BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Manzo-merino J, Contreras-paredes A, Vázquez-ulloa E, Rocha-zavaleta L, Fuentes-gonzalez AM, Lizano M. The Role of Signaling Pathways in Cervical Cancer and Molecular Therapeutic Targets. Archives of Medical Research 2014;45:525-39. [DOI: 10.1016/j.arcmed.2014.10.008] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Bhattacharjee R, Kumar L, Dhasmana A, Mitra T, Dey A, Malik S, Kim B, Gundamaraju R. Governing HPV-related carcinoma using vaccines: Bottlenecks and breakthroughs. Front Oncol 2022;12:977933. [DOI: 10.3389/fonc.2022.977933] [Reference Citation Analysis]
2 Muñoz-bello JO, Carrillo-garcía A, Lizano M. Epidemiology and Molecular Biology of HPV Variants in Cervical Cancer: The State of the Art in Mexico. IJMS 2022;23:8566. [DOI: 10.3390/ijms23158566] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Xu H, Wang H, Xing T, Wang X. A Novel Prognostic Risk Model for Cervical Cancer Based on Immune Checkpoint HLA-G-Driven Differentially Expressed Genes. Front Immunol 2022;13:851622. [DOI: 10.3389/fimmu.2022.851622] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Ashique S, Upadhyay A, Kumar N, Chauhan S, Mishra N. Metabolic syndromes responsible for cervical cancer and advancement of nanocarriers for efficient targeted drug delivery- A review. Advances in Cancer Biology - Metastasis 2022;4:100041. [DOI: 10.1016/j.adcanc.2022.100041] [Reference Citation Analysis]
5 Makgoo L, Mosebi S, Mbita Z. Molecular Mechanisms of HIV Protease Inhibitors Against HPV-Associated Cervical Cancer: Restoration of TP53 Tumour Suppressor Activities. Front Mol Biosci 2022;9:875208. [DOI: 10.3389/fmolb.2022.875208] [Reference Citation Analysis]
6 Bhattacharjee R, Das SS, Biswal SS, Nath A, Das D, Basu A, Malik S, Kumar L, Kar S, Singh SK, Upadhye VJ, Iqbal D, Almojam S, Roychoudhury S, Ojha S, Ruokolainen J, Jha NK, Kesari KK. Mechanistic Role of HPV-Associated Early Proteins in Cervical Cancer: Molecular Pathways and Targeted Therapeutic Strategies. Critical Reviews in Oncology/Hematology 2022. [DOI: 10.1016/j.critrevonc.2022.103675] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
7 Brkic FF, Stoiber S, Maier T, Gurnhofer E, Kenner L, Heiduschka G, Kadletz-wanke L. Targeting Wnt/Beta-Catenin Signaling in HPV-Positive Head and Neck Squamous Cell Carcinoma. Pharmaceuticals 2022;15:378. [DOI: 10.3390/ph15030378] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Jiménez-Castillo V, Illescas-Barbosa D, Zenteno E, Ávila-Curiel BX, Castañeda-Patlán MC, Robles-Flores M, De Oca DM, Pérez-Campos E, Torres-Rivera A, Bouaboud A, Pagesy P, Solórzano-Mata CJ, Issad T. Increased O-GlcNAcylation promotes IGF-1 receptor/PhosphatidyI Inositol-3 kinase/Akt pathway in cervical cancer cells. Sci Rep 2022;12:4464. [PMID: 35296731 DOI: 10.1038/s41598-022-08445-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Debnath SK, Singh B, Agrawal N, Srivastava R. EPR-Selective Biodegradable Polymer-Based Nanoparticles for Modulating ROS in the Management of Cervical Cancer. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_127] [Reference Citation Analysis]
10 Debnath SK, Singh B, Agrawal N, Srivastava R. EPR-Selective Biodegradable Polymer-Based Nanoparticles for Modulating ROS in the Management of Cervical Cancer. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_127-1] [Reference Citation Analysis]
11 Erye Frety E, Soehato S, Sujuti H, Rosita Dewi E. Effect of Oral Applied Lead Acetate on the Expression of Caspase-3 on Antral Granulosa Cells and Histopathology of Ovary in Female Wistar Rat (Rattus Norvegicus) Ovaries. RJPT 2021. [DOI: 10.52711/0974-360x.2021.01044] [Reference Citation Analysis]
12 Yang P, Jiang PW, Li C, Gao MX, Sun YS, Zhang DY, Du WQ, Zhao J, Shi ST, Li Y, Yang T, Cheng L, Li MH. Cdc25C/cdc2/cyclin B, raf/MEK/ERK and PERK/eIF2α/CHOP pathways are involved in forskolin-induced growth inhibition of MM.1S cells by G2/M arrest and mitochondrion-dependent apoptosis. Cell Cycle 2021;20:2402-12. [PMID: 34606419 DOI: 10.1080/15384101.2021.1983280] [Reference Citation Analysis]
