BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Marí M, Morales A, Colell A, García-Ruiz C, Kaplowitz N, Fernández-Checa JC. Mitochondrial glutathione: features, regulation and role in disease. Biochim Biophys Acta. 2013;1830:3317-3328. [PMID: 23123815 DOI: 10.1016/j.bbagen.2012.10.018] [Cited by in Crossref: 116] [Cited by in F6Publishing: 100] [Article Influence: 12.9] [Reference Citation Analysis]
Number Citing Articles
1 Sreekumar PG, Ferrington DA, Kannan R. Glutathione Metabolism and the Novel Role of Mitochondrial GSH in Retinal Degeneration. Antioxidants (Basel) 2021;10:661. [PMID: 33923192 DOI: 10.3390/antiox10050661] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Ribas V, García-Ruiz C, Fernández-Checa JC. Glutathione and mitochondria. Front Pharmacol 2014;5:151. [PMID: 25024695 DOI: 10.3389/fphar.2014.00151] [Cited by in Crossref: 229] [Cited by in F6Publishing: 189] [Article Influence: 32.7] [Reference Citation Analysis]
3 Tran H, Park SJ, Shin E, Tran T, Sharma N, Lee YJ, Jeong JH, Jang C, Kim D, Nabeshima T, Kim H. Clozapine attenuates mitochondrial burdens and abnormal behaviors elicited by phencyclidine in mice via inhibition of p47 phox ; Possible involvements of phosphoinositide 3-kinase/Akt signaling. J Psychopharmacol 2018;32:1233-51. [DOI: 10.1177/0269881118795244] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
4 Fang C, Gu L, Smerin D, Mao S, Xiong X. The Interrelation between Reactive Oxygen Species and Autophagy in Neurological Disorders. Oxid Med Cell Longev 2017;2017:8495160. [PMID: 29391926 DOI: 10.1155/2017/8495160] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 7.5] [Reference Citation Analysis]
5 Lillig CH, Berndt C. Cellular functions of glutathione. Biochim Biophys Acta 2013;1830:3137-8. [PMID: 23540438 DOI: 10.1016/j.bbagen.2013.02.019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
6 Ortega-ferrusola C, Martin Muñoz P, Ortiz-rodriguez JM, Anel-lópez L, Balao da Silva C, Álvarez M, de Paz P, Tapia JA, Anel L, Silva- Rodríguez A, Aitken RJ, Gil MC, Gibb Z, Peña FJ. Depletion of thiols leads to redox deregulation, production of 4-hydroxinonenal and sperm senescence: a possible role for GSH regulation in spermatozoa†. Biology of Reproduction 2019;100:1090-107. [DOI: 10.1093/biolre/ioy241] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
7 Jeong EM, Yoon JH, Lim J, Shin JW, Cho AY, Heo J, Lee KB, Lee JH, Lee WJ, Kim HJ, Son YH, Lee SJ, Cho SY, Shin DM, Choi K, Kim IG. Real-Time Monitoring of Glutathione in Living Cells Reveals that High Glutathione Levels Are Required to Maintain Stem Cell Function. Stem Cell Reports. 2018;10:600-614. [PMID: 29307581 DOI: 10.1016/j.stemcr.2017.12.007] [Cited by in Crossref: 52] [Cited by in F6Publishing: 42] [Article Influence: 17.3] [Reference Citation Analysis]
8 Nicolson GL, Ash ME. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues. Biochim Biophys Acta Biomembr 2017;1859:1704-24. [PMID: 28432031 DOI: 10.1016/j.bbamem.2017.04.013] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
9 Brandhorst H, Theisinger B, Guenther B, Johnson PR, Brandhorst D. Pancreatic L-Glutamine Administration Protects Pig Islets From Cold Ischemic Injury and Increases Resistance Toward Inflammatory Mediators. Cell Transplant 2016;25:531-8. [PMID: 26177261 DOI: 10.3727/096368915X688623] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
10 Fernandez A, Matias N, Fucho R, Ribas V, Von Montfort C, Nuño N, Baulies A, Martinez L, Tarrats N, Mari M, Colell A, Morales A, Dubuquoy L, Mathurin P, Bataller R, Caballeria J, Elena M, Balsinde J, Kaplowitz N, Garcia-Ruiz C, Fernandez-Checa JC. ASMase is required for chronic alcohol induced hepatic endoplasmic reticulum stress and mitochondrial cholesterol loading. J Hepatol 2013;59:805-13. [PMID: 23707365 DOI: 10.1016/j.jhep.2013.05.023] [Cited by in Crossref: 67] [Cited by in F6Publishing: 63] [Article Influence: 8.4] [Reference Citation Analysis]
11 Ojala JO, Sutinen EM. The Role of Interleukin-18, Oxidative Stress and Metabolic Syndrome in Alzheimer's Disease. J Clin Med 2017;6:E55. [PMID: 28531131 DOI: 10.3390/jcm6050055] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
