK. Role of protein S-Glutathionylation in cancer progression and development of resistance to anti-cancer drugs. Arch Biochem Biophys 2021;704:108890. [PMID: 33894196 DOI: 10.1016/j.abb.2021.108890] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
15 Seidel K, Wan X, Zhang M, Zhou Y, Zang M, Han J. Alcohol Binge Drinking Selectively Stimulates Protein S-Glutathionylation in Aorta and Liver of ApoE -/- Mice. Front Cardiovasc Med 2021;8:649813. [PMID: 33796575 DOI: 10.3389/fcvm.2021.649813] [Reference Citation Analysis]
16 Hammerstad M, Hersleth HP. Overview of structurally homologous flavoprotein oxidoreductases containing the low Mr thioredoxin reductase-like fold - A functionally diverse group. Arch Biochem Biophys 2021;702:108826. [PMID: 33684359 DOI: 10.1016/j.abb.2021.108826] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
17 Jardim FR, Almeida FJS, Luckachaki MD, Oliveira MR. Effects of sulforaphane on brain mitochondria: mechanistic view and future directions. J Zhejiang Univ Sci B 2020;21:263-79. [PMID: 32253837 DOI: 10.1631/jzus.B1900614] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
18 Fukuto JM, Lin J, Khodade VS, Toscano JP. Predicting the Possible Physiological/Biological Utility of the Hydropersulfide Functional Group Based on Its Chemistry: Similarities Between Hydropersulfides and Selenols. Antioxidants & Redox Signaling 2020;33:1295-307. [DOI: 10.1089/ars.2020.8079] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
19 Hammerstad M, Gudim I, Hersleth HP. The Crystal Structures of Bacillithiol Disulfide Reductase Bdr (YpdA) Provide Structural and Functional Insight into a New Type of FAD-Containing NADPH-Dependent Oxidoreductase. Biochemistry 2020;59:4793-8. [PMID: 33326741 DOI: 10.1021/acs.biochem.0c00745] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
20 Barbarino F, Wäschenbach L, Cavalho-Lemos V, Dillenberger M, Becker K, Gohlke H, Cortese-Krott MM. Targeting spectrin redox switches to regulate the mechanoproperties of red blood cells. Biol Chem 2021;402:317-31. [PMID: 33544503 DOI: 10.1515/hsz-2020-0293] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
21 Fukuto JM, Hobbs AJ. A comparison of the chemical biology of hydropersulfides (RSSH) with other protective biological antioxidants and nucleophiles. Nitric Oxide 2021;107:46-57. [PMID: 33253886 DOI: 10.1016/j.niox.2020.11.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
22 Branco V, Matos B, Mourato C, Diniz M, Carvalho C, Martins M. Synthesis of glutathione as a central aspect of PAH toxicity in liver cells: A comparison between phenanthrene, Benzo[b]Fluoranthene and their mixtures. Ecotoxicol Environ Saf 2021;208:111637. [PMID: 33396157 DOI: 10.1016/j.ecoenv.2020.111637] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Chen D, Feng Y. Recent Progress of Glutathione (GSH) Specific Fluorescent Probes: Molecular Design, Photophysical Property, Recognition Mechanism and Bioimaging. Crit Rev Anal Chem 2020;:1-18. [PMID: 32941060 DOI: 10.1080/10408347.2020.1819193] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
24 Stein KT, Moon SJ, Nguyen AN, Sikes HD. Kinetic modeling of H2O2 dynamics in the mitochondria of HeLa cells. PLoS Comput Biol 2020;16:e1008202. [PMID: 32925922 DOI: 10.1371/journal.pcbi.1008202] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
25 Rashdan NA, Shrestha B, Pattillo CB. S-glutathionylation, friend or foe in cardiovascular health and disease. Redox Biol 2020;37:101693. [PMID: 32912836 DOI: 10.1016/j.redox.2020.101693] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
