BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Verma C, Obot I, Bahadur I, Sherif EM, Ebenso EE. Choline based ionic liquids as sustainable corrosion inhibitors on mild steel surface in acidic medium: Gravimetric, electrochemical, surface morphology, DFT and Monte Carlo simulation studies. Applied Surface Science 2018;457:134-49. [DOI: 10.1016/j.apsusc.2018.06.035] [Cited by in Crossref: 83] [Cited by in F6Publishing: 29] [Article Influence: 20.8] [Reference Citation Analysis]
Number Citing Articles
1 Farag AA, Eid A, Shaban M, Mohamed EA, Raju G. Integrated modeling, surface, electrochemical, and biocidal investigations of novel benzothiazoles as corrosion inhibitors for shale formation well stimulation. Journal of Molecular Liquids 2021;336:116315. [DOI: 10.1016/j.molliq.2021.116315] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
2 Ferigita KSM, Alfalah MGK, Saracoglu M, Kokbudak Z, Kaya S, Alaghani MOA, Kandemirli F. Corrosion behaviour of new oxo-pyrimidine derivatives on mild steel in acidic media: Experimental, surface characterization, theoretical, and Monte Carlo studies. Applied Surface Science Advances 2022;7:100200. [DOI: 10.1016/j.apsadv.2021.100200] [Reference Citation Analysis]
3 Quadri TW, Olasunkanmi LO, Akpan ED, Alfantazi A, Obot IB, Verma C, Al-mohaimeed AM, Ebenso EE, Quraishi MA. Chromeno-carbonitriles as corrosion inhibitors for mild steel in acidic solution: electrochemical, surface and computational studies. RSC Adv 2021;11:2462-75. [DOI: 10.1039/d0ra07595g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
4 Hassan A, Numin MS, Jumbri K, Kee KE, Borhan N. Review on the Recent Development of Fatty Hydrazide as Corrosion Inhibitor in Acidic Medium: Experimental and Theoretical Approaches. Metals 2022;12:1058. [DOI: 10.3390/met12071058] [Reference Citation Analysis]
5 Wang P, Xiong L, He Z, Xu X, Hu J, Chen Q, Zhang R, Pu J, Guo L. Effect of imidazoline derivatives on the corrosion inhibition of Q235 steel in HCl medium: experimental and theoretical investigation. Corrosion Reviews 2022;0. [DOI: 10.1515/corrrev-2021-0094] [Reference Citation Analysis]
6 Verma C, Ebenso EE, Quraishi MA, Hussain CM. Recent developments in sustainable corrosion inhibitors: design, performance and industrial scale applications. Mater Adv 2021;2:3806-50. [DOI: 10.1039/d0ma00681e] [Cited by in Crossref: 24] [Cited by in F6Publishing: 11] [Article Influence: 24.0] [Reference Citation Analysis]
7 Sharma S, Kumar A. Recent advances in metallic corrosion inhibition: A review. Journal of Molecular Liquids 2021;322:114862. [DOI: 10.1016/j.molliq.2020.114862] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 26.0] [Reference Citation Analysis]
8 Ardakani EK, Kowsari E, Ehsani A, Ramakrishna S. Performance of all ionic liquids as the eco-friendly and sustainable compounds in inhibiting corrosion in various media: A comprehensive review. Microchemical Journal 2021;165:106049. [DOI: 10.1016/j.microc.2021.106049] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
9 Haque J, Verma C, Srivastava V, Nik WW. Corrosion inhibition of mild steel in 1M HCl using environmentally benign Thevetia peruviana flower extracts. Sustainable Chemistry and Pharmacy 2021;19:100354. [DOI: 10.1016/j.scp.2020.100354] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
10 Latini G, Signorile M, Crocellà V, Bocchini S, Pirri C, Bordiga S. Unraveling the CO2 reaction mechanism in bio-based amino-acid ionic liquids by operando ATR-IR spectroscopy. Catalysis Today 2019;336:148-60. [DOI: 10.1016/j.cattod.2018.12.050] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
11 Zaidon FH, Kassim K, Mohd Zaki H, Embong Z, Anouar EH, Nor Hashim NZ. Adsorption and corrosion inhibition accomplishment for thiosemicarbazone derivatives for mild steel in 1.0 M HCl medium: Electrochemical, XPS and DFT studies. Journal of Molecular Liquids 2021;329:115553. [DOI: 10.1016/j.molliq.2021.115553] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