12 Mo XQ, Wei HY, Huang GR, Xu LY, Chen YL, Qi J, Xian W, Qin YC, Wei LD, Zhao LJ, Huang YQ, Xing W, Pu HQ, Wei PY, Li CG, Liang QC. Molecular mechanisms of apoptosis in hepatocellular carcinoma cells induced by ethanol extracts of Solanum lyratum Thumb through the mitochondrial pathway. World J Gastroenterol 2017;23:1010-7. [PMID: 28246474 DOI: 10.3748/wjg.v23.i6.1010] [Cited by in CrossRef: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
13 Cigala RM, De Stefano C, Irto A, Milea D, Sammartano S. Thermodynamic Data for the Modeling of Lanthanoid(III) Sequestration by Reduced Glutathione in Aqueous Solution. J Chem Eng Data 2015;60:192-201. [DOI: 10.1021/je500961u] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
14 Lund M, Andersen KG, Heaton R, Hargreaves IP, Gregersen N, Olsen RKJ. Bezafibrate activation of PPAR drives disturbances in mitochondrial redox bioenergetics and decreases the viability of cells from patients with VLCAD deficiency. Biochim Biophys Acta Mol Basis Dis 2021;1867:166100. [PMID: 33549744 DOI: 10.1016/j.bbadis.2021.166100] [Reference Citation Analysis]
15 Sreekumar PG, Wang M, Spee C, Sadda SR, Kannan R. Transporter-Mediated Mitochondrial GSH Depletion Leading to Mitochondrial Dysfunction and Rescue with αB Crystallin Peptide in RPE Cells. Antioxidants (Basel) 2020;9:E411. [PMID: 32408520 DOI: 10.3390/antiox9050411] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Wang Q, Guerrero F, Mazur A, Lambrechts K, Buzzacott P, Belhomme M, Theron M. Reactive Oxygen Species, Mitochondria, and Endothelial Cell Death during In Vitro Simulated Dives. Med Sci Sports Exerc 2015;47:1362-71. [PMID: 25380471 DOI: 10.1249/MSS.0000000000000563] [Cited by in Crossref: 25] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
17 Nicolson GL, Ash ME. Lipid Replacement Therapy: a natural medicine approach to replacing damaged lipids in cellular membranes and organelles and restoring function. Biochim Biophys Acta 2014;1838:1657-79. [PMID: 24269541 DOI: 10.1016/j.bbamem.2013.11.010] [Cited by in Crossref: 60] [Cited by in F6Publishing: 42] [Article Influence: 7.5] [Reference Citation Analysis]
18 Mailloux RJ, Willmore WG. S-glutathionylation reactions in mitochondrial function and disease. Front Cell Dev Biol 2014;2:68. [PMID: 25453035 DOI: 10.3389/fcell.2014.00068] [Cited by in Crossref: 75] [Cited by in F6Publishing: 61] [Article Influence: 10.7] [Reference Citation Analysis]
19 Zhang H, Du Y, Zhang X, Lu J, Holmgren A. Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal. Antioxid Redox Signal 2014;21:669-81. [PMID: 24295294 DOI: 10.1089/ars.2013.5499] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 6.7] [Reference Citation Analysis]
20 Li K, Cui YC, Zhang H, Liu XP, Zhang D, Wu AL, Li JJ, Tang Y. Glutamine Reduces the Apoptosis of H9C2 Cells Treated with High-Glucose and Reperfusion through an Oxidation-Related Mechanism. PLoS One 2015;10:e0132402. [PMID: 26146991 DOI: 10.1371/journal.pone.0132402] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
21 Stangherlin A, Reddy AB. Regulation of circadian clocks by redox homeostasis. J Biol Chem 2013;288:26505-11. [PMID: 23861436 DOI: 10.1074/jbc.R113.457564] [Cited by in Crossref: 70] [Cited by in F6Publishing: 33] [Article Influence: 8.8] [Reference Citation Analysis]
22 Thomas NO, Shay KP, Hagen TM. Age-related loss of mitochondrial glutathione exacerbates menadione-induced inhibition of Complex I. Redox Biol 2019;22:101155. [PMID: 30851669 DOI: 10.1016/j.redox.2019.101155] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
23 Bjørklund G, Tinkov AA, Hosnedlová B, Kizek R, Ajsuvakova OP, Chirumbolo S, Skalnaya MG, Peana M, Dadar M, El-Ansary A, Qasem H, Adams JB, Aaseth J, Skalny AV. The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic Biol Med 2020;160:149-62. [PMID: 32745763 DOI: 10.1016/j.freeradbiomed.2020.07.017] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 20.0] [Reference Citation Analysis]