26 Che L, Yang CL, Chen Y, Wu ZL, Du ZB, Wu JS, Gan CL, Yan SP, Huang J, Guo NJ, Lin YC, Lin ZN. Mitochondrial redox-driven mitofusin 2 S-glutathionylation promotes neuronal necroptosis via disrupting ER-mitochondria crosstalk in cadmium-induced neurotoxicity. Chemosphere 2021;262:127878. [PMID: 33182097 DOI: 10.1016/j.chemosphere.2020.127878] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
27 Li S, Yu K, Wang D, Zhang Q, Liu Z, Zhao L, Cheng H. Deep learning based prediction of species-specific protein S-glutathionylation sites. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2020;1868:140422. [DOI: 10.1016/j.bbapap.2020.140422] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
28 Zhou L, Chan JCY, Chupin S, Gueguen N, Desquiret-Dumas V, Koh SK, Li J, Gao Y, Deng L, Verma C, Beuerman RW, Chan ECY, Milea D, Reynier P. Increased Protein S-Glutathionylation in Leber's Hereditary Optic Neuropathy (LHON). Int J Mol Sci 2020;21:E3027. [PMID: 32344771 DOI: 10.3390/ijms21083027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
29 Yuan Z, Zheng Y, Wang B. Prodrugs of hydrogen sulfide and related sulfur species: recent development. Chinese Journal of Natural Medicines 2020;18:296-307. [DOI: 10.1016/s1875-5364(20)30037-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
30 Barinova KV, Serebryakova MV, Eldarov MA, Kulikova AA, Mitkevich VA, Muronetz VI, Schmalhausen EV. S-glutathionylation of human glyceraldehyde-3-phosphate dehydrogenase and possible role of Cys152-Cys156 disulfide bridge in the active site of the protein. Biochim Biophys Acta Gen Subj 2020;1864:129560. [PMID: 32061786 DOI: 10.1016/j.bbagen.2020.129560] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
31 Hennig P, Fenini G, Di Filippo M, Beer HD. Electrophiles Against (Skin) Diseases: More Than Nrf2. Biomolecules 2020;10:E271. [PMID: 32053878 DOI: 10.3390/biom10020271] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
32 Chen HC, Lai PY, Wu DC. Analysis of cysteine glutathionylation in hemoglobin of gastric cancer patients using nanoflow liquid chromatography/triple-stage mass spectrometry. Rapid Commun Mass Spectrom 2020;34 Suppl 1:e8588. [PMID: 31509281 DOI: 10.1002/rcm.8588] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
33 Mathew B, Srinivasan K, Johnson P, Thomas T, Mandal AK. Elevated levels of glutathionyl haemoglobin as an oxidative stress marker in patients with major depressive disorder. Indian J Med Res 2019;149:497-502. [PMID: 31411173 DOI: 10.4103/ijmr.IJMR_586_17] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Laothamatas I, Gao P, Wickramaratne A, Quintanilla CG, Dino A, Khan CA, Liou J, Green CB. Spatiotemporal regulation of NADP(H) phosphatase Nocturnin and its role in oxidative stress response. Proc Natl Acad Sci U S A 2020;117:993-9. [PMID: 31879354 DOI: 10.1073/pnas.1913712117] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
35 Checconi P, Limongi D, Baldelli S, Ciriolo MR, Nencioni L, Palamara AT. Role of Glutathionylation in Infection and Inflammation. Nutrients 2019;11:E1952. [PMID: 31434242 DOI: 10.3390/nu11081952] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
36 Amiri M, Ghasemi HA, Hajkhodadadi I, Khaltabadi Farahani AH. Efficacy of guanidinoacetic acid at different dietary crude protein levels on growth performance, stress indicators, antioxidant status, and intestinal morphology in broiler chickens subjected to cyclic heat stress. Animal Feed Science and Technology 2019;254:114208. [DOI: 10.1016/j.anifeedsci.2019.114208] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