12 Fouda AS, Ismail MA, Al-khamri AA, Abousalem AS. Experimental, quantum chemical and molecular simulation studies on the action of arylthiophene derivatives as acid corrosion inhibitors. Journal of Molecular Liquids 2019;290:111178. [DOI: 10.1016/j.molliq.2019.111178] [Cited by in Crossref: 20] [Cited by in F6Publishing: 3] [Article Influence: 6.7] [Reference Citation Analysis]
13 Alharthi N, Sherif EM, Abdo HS, Alharbi HF, Misiolek WZ. Effect of extrusion welding locations on the corrosion of AM30 alloy extrudate. Journal of Materials Research and Technology 2019;8:2280-9. [DOI: 10.1016/j.jmrt.2019.03.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
14 Zafari S, Sarabi AA, Movassagh B. A novel green corrosion inhibitor based on task-specific benzimidazolium ionic liquid for carbon steel in HCl. Corrosion Engineering, Science and Technology 2020;55:589-601. [DOI: 10.1080/1478422x.2020.1766863] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Alrefaee SH. Effect of alkyl chain length and halide ions on the corrosion inhibition potential of imidazolium and pyridinium based ionic liquids: Computational studies. Journal of Molecular Liquids 2021;344:117848. [DOI: 10.1016/j.molliq.2021.117848] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
16 Jia H, Huang P, Han Y, Wang Q, Jia K, Sun T, Zhang F, Yan H, Lv K. Investigation for the novel use of a typical deep eutectic solvent as a potential shale inhibitor. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2019. [DOI: 10.1080/15567036.2019.1643953] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Guo L, Tan J, Kaya S, Leng S, Li Q, Zhang F. Multidimensional insights into the corrosion inhibition of 3,3-dithiodipropionic acid on Q235 steel in H2SO4 medium: A combined experimental and in silico investigation. Journal of Colloid and Interface Science 2020;570:116-24. [DOI: 10.1016/j.jcis.2020.03.001] [Cited by in Crossref: 53] [Cited by in F6Publishing: 6] [Article Influence: 26.5] [Reference Citation Analysis]
18 Qiang Y, Li H, Lan X. Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment. Journal of Materials Science & Technology 2020;52:63-71. [DOI: 10.1016/j.jmst.2020.04.005] [Cited by in Crossref: 81] [Cited by in F6Publishing: 13] [Article Influence: 40.5] [Reference Citation Analysis]
19 Sarkar TK, Yadav M, Obot I. Mechanistic evaluation of adsorption and corrosion inhibition capabilities of novel indoline compounds for oil well/tubing steel in 15% HCl. Chemical Engineering Journal 2022;431:133481. [DOI: 10.1016/j.cej.2021.133481] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
20 Dagdag O, Safi Z, Qiang Y, Erramli H, Guo L, Verma C, Ebenso EE, Kabir A, Wazzan N, El Harfi A. Synthesis of Macromolecular Aromatic Epoxy Resins as Anticorrosive Materials: Computational Modeling Reinforced Experimental Studies. ACS Omega 2020;5:3151-64. [PMID: 32118131 DOI: 10.1021/acsomega.9b02678] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
21 Xiong L, Wang P, He Z, Chen Q, Pu J, Zhang R. Corrosion behaviors of Q235 carbon steel under imidazoline derivatives as corrosion inhibitors: Experimental and computational investigations. Arabian Journal of Chemistry 2021;14:102952. [DOI: 10.1016/j.arabjc.2020.102952] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
22 Abdulazeez I, Zeino A, Kee CW, Al-saadi AA, Khaled M, Wong MW, Al-sunaidi AA. Mechanistic studies of the influence of halogen substituents on the corrosion inhibitive efficiency of selected imidazole molecules: A synergistic computational and experimental approach. Applied Surface Science 2019;471:494-505. [DOI: 10.1016/j.apsusc.2018.12.028] [Cited by in Crossref: 29] [Cited by in F6Publishing: 6] [Article Influence: 9.7] [Reference Citation Analysis]