24 Arbo MD, Silva R, Barbosa DJ, da Silva DD, Rossato LG, Bastos Mde L, Carmo H. Piperazine designer drugs induce toxicity in cardiomyoblast h9c2 cells through mitochondrial impairment. Toxicol Lett 2014;229:178-89. [PMID: 24968061 DOI: 10.1016/j.toxlet.2014.06.031] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
25 de Oliveira MR, Brasil FB, Andrade CMB. Naringenin attenuates H2O2-induced mitochondrial dysfunction by an Nrf2-dependent mechanism in SH-SY5Y Cells. Neurochem Res. 2017;42:3341-3350. [PMID: 28786049 DOI: 10.1007/s11064-017-2376-8] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
26 Dang DK, Shin EJ, Nam Y, Ryoo S, Jeong JH, Jang CG, Nabeshima T, Hong JS, Kim HC. Apocynin prevents mitochondrial burdens, microglial activation, and pro-apoptosis induced by a toxic dose of methamphetamine in the striatum of mice via inhibition of p47phox activation by ERK. J Neuroinflammation 2016;13:12. [PMID: 26780950 DOI: 10.1186/s12974-016-0478-x] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 11.0] [Reference Citation Analysis]
27 Yin B, Barrionuevo G, Weber SG. Optimized real-time monitoring of glutathione redox status in single pyramidal neurons in organotypic hippocampal slices during oxygen-glucose deprivation and reperfusion. ACS Chem Neurosci 2015;6:1838-48. [PMID: 26291433 DOI: 10.1021/acschemneuro.5b00186] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
28 Shin EJ, Shin SW, Nguyen TT, Park DH, Wie MB, Jang CG, Nah SY, Yang BW, Ko SK, Nabeshima T, Kim HC. Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cδ gene. Mol Neurobiol 2014;49:1400-21. [PMID: 24430743 DOI: 10.1007/s12035-013-8617-1] [Cited by in Crossref: 78] [Cited by in F6Publishing: 69] [Article Influence: 11.1] [Reference Citation Analysis]
29 García-Ruiz C, Fernández-Checa JC. Mitochondrial Oxidative Stress and Antioxidants Balance in Fatty Liver Disease. Hepatol Commun 2018;2:1425-39. [PMID: 30556032 DOI: 10.1002/hep4.1271] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 18.7] [Reference Citation Analysis]
30 Fan F, Zhuang J, Zhou P, Liu X, Luo Y. MicroRNA-34a promotes mitochondrial dysfunction-induced apoptosis in human lens epithelial cells by targeting Notch2. Oncotarget 2017;8:110209-20. [PMID: 29299142 DOI: 10.18632/oncotarget.22597] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
31 Lee DH, Porta M, Jacobs DR Jr, Vandenberg LN. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr Rev. 2014;35:557-601. [PMID: 24483949 DOI: 10.1210/er.2013-1084] [Cited by in Crossref: 245] [Cited by in F6Publishing: 203] [Article Influence: 35.0] [Reference Citation Analysis]
32 Marí M, de Gregorio E, de Dios C, Roca-Agujetas V, Cucarull B, Tutusaus A, Morales A, Colell A. Mitochondrial Glutathione: Recent Insights and Role in Disease. Antioxidants (Basel) 2020;9:E909. [PMID: 32987701 DOI: 10.3390/antiox9100909] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 16.0] [Reference Citation Analysis]
33 Dwivedi D, Megha K, Mishra R, Mandal PK. Glutathione in Brain: Overview of Its Conformations, Functions, Biochemical Characteristics, Quantitation and Potential Therapeutic Role in Brain Disorders. Neurochem Res 2020;45:1461-80. [PMID: 32297027 DOI: 10.1007/s11064-020-03030-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
34 Patten DA, McGuirk S, Anilkumar U, Antoun G, Gandhi K, Parmar G, Iqbal MA, Wong J, Richardson RB, St-Pierre J, Slack RS, Harper ME. Altered mitochondrial fusion drives defensive glutathione synthesis in cells able to switch to glycolytic ATP production. Biochim Biophys Acta Mol Cell Res 2021;1868:118854. [PMID: 32926942 DOI: 10.1016/j.bbamcr.2020.118854] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
35 Perfeito R, Ribeiro M, Rego AC. Alpha-synuclein-induced oxidative stress correlates with altered superoxide dismutase and glutathione synthesis in human neuroblastoma SH-SY5Y cells. Arch Toxicol 2017;91:1245-59. [PMID: 27424009 DOI: 10.1007/s00204-016-1788-6] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
36 Vona R, Ascione B, Malorni W, Straface E. Mitochondria and Sex-Specific Cardiac Function. Adv Exp Med Biol 2018;1065:241-56. [PMID: 30051389 DOI: 10.1007/978-3-319-77932-4_16] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