13 Hernández-Padilla L, Reyes de la Cruz H, Campos-García J. Antiproliferative effect of bacterial cyclodipeptides in the HeLa line of human cervical cancer reveals multiple protein kinase targeting, including mTORC1/C2 complex inhibition in a TSC1/2-dependent manner. Apoptosis 2020;25:632-47. [PMID: 32617785 DOI: 10.1007/s10495-020-01619-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
14 Pandey P, Khan F, Farhan M, Jafri A. Elucidation of rutin's role in inducing caspase-dependent apoptosis via HPV-E6 and E7 down-regulation in cervical cancer HeLa cells. Biosci Rep 2021;41:BSR20210670. [PMID: 34109976 DOI: 10.1042/BSR20210670] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
15 Guo W, Zhu J, Zhu Y, Wang K. G2 and S phase-expressed-1 acts as a putative tumor promoter in cervical cancer by enhancing Wnt/β-catenin signaling via modulation of GSK-3β. Environ Toxicol 2021;36:1628-39. [PMID: 33974332 DOI: 10.1002/tox.23158] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Gomes FG, Almeida VH, Martins-Cardoso K, Martins-Dinis MMDC, Rondon AMR, Melo AC, Tilli TM, Monteiro RQ. Epidermal growth factor receptor regulates fibrinolytic pathway elements in cervical cancer: functional and prognostic implications. Braz J Med Biol Res 2021;54:e10754. [PMID: 33886813 DOI: 10.1590/1414-431X202010754] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Lee H, Lee I, Kang K, Park S, Jung M, Yang SG, Kwon T, Lee D. A Comprehensive Understanding of the Anticancer Mechanisms of FDY2004 Against Cervical Cancer Based on Network Pharmacology. Natural Product Communications 2021;16:1934578X2110043. [DOI: 10.1177/1934578x211004304] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Patrono MG, Calvo MF, Franco JVA, Garrote V, Vietto V. A systematic review and meta-analysis of the prevalence of therapeutic targets in cervical cancer. Ecancermedicalscience 2021;15:1200. [PMID: 33889209 DOI: 10.3332/ecancer.2021.1200] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Ramírez-Sánchez DA, Arredondo-Beltrán IG, Canizalez-Roman A, Flores-Villaseñor H, Nazmi K, Bolscher JGM, León-Sicairos N. Bovine lactoferrin and lactoferrin peptides affect endometrial and cervical cancer cell lines. Biochem Cell Biol 2021;99:149-58. [PMID: 33307991 DOI: 10.1139/bcb-2020-0074] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Lee H, Lee I, Kang K, Park S, Kwon T, Moon S, Lee CH, Lee D. Systems Pharmacology Study of the Anticervical Cancer Mechanisms of FDY003. Natural Product Communications 2020;15:1934578X2097736. [DOI: 10.1177/1934578x20977364] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Adiga D, Eswaran S, Pandey D, Sharan K, Kabekkodu SP. Molecular landscape of recurrent cervical cancer. Crit Rev Oncol Hematol 2021;157:103178. [PMID: 33279812 DOI: 10.1016/j.critrevonc.2020.103178] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 8.5] [Reference Citation Analysis]
22 Zhang J, Si J, Gan L, Guo M, Yan J, Chen Y, Wang F, Xie Y, Wang Y, Zhang H. Inhibition of Wnt signalling pathway by XAV939 enhances radiosensitivity in human cervical cancer HeLa cells. Artif Cells Nanomed Biotechnol 2020;48:479-87. [PMID: 31975621 DOI: 10.1080/21691401.2020.1716779] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
23 Olmedo-Nieva L, Muñoz-Bello JO, Manzo-Merino J, Lizano M. New insights in Hippo signalling alteration in human papillomavirus-related cancers. Cell Signal 2020;76:109815. [PMID: 33148514 DOI: 10.1016/j.cellsig.2020.109815] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
24 Diao W, Guo Q, Zhu C, Song Y, Feng H, Cao Y, Du M, Chen H. USP18 promotes cell proliferation and suppressed apoptosis in cervical cancer cells via activating AKT signaling pathway. BMC Cancer 2020;20:741. [PMID: 32770981 DOI: 10.1186/s12885-020-07241-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