37 Jia J, Geng W, Wang Z, Chen L, Zeng X. The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol 2019;84:453-70. [DOI: 10.1007/s00280-019-03869-4] [Cited by in Crossref: 40] [Cited by in F6Publishing: 59] [Article Influence: 13.3] [Reference Citation Analysis]
38 Valerio V, Myasoedova VA, Moschetta D, Porro B, Perrucci GL, Cavalca V, Cavallotti L, Songia P, Poggio P. Impact of Oxidative Stress and Protein S-Glutathionylation in Aortic Valve Sclerosis Patients with Overt Atherosclerosis. J Clin Med 2019;8:E552. [PMID: 31022838 DOI: 10.3390/jcm8040552] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
39 Eckstein M, Vaeth M, Aulestia FJ, Costiniti V, Kassam SN, Bromage TG, Pedersen P, Issekutz T, Idaghdour Y, Moursi AM, Feske S, Lacruz RS. Differential regulation of Ca2+ influx by ORAI channels mediates enamel mineralization. Sci Signal 2019;12:eaav4663. [PMID: 31015290 DOI: 10.1126/scisignal.aav4663] [Cited by in Crossref: 19] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
40 Aliyu IA, Ling KH, Md Hashim N, Chee HY. Annexin A2 extracellular translocation and virus interaction: A potential target for antivirus-drug discovery. Rev Med Virol 2019;29:e2038. [PMID: 30746844 DOI: 10.1002/rmv.2038] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
41 Lin J, Akiyama M, Bica I, Long FT, Henderson CF, Goddu RN, Suarez V, Baker B, Ida T, Shinkai Y, Nagy P, Akaike T, Fukuto JM, Kumagai Y. The Uptake and Release of Polysulfur Cysteine Species by Cells: Physiological and Toxicological Implications. Chem Res Toxicol 2019;32:447-55. [DOI: 10.1021/acs.chemrestox.8b00340] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
42 Cianfruglia L, Perrelli A, Fornelli C, Magini A, Gorbi S, Salzano AM, Antognelli C, Retta F, Benedetti V, Cassoni P, Emiliani C, Principato G, Scaloni A, Armeni T, Retta SF. KRIT1 Loss-Of-Function Associated with Cerebral Cavernous Malformation Disease Leads to Enhanced S-Glutathionylation of Distinct Structural and Regulatory Proteins. Antioxidants (Basel) 2019;8:E27. [PMID: 30658464 DOI: 10.3390/antiox8010027] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
43 Scheuermann MJ, Forbes CR, Zondlo NJ. Redox-Responsive Protein Design: Design of a Small Protein Motif Dependent on Glutathionylation. Biochemistry 2018;57:6956-63. [PMID: 30511831 DOI: 10.1021/acs.biochem.8b00973] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
44 Ke T, Gonçalves FM, Gonçalves CL, dos Santos AA, Rocha JB, Farina M, Skalny A, Tsatsakis A, Bowman AB, Aschner M. Post-translational modifications in MeHg-induced neurotoxicity. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2019;1865:2068-81. [DOI: 10.1016/j.bbadis.2018.10.024] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
45 Miller CG, Schmidt EE. Disulfide reductase systems in liver. Br J Pharmacol 2019;176:532-43. [PMID: 30221761 DOI: 10.1111/bph.14498] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
46 Parvez S, Long MJC, Poganik JR, Aye Y. Redox Signaling by Reactive Electrophiles and Oxidants. Chem Rev 2018;118:8798-888. [PMID: 30148624 DOI: 10.1021/acs.chemrev.7b00698] [Cited by in Crossref: 99] [Cited by in F6Publishing: 133] [Article Influence: 24.8] [Reference Citation Analysis]
47 Di Fiore A, Monti DM, Scaloni A, De Simone G, Monti SM. Protective Role of Carbonic Anhydrases III and VII in Cellular Defense Mechanisms upon Redox Unbalance. Oxid Med Cell Longev 2018;2018:2018306. [PMID: 30154947 DOI: 10.1155/2018/2018306] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
48 Mao X, Yuan P, Yu C, Li L, Yao SQ. Nanoquencher-Based Selective Imaging of Protein Glutathionylation in Live Mammalian Cells. Angew Chem 2018;130:10414-9. [DOI: 10.1002/ange.201806710] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