37 Xu Z, Zhang M, Xu Y, Liu SH, Zeng L, Chen H, Yin J. The visualization of lysosomal and mitochondrial glutathione via near-infrared fluorophore and in vivo imaging application. Sensors and Actuators B: Chemical 2019;290:676-83. [DOI: 10.1016/j.snb.2019.03.114] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
38 Shimada K, Jong CJ, Takahashi K, Schaffer SW. Role of ROS Production and Turnover in the Antioxidant Activity of Taurine. Adv Exp Med Biol 2015;803:581-96. [PMID: 25833529 DOI: 10.1007/978-3-319-15126-7_47] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 7.3] [Reference Citation Analysis]
39 Erlichman JS, Leiter JC. Complexity of the Nano-Bio Interface and the Tortuous Path of Metal Oxides in Biological Systems. Antioxidants (Basel) 2021;10:547. [PMID: 33915992 DOI: 10.3390/antiox10040547] [Reference Citation Analysis]
40 Su F, Spee C, Araujo E, Barron E, Wang M, Ghione C, Hinton DR, Nusinowitz S, Kannan R, Reddy ST, Farias-Eisner R. A Novel HDL-Mimetic Peptide HM-10/10 Protects RPE and Photoreceptors in Murine Models of Retinal Degeneration. Int J Mol Sci 2019;20:E4807. [PMID: 31569695 DOI: 10.3390/ijms20194807] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Kolossov VL, Hanafin WP, Beaudoin JN, Bica DE, DiLiberto SJ, Kenis PJ, Gaskins HR. Inhibition of glutathione synthesis distinctly alters mitochondrial and cytosolic redox poise. Exp Biol Med (Maywood) 2014;239:394-403. [PMID: 24586100 DOI: 10.1177/1535370214522179] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
42 Thomas RE, Andrews LA, Burman JL, Lin WY, Pallanck LJ. PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet 2014;10:e1004279. [PMID: 24874806 DOI: 10.1371/journal.pgen.1004279] [Cited by in Crossref: 74] [Cited by in F6Publishing: 62] [Article Influence: 10.6] [Reference Citation Analysis]
43 Limongi D, Baldelli S. Redox Imbalance and Viral Infections in Neurodegenerative Diseases. Oxid Med Cell Longev 2016;2016:6547248. [PMID: 27110325 DOI: 10.1155/2016/6547248] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 6.6] [Reference Citation Analysis]
44 Deslyper G, Colgan TJ, Cooper AJ, Holland CV, Carolan JC. A Proteomic Investigation of Hepatic Resistance to Ascaris in a Murine Model. PLoS Negl Trop Dis 2016;10:e0004837. [PMID: 27490109 DOI: 10.1371/journal.pntd.0004837] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
45 Armeni T, Cianfruglia L, Piva F, Urbanelli L, Luisa Caniglia M, Pugnaloni A, Principato G. S-D-Lactoylglutathione can be an alternative supply of mitochondrial glutathione. Free Radic Biol Med 2014;67:451-9. [PMID: 24333633 DOI: 10.1016/j.freeradbiomed.2013.12.005] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
46 Blacker TS, Duchen MR. Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med 2016;100:53-65. [PMID: 27519271 DOI: 10.1016/j.freeradbiomed.2016.08.010] [Cited by in Crossref: 164] [Cited by in F6Publishing: 129] [Article Influence: 32.8] [Reference Citation Analysis]
47 Hu H, Li M. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons. Biochem Biophys Res Commun 2016;478:174-80. [PMID: 27444386 DOI: 10.1016/j.bbrc.2016.07.071] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 6.0] [Reference Citation Analysis]
48 Wang X, Jin C, Zhong Y, Li X, Han J, Xue W, Wu P, Xia X, Peng X. Glutathione Reduction of Patulin-Evoked Cytotoxicity in HEK293 Cells by the Prevention of Oxidative Damage and the Mitochondrial Apoptotic Pathway. J Agric Food Chem 2018;66:7775-85. [PMID: 29676913 DOI: 10.1021/acs.jafc.8b01212] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
49 Zhang YP, Zhang Y, Xiao ZB, Zhang YB, Zhang J, Li ZQ, Zhu YB. CFTR prevents neuronal apoptosis following cerebral ischemia reperfusion via regulating mitochondrial oxidative stress. J Mol Med (Berl) 2018;96:611-20. [PMID: 29761302 DOI: 10.1007/s00109-018-1649-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