23 Tan B, Zhang S, He J, Li W, Qiang Y, Wang Q, Xu C, Chen S. Insight into anti-corrosion mechanism of tetrazole derivatives for X80 steel in 0.5 M H2SO4 medium: Combined experimental and theoretical researches. Journal of Molecular Liquids 2021;321:114464. [DOI: 10.1016/j.molliq.2020.114464] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 17.0] [Reference Citation Analysis]
24 Zhao X, Chen C, Sun Q, Li Y, Yu H. Molecular structure optimization design of inhibitors based on frontier orbitals theory. Applied Surface Science 2019;494:895-907. [DOI: 10.1016/j.apsusc.2019.07.248] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
25 Ichchou I, Larabi L, Rouabhi H, Harek Y, Fellah A. Electrochemical evaluation and DFT calculations of aromatic sulfonohydrazides as corrosion inhibitors for XC38 carbon steel in acidic media. Journal of Molecular Structure 2019;1198:126898. [DOI: 10.1016/j.molstruc.2019.126898] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
26 Alfalah MGK, Kandemirli F. Corrosion Inhibition Potential of Dithiohydrazodicarbonamide Derivatives for Mild Steel in Acid Media: Synthesis, Experimental, DFT, and Monte Carlo Studies. Arab J Sci Eng. [DOI: 10.1007/s13369-021-06368-y] [Reference Citation Analysis]
27 Damej M, Molhi A, Tassaoui K, El Ibrahimi B, Akounach Z, Addi AA, El hajjaji S, Benmessaoud M. Experimental and Theoretical Study to Understand the Adsorption Process of p‐Anisidine and 4‐Nitroaniline for the Dissolution of C38 Carbon Steel in 1M HCl. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202103192] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Dagdag O, Berisha A, Safi Z, Hamed O, Jodeh S, Verma C, Ebenso EE, El Harfi A. DGEBA‐polyaminoamide as effective anti‐corrosive material for 15CDV6 steel in NaCl medium: Computational and experimental studies. J Appl Polym Sci 2019;137:48402. [DOI: 10.1002/app.48402] [Cited by in Crossref: 31] [Cited by in F6Publishing: 6] [Article Influence: 10.3] [Reference Citation Analysis]
29 Chauhan DS, Mazumder MJ, Quraishi M, Ansari K. Chitosan-cinnamaldehyde Schiff base: A bioinspired macromolecule as corrosion inhibitor for oil and gas industry. International Journal of Biological Macromolecules 2020;158:127-38. [DOI: 10.1016/j.ijbiomac.2020.04.200] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
30 Qasim A, Khan MS, Lal B, Shariff AM. A perspective on dual purpose gas hydrate and corrosion inhibitors for flow assurance. Journal of Petroleum Science and Engineering 2019;183:106418. [DOI: 10.1016/j.petrol.2019.106418] [Cited by in Crossref: 26] [Cited by in F6Publishing: 2] [Article Influence: 8.7] [Reference Citation Analysis]
31 Bourzi H, Oukhrib R, El Ibrahimi B, Abou Oualid H, Abdellaoui Y, Balkard B, El Issami S, Hilali M, Bazzi L, Len C. Furfural Analogs as Sustainable Corrosion Inhibitors—Predictive Efficiency Using DFT and Monte Carlo Simulations on the Cu(111), Fe(110), Al(111) and Sn(111) Surfaces in Acid Media. Sustainability 2020;12:3304. [DOI: 10.3390/su12083304] [Cited by in Crossref: 30] [Cited by in F6Publishing: 1] [Article Influence: 15.0] [Reference Citation Analysis]
32 Kr. Saha S, Murmu M, Chandra Murmu N, Banerjee P. Benzothiazolylhydrazine azomethine derivatives for efficient corrosion inhibition of mild steel in acidic environment: Integrated experimental and density functional theory cum molecular dynamics simulation approach. Journal of Molecular Liquids 2022. [DOI: 10.1016/j.molliq.2022.120033] [Reference Citation Analysis]
33 Verma C, Olasunkanmi LO, Bahadur I, Lgaz H, Quraishi M, Haque J, Sherif EM, Ebenso EE. Experimental, density functional theory and molecular dynamics supported adsorption behavior of environmental benign imidazolium based ionic liquids on mild steel surface in acidic medium. Journal of Molecular Liquids 2019;273:1-15. [DOI: 10.1016/j.molliq.2018.09.139] [Cited by in Crossref: 39] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
34 Wang Y, Wang J, Ma L, Ren C, Zhang D, Ma L, Sun M. Qualitative and quantitative detection of corrosion inhibitors using surface-enhanced Raman scattering coupled with multivariate analysis. Applied Surface Science 2021;568:150967. [DOI: 10.1016/j.apsusc.2021.150967] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