49 Mao X, Yuan P, Yu C, Li L, Yao SQ. Nanoquencher-Based Selective Imaging of Protein Glutathionylation in Live Mammalian Cells. Angew Chem Int Ed 2018;57:10257-62. [DOI: 10.1002/anie.201806710] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
50 Iglesias MJ, Terrile MC, Correa-Aragunde N, Colman SL, Izquierdo-Álvarez A, Fiol DF, París R, Sánchez-López N, Marina A, Calderón Villalobos LIA, Estelle M, Lamattina L, Martínez-Ruiz A, Casalongué CA. Regulation of SCFTIR1/AFBs E3 ligase assembly by S-nitrosylation of Arabidopsis SKP1-like1 impacts on auxin signaling. Redox Biol 2018;18:200-10. [PMID: 30031268 DOI: 10.1016/j.redox.2018.07.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
51 Xu Z, Huang X, Han X, Wu D, Zhang B, Tan Y, Cao M, Liu SH, Yin J, Yoon J. A Visible and Near-Infrared, Dual-Channel Fluorescence-On Probe for Selectively Tracking Mitochondrial Glutathione. Chem 2018;4:1609-28. [DOI: 10.1016/j.chempr.2018.04.003] [Cited by in Crossref: 99] [Cited by in F6Publishing: 113] [Article Influence: 24.8] [Reference Citation Analysis]
52 Van Laar TA, Esani S, Birges TJ, Hazen B, Thomas JM, Rawat M. Pseudomonas aeruginosa gshA Mutant Is Defective in Biofilm Formation, Swarming, and Pyocyanin Production. mSphere 2018;3:e00155-18. [PMID: 29669887 DOI: 10.1128/mSphere.00155-18] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
53 Dominko K, Đikić D. Glutathionylation: a regulatory role of glutathione in physiological processes. Archives of Industrial Hygiene and Toxicology 2018;69:1-24. [DOI: 10.2478/aiht-2018-69-2966] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
54 Zhang X, Liu P, Zhang C, Chiewchengchol D, Zhao F, Yu H, Li J, Kambara H, Luo KY, Venkataraman A, Zhou Z, Zhou W, Zhu H, Zhao L, Sakai J, Chen Y, Ho YS, Bajrami B, Xu B, Silberstein LE, Cheng T, Xu Y, Ke Y, Luo HR. Positive Regulation of Interleukin-1β Bioactivity by Physiological ROS-Mediated Cysteine S-Glutathionylation. Cell Rep 2017;20:224-35. [PMID: 28683316 DOI: 10.1016/j.celrep.2017.05.070] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
55 Tinkov AA, Bjørklund G, Skalny AV, Holmgren A, Skalnaya MG, Chirumbolo S, Aaseth J. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker? Cell Mol Life Sci 2018;75:1567-86. [PMID: 29327078 DOI: 10.1007/s00018-018-2745-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 40] [Article Influence: 7.0] [Reference Citation Analysis]
56 Cha SJ, Kim H, Choi HJ, Lee S, Kim K. Protein Glutathionylation in the Pathogenesis of Neurodegenerative Diseases. Oxid Med Cell Longev 2017;2017:2818565. [PMID: 29456785 DOI: 10.1155/2017/2818565] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
57 Belcastro E, Gaucher C, Corti A, Leroy P, Lartaud I, Pompella A. Regulation of protein function by S-nitrosation and S-glutathionylation: processes and targets in cardiovascular pathophysiology. Biological Chemistry 2017;398:1267-93. [DOI: 10.1515/hsz-2017-0150] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
58 Giustarini D, Colombo G, Garavaglia ML, Astori E, Portinaro NM, Reggiani F, Badalamenti S, Aloisi AM, Santucci A, Rossi R, Milzani A, Dalle-donne I. Assessment of glutathione/glutathione disulphide ratio and S-glutathionylated proteins in human blood, solid tissues, and cultured cells. Free Radical Biology and Medicine 2017;112:360-75. [DOI: 10.1016/j.freeradbiomed.2017.08.008] [Cited by in Crossref: 70] [Cited by in F6Publishing: 82] [Article Influence: 14.0] [Reference Citation Analysis]
