BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rios L, Campos EE, Menon R, Zago MP, Garg NJ. Epidemiology and pathogenesis of maternal-fetal transmission of Trypanosoma cruzi and a case for vaccine development against congenital Chagas disease. Biochim Biophys Acta Mol Basis Dis 2020;1866:165591. [PMID: 31678160 DOI: 10.1016/j.bbadis.2019.165591] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Jones KM, Poveda C, Versteeg L, Bottazzi ME, Hotez PJ. Preclinical advances and the immunophysiology of a new therapeutic chagas disease vaccine. Expert Rev Vaccines 2022. [PMID: 35735065 DOI: 10.1080/14760584.2022.2093721] [Reference Citation Analysis]
2 Barbosa CG, Gómez-Hernández C, da Silva MV, Rezende-Oliveira K, Ferreira PTM, de Oliveira ACM, Desidério CS, Helmo FR, de Carvalho-Costa TM, Dos Santos IKP, Saraiva LKA, de Oliveira CJF, Machado JR, Ferro EAV, Rodrigues V, Ramirez LE. Congenital transmission of Mexican strains of Trypanosoma cruzi TcIa: interaction between parasite and human placental explants. Parasitology 2021;:1-9. [PMID: 34814960 DOI: 10.1017/S0031182021002018] [Reference Citation Analysis]
3 Choudhuri S, Bhavnani SK, Zhang W, Botelli V, Barrientos N, Iñiguez F, Zago MP, Garg NJ. Prognostic Performance of Peripheral Blood Biomarkers in Identifying Seropositive Individuals at Risk of Developing Clinically Symptomatic Chagas Cardiomyopathy. Microbiol Spectr 2021;9:e0036421. [PMID: 34479416 DOI: 10.1128/Spectrum.00364-21] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Choudhuri S, Rios L, Vázquez-Chagoyán JC, Garg NJ. Oxidative stress implications for therapeutic vaccine development against Chagas disease. Expert Rev Vaccines 2021;:1-12. [PMID: 34406892 DOI: 10.1080/14760584.2021.1969230] [Reference Citation Analysis]
5 Megli CJ, Coyne CB. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. Nat Rev Microbiol 2021. [PMID: 34433930 DOI: 10.1038/s41579-021-00610-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
6 Silberstein E, Kim KS, Acosta D, Debrabant A. Human Placental Trophoblasts Are Resistant to Trypanosoma cruzi Infection in a 3D-Culture Model of the Maternal-Fetal Interface. Front Microbiol 2021;12:626370. [PMID: 33746919 DOI: 10.3389/fmicb.2021.626370] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 Chowdhury IH, Lokugamage N, Garg NJ. Experimental Nanovaccine Offers Protection Against Repeat Exposures to Trypanosoma cruzi Through Activation of Polyfunctional T Cell Response. Front Immunol 2020;11:595039. [PMID: 33414785 DOI: 10.3389/fimmu.2020.595039] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
8 Luna EJA, Campos SRSLDC. Vaccine development against neglected tropical diseases. Cad Saude Publica 2020;36Suppl 2:e00215720. [PMID: 33237199 DOI: 10.1590/0102-311X00215720] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
9 Choudhuri S, Garg NJ. Trypanosoma cruzi Induces the PARP1/AP-1 Pathway for Upregulation of Metalloproteinases and Transforming Growth Factor β in Macrophages: Role in Cardiac Fibroblast Differentiation and Fibrosis in Chagas Disease. mBio 2020;11:e01853-20. [PMID: 33172999 DOI: 10.1128/mBio.01853-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
10 Cerny N, Bivona AE, Sanchez Alberti A, Trinitario SN, Morales C, Cardoso Landaburu A, Cazorla SI, Malchiodi EL. Cruzipain and Its Physiological Inhibitor, Chagasin, as a DNA-Based Therapeutic Vaccine Against Trypanosoma cruzi. Front Immunol 2020;11:565142. [PMID: 33162979 DOI: 10.3389/fimmu.2020.565142] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
11 Santana KH, Oliveira LGR, Barros de Castro D, Pereira M. Epidemiology of Chagas disease in pregnant women and congenital transmission of Trypanosoma cruzi in the Americas: systematic review and meta‐analysis. Trop Med Int Health 2020;25:752-63. [DOI: 10.1111/tmi.13398] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
12 Sánchez-Villamil JP, Bautista-Niño PK, Serrano NC, Rincon MY, Garg NJ. Potential Role of Antioxidants as Adjunctive Therapy in Chagas Disease. Oxid Med Cell Longev 2020;2020:9081813. [PMID: 32308809 DOI: 10.1155/2020/9081813] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
13 Lokugamage N, Choudhuri S, Davies C, Chowdhury IH, Garg NJ. Antigen-Based Nano-Immunotherapy Controls Parasite Persistence, Inflammatory and Oxidative Stress, and Cardiac Fibrosis, the Hallmarks of Chronic Chagas Cardiomyopathy, in A Mouse Model of Trypanosoma cruzi Infection. Vaccines (Basel) 2020;8:E96. [PMID: 32098116 DOI: 10.3390/vaccines8010096] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]