BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zheng XX, Zhou T, Wang XA, Tong XH, Ding JW. Histone deacetylases and atherosclerosis. Atherosclerosis 2015;240:355-66. [PMID: 25875381 DOI: 10.1016/j.atherosclerosis.2014.12.048] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 3.9] [Reference Citation Analysis]
Number Citing Articles
1 Rangan P, Mondino A. Microbial short-chain fatty acids: a strategy to tune adoptive T cell therapy. J Immunother Cancer 2022;10:e004147. [PMID: 35882448 DOI: 10.1136/jitc-2021-004147] [Reference Citation Analysis]
2 Nishida A, Ando Y, Kimura I, Miyamoto J. Involvement of Gut Microbial Metabolites Derived from Diet on Host Energy Homeostasis. Int J Mol Sci 2022;23:5562. [PMID: 35628369 DOI: 10.3390/ijms23105562] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Li L, Xie W. LncRNA HDAC11-AS1 Suppresses Atherosclerosis by Inhibiting HDAC11-Mediated Adropin Histone Deacetylation. J Cardiovasc Transl Res 2022. [PMID: 35505157 DOI: 10.1007/s12265-022-10248-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Yoo JY, Sniffen S, McGill Percy KC, Pallaval VB, Chidipi B. Gut Dysbiosis and Immune System in Atherosclerotic Cardiovascular Disease (ACVD). Microorganisms 2022;10:108. [PMID: 35056557 DOI: 10.3390/microorganisms10010108] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
5 Lecce L, Xu Y, V'Gangula B, Chandel N, Pothula V, Caudrillier A, Santini MP, d'Escamard V, Ceholski DK, Gorski PA, Ma L, Koplev S, Bjørklund MM, Björkegren JL, Boehm M, Bentzon JF, Fuster V, Kim HW, Weintraub NL, Baker AH, Bernstein E, Kovacic JC. Histone deacetylase 9 promotes endothelial-mesenchymal transition and an unfavorable atherosclerotic plaque phenotype. J Clin Invest 2021;131:131178. [PMID: 34338228 DOI: 10.1172/JCI131178] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
6 Wang L, Ahn YJ, Asmis R. Inhibition of myeloid HDAC2 upregulates glutaredoxin 1 expression, improves protein thiol redox state and protects against high-calorie diet-induced monocyte dysfunction and atherosclerosis. Atherosclerosis 2021;328:23-32. [PMID: 34077868 DOI: 10.1016/j.atherosclerosis.2021.05.002] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Li M, van Esch BCAM, Henricks PAJ, Garssen J, Folkerts G. IL-33 Is Involved in the Anti-Inflammatory Effects of Butyrate and Propionate on TNFα-Activated Endothelial Cells. Int J Mol Sci 2021;22:2447. [PMID: 33671042 DOI: 10.3390/ijms22052447] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Chen X, He Y, Fu W, Sahebkar A, Tan Y, Xu S, Li H. Histone Deacetylases (HDACs) and Atherosclerosis: A Mechanistic and Pharmacological Review. Front Cell Dev Biol. 2020;8:581015. [PMID: 33282862 DOI: 10.3389/fcell.2020.581015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
9 Czollner L, Papaplioura E, Linder T, Liu R, Li Y, Atanasov AG, Dirsch VM, Schnürch M, Mihovilovic MD. A silver-coated copper wire as inexpensive drug eluting stent model: determination of the relative releasing properties of leoligin and derivatives. Monatsh Chem. [DOI: 10.1007/s00706-020-02677-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Gao Q, Wei A, Chen F, Chen X, Ding W, Ding Z, Wu Z, Du R, Cao W. Enhancing PPARγ by HDAC inhibition reduces foam cell formation and atherosclerosis in ApoE deficient mice. Pharmacol Res 2020;160:105059. [PMID: 32621955 DOI: 10.1016/j.phrs.2020.105059] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
11 Xia L, Sun C, Zhu H, Zhai M, Zhang L, Jiang L, Hou P, Li J, Li K, Liu Z, Li B, Wang X, Yi W, Liang H, Jin Z, Yang J, Yi D, Liu J, Yu S, Duan W. Melatonin protects against thoracic aortic aneurysm and dissection through SIRT1‐dependent regulation of oxidative stress and vascular smooth muscle cell loss. J Pineal Res 2020;69. [DOI: 10.1111/jpi.12661] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
