BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Castillo-Segura P, Fernández-Panadero C, Alario-Hoyos C, Muñoz-Merino PJ, Delgado Kloos C. Objective and automated assessment of surgical technical skills with IoT systems: A systematic literature review. Artif Intell Med 2021;112:102007. [PMID: 33581827 DOI: 10.1016/j.artmed.2020.102007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Yibulayimu S, Wang Y, Liu Y, Sun Z, Wang Y, Jiang H, Li F. An explainable machine learning method for assessing surgical skill in liposuction surgery. Int J Comput Assist Radiol Surg 2022. [PMID: 36167953 DOI: 10.1007/s11548-022-02739-4] [Reference Citation Analysis]
2 Yilmaz R, Winkler-Schwartz A, Mirchi N, Reich A, Christie S, Tran DH, Ledwos N, Fazlollahi AM, Santaguida C, Sabbagh AJ, Bajunaid K, Del Maestro R. Continuous monitoring of surgical bimanual expertise using deep neural networks in virtual reality simulation. NPJ Digit Med 2022;5:54. [PMID: 35473961 DOI: 10.1038/s41746-022-00596-8] [Reference Citation Analysis]
3 Oğul BB, Gilgien M, Özdemir S. Ranking surgical skills using an attention-enhanced Siamese network with piecewise aggregated kinematic data. Int J CARS. [DOI: 10.1007/s11548-022-02581-8] [Reference Citation Analysis]
4 A. Sánchez-margallo J, Castillo Rabazo J, Plaza de Miguel C, Gloor P, Durán Rey D, Ramón González-portillo M, López Agudelo I, M. Sánchez-margallo F. Wearable Technology for Assessment and Surgical Assistance in Minimally Invasive Surgery. Advances in Minimally Invasive Surgery 2022. [DOI: 10.5772/intechopen.100617] [Reference Citation Analysis]
5 Frangoudes F, Matsangidou M, Schiza EC, Neokleous K, Pattichis CS. Assessing Human Motion During Exercise Using Machine Learning: A Literature Review. IEEE Access 2022;10:86874-903. [DOI: 10.1109/access.2022.3198935] [Reference Citation Analysis]
6 Dai C, Ke F. Educational applications of artificial intelligence in simulation-based learning: A systematic mapping review. Computers and Education: Artificial Intelligence 2022;3:100087. [DOI: 10.1016/j.caeai.2022.100087] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Castillo-Segura P, Fernández-Panadero C, Alario-Hoyos C, Muñoz-Merino PJ, Delgado Kloos C. A cost-effective IoT learning environment for the training and assessment of surgical technical skills with visual learning analytics. J Biomed Inform 2021;124:103952. [PMID: 34798158 DOI: 10.1016/j.jbi.2021.103952] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Kanak A, Arif I, Terzibas C, Demir OF, Ergun S. An IoT-based Triangular Methodology for Plastic Surgery Simulation enriched with Augmented and Virtual Reality. 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC) 2021. [DOI: 10.1109/smc52423.2021.9659014] [Reference Citation Analysis]