1 |
Gupta G, Kansal SK, Umar A, Akbar S. Visible-light driven excellent photocatalytic degradation of ofloxacin antibiotic using BiFeO(3) nanoparticles. Chemosphere 2023;314:137611. [PMID: 36565766 DOI: 10.1016/j.chemosphere.2022.137611] [Reference Citation Analysis]
|
2 |
Jiang X, Chen S, Zhang X, Qu L, Qi H, Wang B, Xu B, Huang Z. Carbon-doped flower-like Bi2WO6 decorated carbon nanosphere nanocomposites with enhanced visible light photocatalytic degradation of tetracycline. Adv Compos Hybrid Mater 2023;6:9. [DOI: 10.1007/s42114-022-00590-4] [Reference Citation Analysis]
|
3 |
Jiang X, Chen S, Zhang X, Qu L, Qi H, Wang B, Xu B, Huang Z. Carbon-doped flower-like Bi2WO6 decorated carbon nanosphere nanocomposites with enhanced visible light photocatalytic degradation of tetracycline. Adv Compos Hybrid Mater 2023;6:47. [DOI: 10.1007/s42114-022-00616-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Zhang H, Wu S, Zhang Y, Mao Z, Zhong Y, Sui X, Xu H, Zhang L. Fabrication of Fe-BTC on aramid fabrics for repeated degradation of isoproturon. Environ Sci Pollut Res 2022. [DOI: 10.1007/s11356-022-24473-9] [Reference Citation Analysis]
|
5 |
Jiang H, He J, Deng C, Hong X, Liang B. Advances in Bi(2)WO(6)-Based Photocatalysts for Degradation of Organic Pollutants. Molecules 2022;27. [PMID: 36557830 DOI: 10.3390/molecules27248698] [Reference Citation Analysis]
|
6 |
Ye Z, Zhang W, Lanzalaco S, Zhao L, Sirés I, Xia P, Zhai J, He Q. Ultra-uniform MIL-88B(Fe)/Fe3S4 hybrids engineered by partial sulfidation to boost catalysis in electro-Fenton treatment of micropollutants: Experimental and mechanistic insights. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140757] [Reference Citation Analysis]
|
7 |
Sehrawat P, Rana S, Mehta SK, Kansal SK. Optimal synthesis of MoS2/Cu2O nanocomposite to enhance photocatalytic performance towards indigo carmine dye degradation. Applied Surface Science 2022;604:154482. [DOI: 10.1016/j.apsusc.2022.154482] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
8 |
Feng X, Long R, Liu C, Liu X. Visible-light-driven removal of tetracycline hydrochloride and microplastics (HDPE) by nano flower hybrid heterojunction NH2-MIL-88B(Fe)/MoS2 via enhanced electron-transfer. Separation and Purification Technology 2022;302:122138. [DOI: 10.1016/j.seppur.2022.122138] [Reference Citation Analysis]
|
9 |
Guo R, Wang B, Li L, Niu H, Guo W, Pei H, Chen Q, Liu N, Mo Z. Electrospinning of NH 2 -MIL-88B(Fe)/TiO 2 /PAN (NMTP) nanofiber membranes:photocatalytic degradation tetracycline and efficient oil-water separation applications.. [DOI: 10.21203/rs.3.rs-2300634/v1] [Reference Citation Analysis]
|
10 |
Liu S, Jiang X, Waterhouse GI, Zhang Z, Yu L. A novel Z-scheme NH2-MIL-125(Ti)/Ti3C2 QDs/ZnIn2S4 photocatalyst with fast interfacial electron transfer properties for visible light-driven antibiotic degradation and hydrogen evolution. Separation and Purification Technology 2022;294:121094. [DOI: 10.1016/j.seppur.2022.121094] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
|
11 |
Kaur M, Mehta SK, Devi P, Kansal SK. NH2-MIL-125(Ti) nanoparticles decorated over ZnO microrods: An efficient bifunctional material for degradation of levofloxacin and detection of Cu(II). Journal of Alloys and Compounds 2022. [DOI: 10.1016/j.jallcom.2022.166909] [Reference Citation Analysis]
|
12 |
Hu X, Bao J, Chen D, Jalil Shah S, Subhan S, Gong W, Li W, Luan X, Zhao Z, Zhao Z. Accelerating the Fe(III)/Fe(II) cycle via enhanced electronic effect in NH2-MIL-88B(Fe)/TPB-DMTP-COF composite for boosting photo-Fenton degradation of sulfamerazine. J Colloid Interface Sci 2022;624:121-36. [PMID: 35660881 DOI: 10.1016/j.jcis.2022.05.142] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
13 |
Maimaitizi H, Abulizi A, Talifu D, Tursun Y. Nanoarchitectonics of chlorophyll and Mg co-modified hierarchical BiOCl microsphere as an efficient photocatalyst for CO2 reduction and ciprofloxacin degradation. Advanced Powder Technology 2022;33:103562. [DOI: 10.1016/j.apt.2022.103562] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
14 |
Belousov AS, Fukina DG, Koryagin AV. Metal–organic framework‐based heterojunction photocatalysts for organic pollutant degradation: design, construction, and performances. J of Chemical Tech & Biotech. [DOI: 10.1002/jctb.7091] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
15 |
Chen X, Xu X, Jia X, Qian H, Zhu X. Surface and interface engineering of Z-scheme 1D/2D imprinted CoZn-LDH/C3N4 nanorods for boosting selective visible-light photocatalytic activity. Advanced Powder Technology 2022;33:103531. [DOI: 10.1016/j.apt.2022.103531] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Xiang Q, Yu Z, Li X, Wang P, He N, Pang Y, Wang Q, Liu Y. Construction of a highly stable g-C 3 N 4 /NH 2 -MIL-88B(Fe)/CD@graphene oxide self-cleaning membrane for dye wastewater separation and degradation. New J Chem . [DOI: 10.1039/d2nj02883b] [Reference Citation Analysis]
|