12 Izidoro MA, Cecconi A, Panadero MI, Mateo J, Godzien J, Vilchez JP, López-Gonzálvez Á, Ruiz-Cabello J, Ibañez B, Barbas C, Rupérez FJ. Plasma Metabolic Signature of Atherosclerosis Progression and Colchicine Treatment in Rabbits. Sci Rep 2020;10:7072. [PMID: 32341369 DOI: 10.1038/s41598-020-63306-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zhang Y, Fan Z, Liu H, Ma J, Zhang M. Correlation of plasma soluble suppression of tumorigenicity-2 level with the severity and stability of coronary atherosclerosis. Coron Artery Dis 2020;31:628-35. [PMID: 32040025 DOI: 10.1097/MCA.0000000000000851] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
14 Manea SA, Vlad ML, Fenyo IM, Lazar AG, Raicu M, Muresian H, Simionescu M, Manea A. Pharmacological inhibition of histone deacetylase reduces NADPH oxidase expression, oxidative stress and the progression of atherosclerotic lesions in hypercholesterolemic apolipoprotein E-deficient mice; potential implications for human atherosclerosis. Redox Biol 2020;28:101338. [PMID: 31634818 DOI: 10.1016/j.redox.2019.101338] [Cited by in Crossref: 21] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
15 Rosa-Garrido M, Chapski DJ, Vondriska TM. Epigenomes in Cardiovascular Disease. Circ Res 2018;122:1586-607. [PMID: 29798902 DOI: 10.1161/CIRCRESAHA.118.311597] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 11.7] [Reference Citation Analysis]
16 Lee DY, Chiu JJ. Atherosclerosis and flow: roles of epigenetic modulation in vascular endothelium. J Biomed Sci 2019;26:56. [PMID: 31387590 DOI: 10.1186/s12929-019-0551-8] [Cited by in Crossref: 26] [Cited by in F6Publishing: 43] [Article Influence: 8.7] [Reference Citation Analysis]
17 Menden H, Xia S, Mabry SM, Noel-MacDonnell J, Rajasingh J, Ye SQ, Sampath V. Histone deacetylase 6 regulates endothelial MyD88-dependent canonical TLR signaling, lung inflammation, and alveolar remodeling in the developing lung. Am J Physiol Lung Cell Mol Physiol 2019;317:L332-46. [PMID: 31268348 DOI: 10.1152/ajplung.00247.2018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
18 Aquila G, Marracino L, Martino V, Calabria D, Campo G, Caliceti C, Rizzo P. The Use of Nutraceuticals to Counteract Atherosclerosis: The Role of the Notch Pathway. Oxid Med Cell Longev 2019;2019:5470470. [PMID: 31915510 DOI: 10.1155/2019/5470470] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
19 Gatla HR, Muniraj N, Thevkar P, Yavvari S, Sukhavasi S, Makena MR. Regulation of Chemokines and Cytokines by Histone Deacetylases and an Update on Histone Decetylase Inhibitors in Human Diseases. Int J Mol Sci 2019;20:E1110. [PMID: 30841513 DOI: 10.3390/ijms20051110] [Cited by in Crossref: 30] [Cited by in F6Publishing: 35] [Article Influence: 10.0] [Reference Citation Analysis]
20 Bartoli-Leonard F, Wilkinson FL, Schiro A, Inglott FS, Alexander MY, Weston R. Suppression of SIRT1 in Diabetic Conditions Induces Osteogenic Differentiation of Human Vascular Smooth Muscle Cells via RUNX2 Signalling. Sci Rep 2019;9:878. [PMID: 30696833 DOI: 10.1038/s41598-018-37027-2] [Cited by in Crossref: 24] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
21 Cheng Z, Wen Y, Liang B, Chen S, Liu Y, Wang Z, Cheng J, Tang X, Xin H, Deng L. Gene expression profile-based drug screen identifies SAHA as a novel treatment for NAFLD. Mol Omics 2019;15:50-8. [DOI: 10.1039/c8mo00214b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
22 Mustafa AK, Geirsson A. Commentary: When a histone deacetylase fails, the aortic valve gets stressed into old age. J Thorac Cardiovasc Surg 2019;158:418-9. [PMID: 30527728 DOI: 10.1016/j.jtcvs.2018.10.114] [Reference Citation Analysis]