50 Capron C, Jondeau K, Casetti L, Jalbert V, Costa C, Verhoeyen E, Massé JM, Coppo P, Béné MC, Bourdoncle P, Cramer-Bordé E, Dusanter-Fourt I. Viability and stress protection of chronic lymphoid leukemia cells involves overactivation of mitochondrial phosphoSTAT3Ser727. Cell Death Dis 2014;5:e1451. [PMID: 25299776 DOI: 10.1038/cddis.2014.393] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
51 Ribas V, García-Ruiz C, Fernández-Checa JC. Mitochondria, cholesterol and cancer cell metabolism. Clin Transl Med 2016;5:22. [PMID: 27455839 DOI: 10.1186/s40169-016-0106-5] [Cited by in Crossref: 81] [Cited by in F6Publishing: 67] [Article Influence: 16.2] [Reference Citation Analysis]
52 Nam Y, Wie MB, Shin EJ, Nguyen TT, Nah SY, Ko SK, Jeong JH, Jang CG, Kim HC. Ginsenoside Re protects methamphetamine-induced mitochondrial burdens and proapoptosis via genetic inhibition of protein kinase C δ in human neuroblastoma dopaminergic SH-SY5Y cell lines. J Appl Toxicol 2015;35:927-44. [PMID: 25523949 DOI: 10.1002/jat.3093] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
53 Xin Y, Wang Y, Zhong L, Shi B, Liang H, Han J. Slc25a36 modulates pluripotency of mouse embryonic stem cells by regulating mitochondrial function and glutathione level. Biochem J 2019;476:1585-604. [PMID: 31036718 DOI: 10.1042/BCJ20190057] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
54 Martin LA, Kennedy BE, Karten B. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. J Bioenerg Biomembr 2016;48:137-51. [PMID: 25425472 DOI: 10.1007/s10863-014-9592-6] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 6.7] [Reference Citation Analysis]
55 Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, Hüttemann M, Taub JW, Ge Y. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther 2020;5:288. [PMID: 33335095 DOI: 10.1038/s41392-020-00361-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
56 Forrester SJ, Preston KJ, Cooper HA, Boyer MJ, Escoto KM, Poltronetti AJ, Elliott KJ, Kuroda R, Miyao M, Sesaki H, Akiyama T, Kimura Y, Rizzo V, Scalia R, Eguchi S. Mitochondrial Fission Mediates Endothelial Inflammation. Hypertension 2020;76:267-76. [PMID: 32389075 DOI: 10.1161/HYPERTENSIONAHA.120.14686] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
57 Tran TV, Shin EJ, Dang DK, Ko SK, Jeong JH, Nah SY, Jang CG, Lee YJ, Toriumi K, Nabeshima T, Kim HC. Ginsenoside Re protects against phencyclidine-induced behavioral changes and mitochondrial dysfunction via interactive modulation of glutathione peroxidase-1 and NADPH oxidase in the dorsolateral cortex of mice. Food Chem Toxicol 2017;110:300-15. [PMID: 29037473 DOI: 10.1016/j.fct.2017.10.019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
58 Thiab NR, King N, Jones GL. Effects of ageing on metabolite and oxidant concentrations in different regions of rat kidney under normal and stress conditions. Mol Cell Biochem 2015;408:55-61. [PMID: 26100314 DOI: 10.1007/s11010-015-2482-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
59 Bennett B, Helbling D, Meng H, Jarzembowski J, Geurts AM, Friederich MW, Van Hove JLK, Lawlor MW, Dimmock DP. Potentially diagnostic electron paramagnetic resonance spectra elucidate the underlying mechanism of mitochondrial dysfunction in the deoxyguanosine kinase deficient rat model of a genetic mitochondrial DNA depletion syndrome. Free Radic Biol Med 2016;92:141-51. [PMID: 26773591 DOI: 10.1016/j.freeradbiomed.2016.01.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
60 Takahashi HK, Santos LR, Roma LP, Duprez J, Broca C, Wojtusciszyn A, Jonas JC. Acute nutrient regulation of the mitochondrial glutathione redox state in pancreatic β-cells. Biochem J 2014;460:411-23. [PMID: 24678915 DOI: 10.1042/BJ20131361] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 3.9] [Reference Citation Analysis]
61 Driessen MD, Mues S, Vennemann A, Hellack B, Bannuscher A, Vimalakanthan V, Riebeling C, Ossig R, Wiemann M, Schnekenburger J, Kuhlbusch TA, Renard B, Luch A, Haase A. Proteomic analysis of protein carbonylation: a useful tool to unravel nanoparticle toxicity mechanisms. Part Fibre Toxicol 2015;12:36. [PMID: 26525058 DOI: 10.1186/s12989-015-0108-2] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 6.5] [Reference Citation Analysis]