59 Bechtel TJ, Weerapana E. From structure to redox: The diverse functional roles of disulfides and implications in disease. Proteomics 2017;17. [PMID: 28044432 DOI: 10.1002/pmic.201600391] [Cited by in Crossref: 57] [Cited by in F6Publishing: 66] [Article Influence: 11.4] [Reference Citation Analysis]
60 Lorenzen I, Mullen L, Bekeschus S, Hanschmann EM. Redox Regulation of Inflammatory Processes Is Enzymatically Controlled. Oxid Med Cell Longev 2017;2017:8459402. [PMID: 29118897 DOI: 10.1155/2017/8459402] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 6.2] [Reference Citation Analysis]
61 Diotallevi M, Checconi P, Palamara AT, Celestino I, Coppo L, Holmgren A, Abbas K, Peyrot F, Mengozzi M, Ghezzi P. Glutathione Fine-Tunes the Innate Immune Response toward Antiviral Pathways in a Macrophage Cell Line Independently of Its Antioxidant Properties. Front Immunol 2017;8:1239. [PMID: 29033950 DOI: 10.3389/fimmu.2017.01239] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 6.8] [Reference Citation Analysis]
62 Timme-Laragy AR, Hahn ME, Hansen JM, Rastogi A, Roy MA. Redox stress and signaling during vertebrate embryonic development: Regulation and responses. Semin Cell Dev Biol 2018;80:17-28. [PMID: 28927759 DOI: 10.1016/j.semcdb.2017.09.019] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 6.6] [Reference Citation Analysis]
63 Jiang X, Chen J, Bajić A, Zhang C, Song X, Carroll SL, Cai ZL, Tang M, Xue M, Cheng N, Schaaf CP, Li F, MacKenzie KR, Ferreon ACM, Xia F, Wang MC, Maletić-Savatić M, Wang J. Quantitative real-time imaging of glutathione. Nat Commun 2017;8:16087. [PMID: 28703127 DOI: 10.1038/ncomms16087] [Cited by in Crossref: 118] [Cited by in F6Publishing: 138] [Article Influence: 23.6] [Reference Citation Analysis]
64 Hillion M, Imber M, Pedre B, Bernhardt J, Saleh M, Loi VV, Maaß S, Becher D, Astolfi Rosado L, Adrian L, Weise C, Hell R, Wirtz M, Messens J, Antelmann H. The glyceraldehyde-3-phosphate dehydrogenase GapDH of Corynebacterium diphtheriae is redox-controlled by protein S-mycothiolation under oxidative stress. Sci Rep 2017;7:5020. [PMID: 28694441 DOI: 10.1038/s41598-017-05206-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
65 Marrocco I, Altieri F, Peluso I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxid Med Cell Longev 2017;2017:6501046. [PMID: 28698768 DOI: 10.1155/2017/6501046] [Cited by in Crossref: 227] [Cited by in F6Publishing: 273] [Article Influence: 45.4] [Reference Citation Analysis]
66 Rehman K, Akash MSH. Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked? J Cell Biochem. 2017;118:3577-3585. [PMID: 28460155 DOI: 10.1002/jcb.26097] [Cited by in Crossref: 145] [Cited by in F6Publishing: 188] [Article Influence: 29.0] [Reference Citation Analysis]
67 Graziani M, Sarti P, Arese M, Magnifico MC, Badiani A, Saso L. Cardiovascular Mitochondrial Dysfunction Induced by Cocaine: Biomarkers and Possible Beneficial Effects of Modulators of Oxidative Stress. Oxid Med Cell Longev 2017;2017:3034245. [PMID: 28593024 DOI: 10.1155/2017/3034245] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
68 Chandrangsu P, Loi VV, Antelmann H, Helmann JD. The Role of Bacillithiol in Gram-Positive Firmicutes. Antioxid Redox Signal 2018;28:445-62. [PMID: 28301954 DOI: 10.1089/ars.2017.7057] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 12.8] [Reference Citation Analysis]
69 Del Vesco AP, Khatlab AS, Goes ESR, Utsunomiya KS, Vieira JS, Oliveira Neto AR, Gasparino E. Age-related oxidative stress and antioxidant capacity in heat-stressed broilers. Animal 2017;11:1783-90. [PMID: 28228180 DOI: 10.1017/S1751731117000386] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