25 Chandimali N, Koh H, Kim J, Lee J, Park YH, Sun HN, Kwon T. BRM270 targets cancer stem cells and augments chemo-sensitivity in cancer. Oncol Lett 2020;20:103. [PMID: 32831922 DOI: 10.3892/ol.2020.11964] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
26 Khan H, Belwal T, Efferth T, Farooqi AA, Sanches-Silva A, Vacca RA, Nabavi SF, Khan F, Prasad Devkota H, Barreca D, Sureda A, Tejada S, Dacrema M, Daglia M, Suntar İ, Xu S, Ullah H, Battino M, Giampieri F, Nabavi SM. Targeting epigenetics in cancer: therapeutic potential of flavonoids. Crit Rev Food Sci Nutr 2021;61:1616-39. [PMID: 32478608 DOI: 10.1080/10408398.2020.1763910] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
27 Hemmat N, Mokhtarzadeh A, Aghazadeh M, Jadidi-Niaragh F, Baradaran B, Bannazadeh Baghi H. Role of microRNAs in epidermal growth factor receptor signaling pathway in cervical cancer. Mol Biol Rep 2020;47:4553-68. [PMID: 32383136 DOI: 10.1007/s11033-020-05494-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
28 Liu R, Shuai Y, Luo J, Zhang Z. SEMA3C Promotes Cervical Cancer Growth and Is Associated With Poor Prognosis. Front Oncol 2019;9:1035. [PMID: 31649890 DOI: 10.3389/fonc.2019.01035] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
29 Zou K, Yu H, Chen X, Ma Q, Hou L. Silencing long noncoding RNA OGFRP1 inhibits the proliferation and migration of cervical carcinoma cells. Cell Biochem Funct 2019;37:591-7. [DOI: 10.1002/cbf.3435] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
30 Yan K, Hu C, Liu C, Chu G, Wang X, Ma S, Li L. Retracted Article: Knockdown of TMPRSS11D inhibits the proliferation, migration and invasion of cervical cancer cells. RSC Adv 2019;9:21591-600. [PMID: 35521321 DOI: 10.1039/c9ra02482d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
31 Chaichian S, Shafabakhsh R, Mirhashemi SM, Moazzami B, Asemi Z. Circular RNAs: A novel biomarker for cervical cancer. J Cell Physiol 2020;235:718-24. [PMID: 31240697 DOI: 10.1002/jcp.29009] [Cited by in Crossref: 84] [Cited by in F6Publishing: 87] [Article Influence: 28.0] [Reference Citation Analysis]
32 Ahn K, Kweon S, Kim DW, Lee H. Different expression of GSK3β and pS9GSK3β depending on phenotype of cervical cancer: possible association of GSK3β with squamous cell carcinoma and pS9GSK3β with adenocarcinoma. Obstet Gynecol Sci 2019;62:157-65. [PMID: 31139591 DOI: 10.5468/ogs.2019.62.3.157] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
33 Xia C, He Z, Liang S, Chen R, Xu W, Yang J, Xiao G, Jiang S. Metformin combined with nelfinavir induces SIRT3/mROS-dependent autophagy in human cervical cancer cells and xenograft in nude mice. Eur J Pharmacol 2019;848:62-9. [PMID: 30695683 DOI: 10.1016/j.ejphar.2019.01.045] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
34 Yuan L, Qin X, Li L, Zhou J, Zhou M, Li X, Xu Y, Cheng L, Xing H. Overexpression of LINC00037 represses cervical cancer progression by activating mTOR signaling pathway. J Cell Physiol 2019;234:13353-60. [DOI: 10.1002/jcp.28012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
35 Zhang H, Xie B, Zhang Z, Sheng X, Zhang S. Tetrandrine suppresses cervical cancer growth by inducing apoptosis in vitro and in vivo. Drug Des Devel Ther 2019;13:119-27. [PMID: 30587932 DOI: 10.2147/DDDT.S187776] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
36 Muñoz-Bello JO, Olmedo-Nieva L, Castro-Muñoz LJ, Manzo-Merino J, Contreras-Paredes A, González-Espinosa C, López-Saavedra A, Lizano M. HPV-18 E6 Oncoprotein and Its Spliced Isoform E6*I Regulate the Wnt/β-Catenin Cell Signaling Pathway through the TCF-4 Transcriptional Factor. Int J Mol Sci 2018;19:E3153. [PMID: 30322153 DOI: 10.3390/ijms19103153] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