62 Gorka AP, Nani RR, Schnermann MJ. Cyanine polyene reactivity: scope and biomedical applications. Org Biomol Chem 2015;13:7584-98. [PMID: 26052876 DOI: 10.1039/c5ob00788g] [Cited by in Crossref: 90] [Cited by in F6Publishing: 26] [Article Influence: 18.0] [Reference Citation Analysis]
63 Dang DK, Shin EJ, Kim DJ, Tran HQ, Jeong JH, Jang CG, Nah SY, Jeong JH, Byun JK, Ko SK, Bing G, Hong JS, Kim HC. Ginsenoside Re protects methamphetamine-induced dopaminergic neurotoxicity in mice via upregulation of dynorphin-mediated κ-opioid receptor and downregulation of substance P-mediated neurokinin 1 receptor. J Neuroinflammation 2018;15:52. [PMID: 29467000 DOI: 10.1186/s12974-018-1087-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
64 Zhang K, Zhang J, Xi Z, Li LY, Gu X, Zhang QZ, Yi L. A new H2S-specific near-infrared fluorescence-enhanced probe that can visualize the H2S level in colorectal cancer cells in mice. Chem Sci 2017;8:2776-81. [PMID: 28553513 DOI: 10.1039/c6sc05646f] [Cited by in Crossref: 117] [Cited by in F6Publishing: 13] [Article Influence: 29.3] [Reference Citation Analysis]
65 Kalinina EV, Chernov NN, Novichkova MD. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemistry (Mosc) 2014;79:1562-83. [PMID: 25749165 DOI: 10.1134/S0006297914130082] [Cited by in Crossref: 84] [Cited by in F6Publishing: 32] [Article Influence: 14.0] [Reference Citation Analysis]
66 Barbero-Camps E, Fernández A, Baulies A, Martinez L, Fernández-Checa JC, Colell A. Endoplasmic reticulum stress mediates amyloid β neurotoxicity via mitochondrial cholesterol trafficking. Am J Pathol 2014;184:2066-81. [PMID: 24815354 DOI: 10.1016/j.ajpath.2014.03.014] [Cited by in Crossref: 58] [Cited by in F6Publishing: 53] [Article Influence: 8.3] [Reference Citation Analysis]
67 Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev 2015;2015:610813. [PMID: 25834699 DOI: 10.1155/2015/610813] [Cited by in Crossref: 286] [Cited by in F6Publishing: 259] [Article Influence: 47.7] [Reference Citation Analysis]
68 Yang Z, Kang DH, Lee H, Shin J, Yan W, Rathore B, Kim H, Kim SJ, Singh H, Liu L, Qu J, Kang C, Kim JS. A Fluorescent Probe for Stimulated Emission Depletion Super-Resolution Imaging of Vicinal-Dithiol-Proteins on Mitochondrial Membrane. Bioconjugate Chem 2018;29:1446-53. [DOI: 10.1021/acs.bioconjchem.8b00128] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
69 Bode M, Longen S, Morgan B, Peleh V, Dick TP, Bihlmaier K, Herrmann JM. Inaccurately assembled cytochrome c oxidase can lead to oxidative stress-induced growth arrest. Antioxid Redox Signal 2013;18:1597-612. [PMID: 23198688 DOI: 10.1089/ars.2012.4685] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
70 Jardim FR, Almeida FJS, Luckachaki MD, Oliveira MR. Effects of sulforaphane on brain mitochondria: mechanistic view and future directions. J Zhejiang Univ Sci B 2020;21:263-79. [PMID: 32253837 DOI: 10.1631/jzus.B1900614] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
71 Wang M, Lau LI, Sreekumar PG, Spee C, Hinton DR, Sadda SR, Kannan R. Characterization and Regulation of Carrier Proteins of Mitochondrial Glutathione Uptake in Human Retinal Pigment Epithelium Cells. Invest Ophthalmol Vis Sci 2019;60:500-16. [PMID: 30707752 DOI: 10.1167/iovs.18-25686] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
72 Arbo MD, Silva R, Barbosa DJ, Dias da Silva D, Silva SP, Teixeira JP, Bastos ML, Carmo H. In vitro neurotoxicity evaluation of piperazine designer drugs in differentiated human neuroblastoma SH-SY5Y cells. J Appl Toxicol 2016;36:121-30. [PMID: 25900438 DOI: 10.1002/jat.3153] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
73 Silveira JS, Antunes GL, Kaiber DB, da Costa MS, Marques EP, Ferreira FS, Gassen RB, Breda RV, Wyse ATS, Pitrez P, da Cunha AA. Reactive oxygen species are involved in eosinophil extracellular traps release and in airway inflammation in asthma. J Cell Physiol 2019;234:23633-46. [PMID: 31180592 DOI: 10.1002/jcp.28931] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