35 Xu X, Xu H, Li W, Wang Y, Zhang X. A combined quantum chemical, molcular dynamics and Monto Carlo study of three amino acids as corroison inhibitors for aluminum in NaCl solution. Journal of Molecular Liquids 2022;345:117010. [DOI: 10.1016/j.molliq.2021.117010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
36 Corrales-luna M, Le Manh T, Romero-romo M, Palomar-pardavé M, Arce-estrada EM. 1-Ethyl 3-methylimidazolium thiocyanate ionic liquid as corrosion inhibitor of API 5L X52 steel in H2SO4 and HCl media. Corrosion Science 2019;153:85-99. [DOI: 10.1016/j.corsci.2019.03.041] [Cited by in Crossref: 48] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
37 Parveen G, Bashir S, Thakur A, Saha SK, Banerjee P, Kumar A. Experimental and computational studies of imidazolium based ionic liquid 1-methyl- 3-propylimidazolium iodide on mild steel corrosion in acidic solution. Mater Res Express 2020;7:016510. [DOI: 10.1088/2053-1591/ab5c6a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
38 Bastos H, Bento R, Schaeffer N, Coutinho JAP, Pérez-Sánchez G. Using coarse-grained molecular dynamics to rationalize biomolecule solubilization mechanisms in ionic liquid-based colloidal systems. Phys Chem Chem Phys 2020;22:24771-83. [PMID: 33107535 DOI: 10.1039/d0cp04942e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
39 El Ibrahimi B, Bazzi L, El Issami S. The role of pH in corrosion inhibition of tin using the proline amino acid: theoretical and experimental investigations. RSC Adv 2020;10:29696-704. [DOI: 10.1039/d0ra04333h] [Cited by in Crossref: 28] [Cited by in F6Publishing: 2] [Article Influence: 14.0] [Reference Citation Analysis]
40 Chadili M, Rguiti MM, El Ibrahimi B, Oukhrib R, Jmiai A, Beelkhaouda M, Bammou L, Hilali M, Bazzi L, Ojovan MI. Corrosion Inhibition of 3003 Aluminum Alloy in Molar Hydrochloric Acid Solution by Olive Oil Mill Liquid By-Product. International Journal of Corrosion 2021;2021:1-13. [DOI: 10.1155/2021/6662395] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
41 El-hajjaji F, Messali M, Martínez de Yuso M, Rodríguez-castellón E, Almutairi S, Bandosz TJ, Algarra M. Effect of 1-(3-phenoxypropyl) pyridazin-1-ium bromide on steel corrosion inhibition in acidic medium. Journal of Colloid and Interface Science 2019;541:418-24. [DOI: 10.1016/j.jcis.2019.01.113] [Cited by in Crossref: 56] [Cited by in F6Publishing: 15] [Article Influence: 18.7] [Reference Citation Analysis]
42 Qiang Y, Guo L, Li H, Lan X. Fabrication of environmentally friendly Losartan potassium film for corrosion inhibition of mild steel in HCl medium. Chemical Engineering Journal 2021;406:126863. [DOI: 10.1016/j.cej.2020.126863] [Cited by in Crossref: 66] [Cited by in F6Publishing: 3] [Article Influence: 66.0] [Reference Citation Analysis]
43 Shetty SK, Upadhya HS. An overview of anti-corrosion properties of ionic liquids for corrosion of carbon steel in acidic media. Corrosion Reviews 2022;0. [DOI: 10.1515/corrrev-2021-0065] [Reference Citation Analysis]
44 El-katori EE, Abousalem AS. Impact of some pyrrolidinium ionic liquids on copper dissolution behavior in acidic environment: experimental, morphological and theoretical insights. RSC Adv 2019;9:20760-77. [DOI: 10.1039/c9ra03603b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
45 Verma C, Ebenso EE, Quraishi M. Molecular structural aspects of organic corrosion inhibitors: Influence of –CN and –NO2 substituents on designing of potential corrosion inhibitors for aqueous media. Journal of Molecular Liquids 2020;316:113874. [DOI: 10.1016/j.molliq.2020.113874] [Cited by in Crossref: 20] [Cited by in F6Publishing: 1] [Article Influence: 10.0] [Reference Citation Analysis]