70 Yan J, Guo Y, Fei Y, Zhang R, Han Y, Lu S. GPx1 knockdown suppresses chondrogenic differentiation of ATDC5 cells through induction of reductive stress. Acta Biochim Biophys Sin (Shanghai) 2017;49:110-8. [PMID: 28039148 DOI: 10.1093/abbs/gmw125] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
71 Travasso RDM, Sampaio Dos Aidos F, Bayani A, Abranches P, Salvador A. Localized redox relays as a privileged mode of cytoplasmic hydrogen peroxide signaling. Redox Biol 2017;12:233-45. [PMID: 28279943 DOI: 10.1016/j.redox.2017.01.003] [Cited by in Crossref: 39] [Cited by in F6Publishing: 46] [Article Influence: 7.8] [Reference Citation Analysis]
72 Calabrese V, Giordano J, Crupi R, Di Paola R, Ruggieri M, Bianchini R, Ontario ML, Cuzzocrea S, Calabrese EJ. Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state: Cellular Stress Response and Neuroinflammation in Schizophrenia. Journal of Neuroscience Research 2017;95:1182-93. [DOI: 10.1002/jnr.23967] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
73 Liu X, Xavier C, Jann J, Wu H. Salvianolic Acid B (Sal B) Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Cell Death by Activating Glutaredoxin 1 (Grx1). Int J Mol Sci 2016;17:E1835. [PMID: 27827892 DOI: 10.3390/ijms17111835] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
74 Li H, Stokes W, Chater E, Roy R, de Bruin E, Hu Y, Liu Z, Smit EF, Heynen GJ, Downward J, Seckl MJ, Wang Y, Tang H, Pardo OE. Decreased glutathione biosynthesis contributes to EGFR T790M-driven erlotinib resistance in non-small cell lung cancer. Cell Discov 2016;2:16031. [PMID: 27721983 DOI: 10.1038/celldisc.2016.31] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
75 Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid Med Cell Longev. 2016;2016:7432797. [PMID: 27738491 DOI: 10.1155/2016/7432797] [Cited by in Crossref: 448] [Cited by in F6Publishing: 636] [Article Influence: 74.7] [Reference Citation Analysis]
76 Brigelius-Flohé R. Mixed results with mixed disulfides. Arch Biochem Biophys 2016;595:81-7. [PMID: 27095221 DOI: 10.1016/j.abb.2015.11.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
77 Sadhu SS, Xie J, Zhang H, Perumal O, Guan X. Glutathione Disulfide Liposomes - a Research Tool for the Study of Glutathione Disulfide Associated Functions and Dysfunctions. Biochem Biophys Rep 2016;7:225-9. [PMID: 28409182 DOI: 10.1016/j.bbrep.2016.06.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
78 Ghezzi P, Chan P. Redox Proteomics Applied to the Thiol Secretome. Antioxid Redox Signal 2017;26:299-312. [PMID: 27139336 DOI: 10.1089/ars.2016.6732] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
79 Benhar M, Shytaj IL, Stamler JS, Savarino A. Dual targeting of the thioredoxin and glutathione systems in cancer and HIV. J Clin Invest 2016;126:1630-9. [PMID: 27135880 DOI: 10.1172/JCI85339] [Cited by in Crossref: 92] [Cited by in F6Publishing: 98] [Article Influence: 15.3] [Reference Citation Analysis]
80 Olagnier D, Amatore D, Castiello L, Ferrari M, Palermo E, Diamond MS, Palamara AT, Hiscott J. Dengue Virus Immunopathogenesis: Lessons Applicable to the Emergence of Zika Virus. J Mol Biol 2016;428:3429-48. [PMID: 27130436 DOI: 10.1016/j.jmb.2016.04.024] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 4.7] [Reference Citation Analysis]
81 Zhao X, Ning Q, Ai M, Chai H, Yang G. Identification of S-glutathionylation sites in species-specific proteins by incorporating five sequence-derived features into the general pseudo-amino acid composition. J Theor Biol 2016;398:96-102. [PMID: 27025952 DOI: 10.1016/j.jtbi.2016.03.030] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