74 de Oliveira MR, de Bittencourt Brasil F, Fürstenau CR. Sulforaphane Promotes Mitochondrial Protection in SH-SY5Y Cells Exposed to Hydrogen Peroxide by an Nrf2-Dependent Mechanism. Mol Neurobiol 2018;55:4777-87. [PMID: 28730528 DOI: 10.1007/s12035-017-0684-2] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 6.8] [Reference Citation Analysis]
75 Sieprath T, Corne TD, Willems PH, Koopman WJ, De Vos WH. Integrated High-Content Quantification of Intracellular ROS Levels and Mitochondrial Morphofunction. Adv Anat Embryol Cell Biol 2016;219:149-77. [PMID: 27207366 DOI: 10.1007/978-3-319-28549-8_6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
76 Barbosa DJ, Capela JP, Silva R, Vilas-boas V, Ferreira LM, Branco PS, Fernandes E, Bastos MDL, Carvalho F. The mixture of “ecstasy” and its metabolites is toxic to human SH-SY5Y differentiated cells at in vivo relevant concentrations. Arch Toxicol 2014;88:455-73. [DOI: 10.1007/s00204-013-1120-7] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 4.5] [Reference Citation Analysis]
77 Shin EJ, Jeong JH, Nguyen BT, Sharma N, Nah SY, Chung YH, Lee Y, Byun JK, Nabeshima T, Ko SK, Kim HC. Ginsenoside Re Protects against Serotonergic Behaviors Evoked by 2,5-Dimethoxy-4-iodo-amphetamine in Mice via Inhibition of PKCδ-Mediated Mitochondrial Dysfunction. Int J Mol Sci 2021;22:7219. [PMID: 34281274 DOI: 10.3390/ijms22137219] [Reference Citation Analysis]
78 Bjørklund G, Peana M, Maes M, Dadar M, Severin B. The glutathione system in Parkinson's disease and its progression. Neurosci Biobehav Rev 2021;120:470-8. [PMID: 33068556 DOI: 10.1016/j.neubiorev.2020.10.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
79 Aoyama E, Fuchida H, Oshikawa Y, Uchinomiya S, Ojida A. Intracellular delivery of chemical probes using a glutathione-responsive traceless tag. Chem Commun 2016;52:7715-8. [DOI: 10.1039/c6cc03336a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
80 Esterberg R, Linbo T, Pickett SB, Wu P, Ou HC, Rubel EW, Raible DW. Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death. J Clin Invest 2016;126:3556-66. [PMID: 27500493 DOI: 10.1172/JCI84939] [Cited by in Crossref: 75] [Cited by in F6Publishing: 36] [Article Influence: 15.0] [Reference Citation Analysis]
81 Enns GM, Cowan TM. Glutathione as a Redox Biomarker in Mitochondrial Disease-Implications for Therapy. J Clin Med 2017;6:E50. [PMID: 28467362 DOI: 10.3390/jcm6050050] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 7.8] [Reference Citation Analysis]
82 El-Ansary A, Hassan WM, Daghestani M, Al-Ayadhi L, Ben Bacha A. Preliminary evaluation of a novel nine-biomarker profile for the prediction of autism spectrum disorder. PLoS One 2020;15:e0227626. [PMID: 31945130 DOI: 10.1371/journal.pone.0227626] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
83 Roma LP, Jonas JC. Nutrient Metabolism, Subcellular Redox State, and Oxidative Stress in Pancreatic Islets and β-Cells. J Mol Biol 2020;432:1461-93. [PMID: 31634466 DOI: 10.1016/j.jmb.2019.10.012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 13.5] [Reference Citation Analysis]
84 Hatem E, El Banna N, Huang M. Multifaceted Roles of Glutathione and Glutathione-Based Systems in Carcinogenesis and Anticancer Drug Resistance. Antioxidants & Redox Signaling 2017;27:1217-34. [DOI: 10.1089/ars.2017.7134] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 8.5] [Reference Citation Analysis]
85 Jeyaraju DV, Hurren R, Wang X, MacLean N, Gronda M, Shamas-Din A, Minden MD, Giaever G, Schimmer AD. A novel isoflavone, ME-344, targets the cytoskeleton in acute myeloid leukemia. Oncotarget 2016;7:49777-85. [PMID: 27391350 DOI: 10.18632/oncotarget.10446] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
86 Muthu SJ, Seppan P. Apoptosis in hippocampal tissue induced by oxidative stress in testosterone deprived male rats. Aging Male 2020;23:1598-610. [PMID: 33691594 DOI: 10.1080/13685538.2021.1892625] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 He J, Zhu G, Wang G, Zhang F. Oxidative Stress and Neuroinflammation Potentiate Each Other to Promote Progression of Dopamine Neurodegeneration. Oxid Med Cell Longev 2020;2020:6137521. [PMID: 32714488 DOI: 10.1155/2020/6137521] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