23 Fu Z, Li F, Jia L, Su S, Wang Y, Cai Z, Xiang M. Histone deacetylase 6 reduction promotes aortic valve calcification via an endoplasmic reticulum stress-mediated osteogenic pathway. J Thorac Cardiovasc Surg 2019;158:408-417.e2. [PMID: 30579537 DOI: 10.1016/j.jtcvs.2018.10.136] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
24 Matsui M, Terasawa K, Kajikuri J, Kito H, Endo K, Jaikhan P, Suzuki T, Ohya S. Histone Deacetylases Enhance Ca2+-Activated K⁺ Channel KCa3.1 Expression in Murine Inflammatory CD4⁺ T Cells. Int J Mol Sci 2018;19:E2942. [PMID: 30262728 DOI: 10.3390/ijms19102942] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
25 Wu X, Li C, Mariyam Z, Jiang P, Zhou M, Zeb F, Haq IU, Chen A, Feng Q. Acrolein-induced atherogenesis by stimulation of hepatic flavin containing monooxygenase 3 and a protection from hydroxytyrosol. J Cell Physiol 2018;234:475-85. [PMID: 29953618 DOI: 10.1002/jcp.26600] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
26 Li M, van Esch BCAM, Henricks PAJ, Folkerts G, Garssen J. The Anti-inflammatory Effects of Short Chain Fatty Acids on Lipopolysaccharide- or Tumor Necrosis Factor α-Stimulated Endothelial Cells via Activation of GPR41/43 and Inhibition of HDACs. Front Pharmacol 2018;9:533. [PMID: 29875665 DOI: 10.3389/fphar.2018.00533] [Cited by in Crossref: 59] [Cited by in F6Publishing: 87] [Article Influence: 14.8] [Reference Citation Analysis]
27 Manea SA, Antonescu ML, Fenyo IM, Raicu M, Simionescu M, Manea A. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes. Redox Biol 2018;16:332-43. [PMID: 29587244 DOI: 10.1016/j.redox.2018.03.011] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 10.0] [Reference Citation Analysis]
28 Tian Y, Liang X, Wu Y. The alternation of autophagy/apoptosis in CD4+CD25+Foxp3+ Tregs on the developmental stages of atherosclerosis. Biomed Pharmacother 2018;97:1053-60. [PMID: 29136784 DOI: 10.1016/j.biopha.2017.11.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
29 Zhang M, Wang S, Pan Z, Ou T, Ma J, Liu H, Li R, Yang P, Han W, Guan S, Hou X, Fang W, Qu X. AMPK/NF-κB signaling pathway regulated by ghrelin participates in the regulation of HUVEC and THP1 Inflammation. Mol Cell Biochem 2018;437:45-53. [DOI: 10.1007/s11010-017-3094-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
30 Leucker TM, Nomura Y, Kim JH, Bhatta A, Wang V, Wecker A, Jandu S, Santhanam L, Berkowitz D, Romer L, Pandey D. Cystathionine γ-lyase protects vascular endothelium: a role for inhibition of histone deacetylase 6. Am J Physiol Heart Circ Physiol 2017;312:H711-20. [PMID: 28188215 DOI: 10.1152/ajpheart.00724.2016] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 5.6] [Reference Citation Analysis]
31 Lahiri S, Sun N, Buck A, Imhof A, Walch A. MALDI imaging mass spectrometry as a novel tool for detecting histone modifications in clinical tissue samples. Expert Review of Proteomics 2016;13:275-84. [DOI: 10.1586/14789450.2016.1146598] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
32 Zhang Q, Wang P, Hou H, Zhang H, Tan J, Huang Y, Li Y, Wu J, Qiu Z, Li L. Histone acetylation and reactive oxygen species are involved in the preprophase arrest induced by sodium butyrate in maize roots. Protoplasma 2017;254:167-79. [PMID: 26781092 DOI: 10.1007/s00709-015-0928-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
33 Fan Z, Yang J, Yang J, Yang C, Ping Z. HDAC inhibition: A novel therapeutic approach for atherosclerosis. International Journal of Cardiology 2016;202:722-3. [DOI: 10.1016/j.ijcard.2015.09.107] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
34 Fan Z, Yang J, Yang J, Yang C, Guo X. HMGB1: A promising therapeutic approach for atherosclerosis. International Journal of Cardiology 2016;202:507-8. [DOI: 10.1016/j.ijcard.2015.09.101] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]