82 Comini MA. Measurement and meaning of cellular thiol:disufhide redox status. Free Radical Research 2016;50:246-71. [DOI: 10.3109/10715762.2015.1110241] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 6.7] [Reference Citation Analysis]
83 Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T, Gasparovic AC, Cuadrado A, Weber D, Poulsen HE, Grune T, Schmidt HH, Ghezzi P. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid Redox Signal 2015;23:1144-70. [PMID: 26415143 DOI: 10.1089/ars.2015.6317] [Cited by in Crossref: 408] [Cited by in F6Publishing: 364] [Article Influence: 58.3] [Reference Citation Analysis]
84 Picklo MJ, Long EK, Vomhof-dekrey EE. Glutathionyl systems and metabolic dysfunction in obesity. Nutr Rev 2015;73:858-68. [DOI: 10.1093/nutrit/nuv042] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
85 Mullen L, Seavill M, Hammouz R, Bottazzi B, Chan P, Vaudry D, Ghezzi P. Development of 'Redox Arrays' for identifying novel glutathionylated proteins in the secretome. Sci Rep 2015;5:14630. [PMID: 26416726 DOI: 10.1038/srep14630] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
86 Conway ME, Lee C. The redox switch that regulates molecular chaperones. Biomolecular Concepts 2015;6:269-84. [DOI: 10.1515/bmc-2015-0015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]
87 Liu X, Han S, Yang Y, Kang J, Wu J. Glucose-induced glutathione reduction in mitochondria is involved in the first phase of pancreatic β-cell insulin secretion. Biochem Biophys Res Commun 2015;464:730-6. [PMID: 26164230 DOI: 10.1016/j.bbrc.2015.07.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
88 Checconi P, Salzano S, Bowler L, Mullen L, Mengozzi M, Hanschmann EM, Lillig CH, Sgarbanti R, Panella S, Nencioni L, Palamara AT, Ghezzi P. Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress. PLoS One 2015;10:e0127086. [PMID: 25985305 DOI: 10.1371/journal.pone.0127086] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 7.6] [Reference Citation Analysis]
89 Aoyama K, Nakaki T. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1). Molecules 2015;20:8742-58. [PMID: 26007177 DOI: 10.3390/molecules20058742] [Cited by in Crossref: 63] [Cited by in F6Publishing: 70] [Article Influence: 9.0] [Reference Citation Analysis]
90 Chen YJ, Lu CT, Huang KY, Wu HY, Chen YJ, Lee TY. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity. PLoS One 2015;10:e0118752. [PMID: 25849935 DOI: 10.1371/journal.pone.0118752] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
91 Calabrese V, Dattilo S, Petralia A, Parenti R, Pennisi M, Koverech G, Calabrese V, Graziano A, Monte I, Maiolino L, Ferreri T, Calabrese EJ. Analytical approaches to the diagnosis and treatment of aging and aging-related disease: redox status and proteomics. Free Radic Res 2015;49:511-24. [PMID: 25824967 DOI: 10.3109/10715762.2015.1020799] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
92 Loi VV, Rossius M, Antelmann H. Redox regulation by reversible protein S-thiolation in bacteria. Front Microbiol 2015;6:187. [PMID: 25852656 DOI: 10.3389/fmicb.2015.00187] [Cited by in Crossref: 97] [Cited by in F6Publishing: 101] [Article Influence: 13.9] [Reference Citation Analysis]
93 Johnstone VP, Hool LC. Glutathionylation of the L-type Ca2+ channel in oxidative stress-induced pathology of the heart. Int J Mol Sci 2014;15:19203-25. [PMID: 25340983 DOI: 10.3390/ijms151019203] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