37 Wang Q, Qin Q, Song R, Zhao C, Liu H, Yang Y, Gu S, Zhou D, He J. NHERF1 inhibits beta-catenin-mediated proliferation of cervical cancer cells through suppression of alpha-actinin-4 expression. Cell Death Dis 2018;9:668. [PMID: 29867145 DOI: 10.1038/s41419-018-0711-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
38 Bohr Mordhorst L, Ahlin C, Sorbe B. Prognostic impact of the expression of Wnt-signaling proteins in cervical carcinoma FIGO stage I-IV treated with radiotherapy or chemoradiotherapy. Oncotarget 2016;7:63042-53. [PMID: 27577083 DOI: 10.18632/oncotarget.11642] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
39 Gao L, Zhang L, Li S, Wei L, Luo B, He R, Xia S. Role of miR-452-5p in the tumorigenesis of prostate cancer: A study based on the Cancer Genome Atl(TCGA), Gene Expression Omnibus (GEO), and bioinformatics analysis. Pathology - Research and Practice 2018;214:732-49. [DOI: 10.1016/j.prp.2018.03.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
40 Xia C, Liang S, He Z, Zhu X, Chen R, Chen J. Metformin, a first-line drug for type 2 diabetes mellitus, disrupts the MALAT1/miR-142-3p sponge to decrease invasion and migration in cervical cancer cells. Eur J Pharmacol 2018;830:59-67. [PMID: 29704494 DOI: 10.1016/j.ejphar.2018.04.027] [Cited by in Crossref: 52] [Cited by in F6Publishing: 56] [Article Influence: 13.0] [Reference Citation Analysis]
41 Gupta S, Kumar P, Das BC. HPV: Molecular pathways and targets. Curr Probl Cancer 2018;42:161-74. [PMID: 29706467 DOI: 10.1016/j.currproblcancer.2018.03.003] [Cited by in Crossref: 69] [Cited by in F6Publishing: 54] [Article Influence: 17.3] [Reference Citation Analysis]
42 Wang X, Sheu JJ, Lai MT, Yin-Yi Chang C, Sheng X, Wei L, Gao Y, Wang X, Liu N, Xie W, Chen CM, Ding WY, Sun L. RSF-1 overexpression determines cancer progression and drug resistance in cervical cancer. Biomedicine (Taipei) 2018;8:4. [PMID: 29480799 DOI: 10.1051/bmdcn/2018080104] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
43 Fu L, Wang YQ, Han BK, Li XR, Shi XJ, Yin F, Wang JW, Zhao PR, Ke Y, Liu HM. Gene expression profiling and pathway network analysis of anti-tumor activity by Jaridon 6 in esophageal cancer. Eur J Pharmacol 2017;815:478-86. [PMID: 28800883 DOI: 10.1016/j.ejphar.2017.08.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
44 Jin XJ, Cai PS, Zhu SP, Wang LJ, Zhu H. Negative correlation between X-linked inhibitors of apoptosis and second mitochondria-derived activator of caspase expression levels in cervical carcinoma and cervical intraepithelial neoplasia. Oncol Lett 2017;14:5340-6. [PMID: 29113168 DOI: 10.3892/ol.2017.6878] [Reference Citation Analysis]
45 Dong P, Xiong Y, Hanley SJB, Yue J, Watari H. Musashi-2, a novel oncoprotein promoting cervical cancer cell growth and invasion, is negatively regulated by p53-induced miR-143 and miR-107 activation. J Exp Clin Cancer Res 2017;36:150. [PMID: 29073938 DOI: 10.1186/s13046-017-0617-y] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 6.6] [Reference Citation Analysis]
46 van Winkel E, de Leng W, Witteveen P, Jonges T, Willems S, Langenberg M. Next-Generation Sequencing in Gynaecological Tumours: The Prognostic and Predictive Value of the Most Common Mutations Found in Ovarian, Endometrial, and Cervical Tumours: Literature Review and the University Medical Centre Utrecht Next-Generation Sequencing Data. Pathobiology 2018;84:339-50. [DOI: 10.1159/000479797] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
47 Duan S, Wu A, Chen Z, Yang Y, Liu L, Shu Q. miR-204 Regulates Cell Proliferation and Invasion by Targeting EphB2 in Human Cervical Cancer. Oncol Res 2018;26:713-23. [PMID: 28800788 DOI: 10.3727/096504017X15016337254641] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
48 Wang W, Li Y, Liu N, Gao Y, Li L. MiR-23b controls ALDH1A1 expression in cervical cancer stem cells. BMC Cancer 2017;17:292. [PMID: 28449663 DOI: 10.1186/s12885-017-3192-x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 5.8] [Reference Citation Analysis]