88 Firdaus Z, Singh N, Prajapati SK, Krishnamurthy S, Singh TD. Centella asiatica prevents D-galactose-Induced cognitive deficits, oxidative stress and neurodegeneration in the adult rat brain. Drug and Chemical Toxicology. [DOI: 10.1080/01480545.2020.1833907] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
89 Mazzetti AP, Fiorile MC, Primavera A, Lo Bello M. Glutathione transferases and neurodegenerative diseases. Neurochem Int. 2015;82:10-18. [PMID: 25661512 DOI: 10.1016/j.neuint.2015.01.008] [Cited by in Crossref: 69] [Cited by in F6Publishing: 54] [Article Influence: 11.5] [Reference Citation Analysis]
90 Khemakhem AM, Frye RE, El-Ansary A, Al-Ayadhi L, Bacha AB. Novel biomarkers of metabolic dysfunction is autism spectrum disorder: potential for biological diagnostic markers. Metab Brain Dis 2017;32:1983-97. [PMID: 28831647 DOI: 10.1007/s11011-017-0085-2] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 8.8] [Reference Citation Analysis]
91 Hlouschek J, Ritter V, Wirsdörfer F, Klein D, Jendrossek V, Matschke J. Targeting SLC25A10 alleviates improved antioxidant capacity and associated radioresistance of cancer cells induced by chronic-cycling hypoxia. Cancer Lett 2018;439:24-38. [PMID: 30205167 DOI: 10.1016/j.canlet.2018.09.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
92 Clemens DL, Duryee MJ, Hall JH, Thiele GM, Mikuls TR, Klassen LW, Zimmerman MC, Anderson DR. Relevance of the antioxidant properties of methotrexate and doxycycline to their treatment of cardiovascular disease. Pharmacol Ther 2020;205:107413. [PMID: 31626869 DOI: 10.1016/j.pharmthera.2019.107413] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
93 Jaeschke H, Ramachandran A. Antioxidant Defense Mechanisms. Comprehensive Toxicology. Elsevier; 2018. pp. 277-95. [DOI: 10.1016/b978-0-12-801238-3.64200-9] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
94 Yin B, Barrionuevo G, Batinic-Haberle I, Sandberg M, Weber SG. Differences in Reperfusion-Induced Mitochondrial Oxidative Stress and Cell Death Between Hippocampal CA1 and CA3 Subfields Are Due to the Mitochondrial Thioredoxin System. Antioxid Redox Signal 2017;27:534-49. [PMID: 28129719 DOI: 10.1089/ars.2016.6706] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
95 Castora FJ. Mitochondrial function and abnormalities implicated in the pathogenesis of ASD. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2019;92:83-108. [DOI: 10.1016/j.pnpbp.2018.12.015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 12.5] [Reference Citation Analysis]
96 Romero-Canelón I, Sadler PJ. Systems approach to metal-based pharmacology. Proc Natl Acad Sci U S A 2015;112:4187-8. [PMID: 25825746 DOI: 10.1073/pnas.1503858112] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
97 Ruszkiewicz J, Albrecht J. Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem Int 2015;88:66-72. [PMID: 25576182 DOI: 10.1016/j.neuint.2014.12.012] [Cited by in Crossref: 66] [Cited by in F6Publishing: 55] [Article Influence: 11.0] [Reference Citation Analysis]
98 Wang DB, Kinoshita C, Kinoshita Y, Morrison RS. p53 and mitochondrial function in neurons. Biochim Biophys Acta 2014;1842:1186-97. [PMID: 24412988 DOI: 10.1016/j.bbadis.2013.12.015] [Cited by in Crossref: 111] [Cited by in F6Publishing: 92] [Article Influence: 15.9] [Reference Citation Analysis]
99 Vincow ES, Thomas RE, Merrihew GE, Shulman NJ, Bammler TK, MacDonald JW, MacCoss MJ, Pallanck LJ. Autophagy accounts for approximately one-third of mitochondrial protein turnover and is protein selective. Autophagy 2019;15:1592-605. [PMID: 30865561 DOI: 10.1080/15548627.2019.1586258] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 11.0] [Reference Citation Analysis]
100 Chen J, Jiang X, Zhang C, MacKenzie KR, Stossi F, Palzkill T, Wang MC, Wang J. Reversible Reaction-Based Fluorescent Probe for Real-Time Imaging of Glutathione Dynamics in Mitochondria. ACS Sens 2017;2:1257-61. [PMID: 28809477 DOI: 10.1021/acssensors.7b00425] [Cited by in Crossref: 67] [Cited by in F6Publishing: 53] [Article Influence: 16.8] [Reference Citation Analysis]