94 Aquilano K, Baldelli S, Ciriolo MR. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol 2014;5:196. [PMID: 25206336 DOI: 10.3389/fphar.2014.00196] [Cited by in Crossref: 292] [Cited by in F6Publishing: 352] [Article Influence: 36.5] [Reference Citation Analysis]
95 Butturini E, Darra E, Chiavegato G, Cellini B, Cozzolino F, Monti M, Pucci P, Dell'Orco D, Mariotto S. S-Glutathionylation at Cys328 and Cys542 impairs STAT3 phosphorylation. ACS Chem Biol 2014;9:1885-93. [PMID: 24941337 DOI: 10.1021/cb500407d] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 7.4] [Reference Citation Analysis]
96 Popov D. Protein S-glutathionylation: from current basics to targeted modifications. Arch Physiol Biochem 2014;120:123-30. [PMID: 25112365 DOI: 10.3109/13813455.2014.944544] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 4.4] [Reference Citation Analysis]
97 Morgan B. Reassessing cellular glutathione homoeostasis: novel insights revealed by genetically encoded redox probes. Biochemical Society Transactions 2014;42:979-84. [DOI: 10.1042/bst20140101] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
98 Salzano S, Checconi P, Hanschmann EM, Lillig CH, Bowler LD, Chan P, Vaudry D, Mengozzi M, Coppo L, Sacre S, Atkuri KR, Sahaf B, Herzenberg LA, Herzenberg LA, Mullen L, Ghezzi P. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc Natl Acad Sci U S A 2014;111:12157-62. [PMID: 25097261 DOI: 10.1073/pnas.1401712111] [Cited by in Crossref: 196] [Cited by in F6Publishing: 203] [Article Influence: 24.5] [Reference Citation Analysis]
99 Berndt C, Lillig CH, Flohé L. Redox regulation by glutathione needs enzymes. Front Pharmacol 2014;5:168. [PMID: 25100998 DOI: 10.3389/fphar.2014.00168] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 6.8] [Reference Citation Analysis]
100 Ahmad F, Nidadavolu P, Durgadoss L, Ravindranath V. Critical cysteines in Akt1 regulate its activity and proteasomal degradation: implications for neurodegenerative diseases. Free Radic Biol Med 2014;74:118-28. [PMID: 24933620 DOI: 10.1016/j.freeradbiomed.2014.06.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
101 Chen Y, Lu C, Lee T, Chen Y. dbGSH: a database of S-glutathionylation. Bioinformatics 2014;30:2386-8. [DOI: 10.1093/bioinformatics/btu301] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 5.4] [Reference Citation Analysis]
102 García-Santamarina S, Boronat S, Domènech A, Ayté J, Molina H, Hidalgo E. Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry. Nat Protoc 2014;9:1131-45. [PMID: 24743420 DOI: 10.1038/nprot.2014.065] [Cited by in Crossref: 62] [Cited by in F6Publishing: 61] [Article Influence: 7.8] [Reference Citation Analysis]
103 Herold S, Staab-Weijnitz CA. Glutathione on the fas track. A novel drug target for the treatment of pseudomonas infection? Am J Respir Crit Care Med 2014;189:386-9. [PMID: 24528316 DOI: 10.1164/rccm.201401-0063ED] [Reference Citation Analysis]
104 Armeni T, Cianfruglia L, Piva F, Urbanelli L, Luisa Caniglia M, Pugnaloni A, Principato G. S-D-Lactoylglutathione can be an alternative supply of mitochondrial glutathione. Free Radic Biol Med 2014;67:451-9. [PMID: 24333633 DOI: 10.1016/j.freeradbiomed.2013.12.005] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 2.9] [Reference Citation Analysis]
105 Aoyama K, Nakaki T. Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci 2013;14:21021-44. [PMID: 24145751 DOI: 10.3390/ijms141021021] [Cited by in Crossref: 113] [Cited by in F6Publishing: 124] [Article Influence: 12.6] [Reference Citation Analysis]
106 Lillig CH, Berndt C. Cellular functions of glutathione. Biochim Biophys Acta 2013;1830:3137-8. [PMID: 23540438 DOI: 10.1016/j.bbagen.2013.02.019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]