49 Li X. Emerging role of mutations in epigenetic regulators including MLL2 derived from The Cancer Genome Atlas for cervical cancer. BMC Cancer 2017;17:252. [PMID: 28390392 DOI: 10.1186/s12885-017-3257-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
50 Li D, Wei X, Ma M, Jia H, Zhang Y, Kang W, Wang T, Shi X. FFJ-3 inhibits PKM2 protein expression via the PI3K/Akt signaling pathway and activates the mitochondrial apoptosis signaling pathway in human cancer cells. Oncol Lett 2017;13:2607-14. [PMID: 28454440 DOI: 10.3892/ol.2017.5761] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
51 Zhong J, Liu Y, Xu Q, Yu J, Zhang M. Inhibition of DIXDC1 by microRNA-1271 suppresses the proliferation and invasion of prostate cancer cells. Biochem Biophys Res Commun 2017;484:794-800. [PMID: 28153722 DOI: 10.1016/j.bbrc.2017.01.169] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
52 Cao J, Wu Q, Zheng W, Li L, Mei W. Microwave-assisted synthesis of polypyridyl ruthenium( ii ) complexes as potential tumor-targeting inhibitors against the migration and invasion of Hela cells through G2/M phase arrest. RSC Adv 2017;7:26625-32. [DOI: 10.1039/c7ra00658f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
53 Peng W, Zhao Y. Comparative of patients with cervical cancer using 3D-CRT and IMRT. 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) 2016. [DOI: 10.1109/cisp-bmei.2016.7853018] [Reference Citation Analysis]
54 Ren W, Li C, Duan W, Du S, Yang F, Zhou J, Xing J. MicroRNA-613 represses prostate cancer cell proliferation and invasion through targeting Frizzled7. Biochem Biophys Res Commun 2016;469:633-8. [PMID: 26703210 DOI: 10.1016/j.bbrc.2015.12.054] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 5.6] [Reference Citation Analysis]
55 Li H, Jiao S, Li X, Banu H, Hamal S, Wang X. Therapeutic effects of antibiotic drug tigecycline against cervical squamous cell carcinoma by inhibiting Wnt/β-catenin signaling. Biochem Biophys Res Commun 2015;467:14-20. [PMID: 26427870 DOI: 10.1016/j.bbrc.2015.09.140] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 5.7] [Reference Citation Analysis]
56 Choi CH, Chung JY, Cho H, Kitano H, Chang E, Ylaya K, Chung EJ, Kim JH, Hewitt SM. Prognostic Significance of AMP-Dependent Kinase Alpha Expression in Cervical Cancer. Pathobiology 2015;82:203-11. [PMID: 26337566 DOI: 10.1159/000434726] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
57 Bello JO, Nieva LO, Paredes AC, Gonzalez AM, Zavaleta LR, Lizano M. Regulation of the Wnt/β-Catenin Signaling Pathway by Human Papillomavirus E6 and E7 Oncoproteins. Viruses 2015;7:4734-55. [PMID: 26295406 DOI: 10.3390/v7082842] [Cited by in Crossref: 48] [Cited by in F6Publishing: 54] [Article Influence: 6.9] [Reference Citation Analysis]
58 Deng B, Zhang Y, Zhang S, Wen F, Miao Y, Guo K. MicroRNA-142-3p inhibits cell proliferation and invasion of cervical cancer cells by targeting FZD7. Tumor Biol 2015;36:8065-73. [DOI: 10.1007/s13277-015-3483-2] [Cited by in Crossref: 62] [Cited by in F6Publishing: 67] [Article Influence: 8.9] [Reference Citation Analysis]
59 Ramos-Solano M, Meza-Canales ID, Torres-Reyes LA, Alvarez-Zavala M, Alvarado-Ruíz L, Rincon-Orozco B, Garcia-Chagollan M, Ochoa-Hernández AB, Ortiz-Lazareno PC, Rösl F, Gariglio P, Jave-Suárez LF, Aguilar-Lemarroy A. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration. Exp Cell Res 2015;335:39-50. [PMID: 25978974 DOI: 10.1016/j.yexcr.2015.05.001] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
60 Deng B, Zhang S, Miao Y, Zhang Y, Wen F, Guo K. Down-regulation of Frizzled-7 expression inhibits migration, invasion, and epithelial–mesenchymal transition of cervical cancer cell lines. Med Oncol 2015;32. [DOI: 10.1007/s12032-015-0552-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]