46 Rouifi Z, Benhiba F, Faydy ME, Laabaissi T, About H, Oudda H, Warad I, Guenbour A, Lakhrissi B, Zarrouk A. Performance and computational studies of new soluble triazole as corrosion inhibitor for carbon steel in HCl. Chemical Data Collections 2019;22:100242. [DOI: 10.1016/j.cdc.2019.100242] [Cited by in Crossref: 28] [Cited by in F6Publishing: 3] [Article Influence: 9.3] [Reference Citation Analysis]
47 San Y, Sun J, Wang H, Jin ZH, Gao HJ. Synthesis of 1,8-Naphthyridines by the Ionic Liquid-Catalyzed Friedlander Reaction and Application in Corrosion Inhibition. ACS Omega 2021;6:28063-71. [PMID: 34723006 DOI: 10.1021/acsomega.1c04103] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Abousalem AS, Ismail MA, Fouda AS. A complementary experimental and in silico studies on the action of fluorophenyl‑2,2′‑bichalcophenes as ecofriendly corrosion inhibitors and biocide agents. Journal of Molecular Liquids 2019;276:255-74. [DOI: 10.1016/j.molliq.2018.11.125] [Cited by in Crossref: 29] [Cited by in F6Publishing: 6] [Article Influence: 9.7] [Reference Citation Analysis]
49 Tan B, Zhang S, Qiang Y, Li W, Li H, Feng L, Guo L, Xu C, Chen S, Zhang G. Experimental and theoretical studies on the inhibition properties of three diphenyl disulfide derivatives on copper corrosion in acid medium. Journal of Molecular Liquids 2020;298:111975. [DOI: 10.1016/j.molliq.2019.111975] [Cited by in Crossref: 78] [Cited by in F6Publishing: 13] [Article Influence: 39.0] [Reference Citation Analysis]
50 Latini G, Signorile M, Rosso F, Fin A, d’Amora M, Giordani S, Pirri F, Crocellà V, Bordiga S, Bocchini S. Efficient and reversible CO2 capture in bio-based ionic liquids solutions. Journal of CO2 Utilization 2022;55:101815. [DOI: 10.1016/j.jcou.2021.101815] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 El Ibrahimi B. Atomic-scale investigation onto the inhibition process of three 1,5-benzodiazepin-2-one derivatives against iron corrosion in acidic environment. Colloid and Interface Science Communications 2020;37:100279. [DOI: 10.1016/j.colcom.2020.100279] [Cited by in Crossref: 29] [Cited by in F6Publishing: 7] [Article Influence: 14.5] [Reference Citation Analysis]
52 Dagdag O, Safi Z, Wazzan N, Erramli H, Guo L, Mkadmh AM, Verma C, Ebenso E, El Gana L, El Harfi A. Highly functionalized epoxy macromolecule as an anti-corrosive material for carbon steel: Computational (DFT, MDS), surface (SEM-EDS) and electrochemical (OCP, PDP, EIS) studies. Journal of Molecular Liquids 2020;302:112535. [DOI: 10.1016/j.molliq.2020.112535] [Cited by in Crossref: 28] [Cited by in F6Publishing: 3] [Article Influence: 14.0] [Reference Citation Analysis]
53 Dagdag O, Safi Z, Erramli H, Wazzan N, Guo L, Verma C, Ebenso E, Kaya S, El Harfi A. Epoxy prepolymer as a novel anti-corrosive material for carbon steel in acidic solution: Electrochemical, surface and computational studies. Materials Today Communications 2020;22:100800. [DOI: 10.1016/j.mtcomm.2019.100800] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
54 Verma C, Saji VS, Quraishi M, Ebenso E. Pyrazole derivatives as environmental benign acid corrosion inhibitors for mild steel: Experimental and computational studies. Journal of Molecular Liquids 2020;298:111943. [DOI: 10.1016/j.molliq.2019.111943] [Cited by in Crossref: 22] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
55 Jia H, Huang P, Wang Q, Han Y, Wang S, Zhang F, Pan W, Lv K. Investigation of inhibition mechanism of three deep eutectic solvents as potential shale inhibitors in water-based drilling fluids. Fuel 2019;244:403-11. [DOI: 10.1016/j.fuel.2019.02.018] [Cited by in Crossref: 32] [Cited by in F6Publishing: 2] [Article Influence: 10.7] [Reference Citation Analysis]
56 Tüzün B, Bhawsar J. Quantum chemical study of thiaozole derivatives as corrosion inhibitors based on density functional theory. Arabian Journal of Chemistry 2021;14:102927. [DOI: 10.1016/j.arabjc.2020.102927] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
57 Nkuna AA, Akpan ED, Obot I, Verma C, Ebenso EE, Murulana LC. Impact of selected ionic liquids on corrosion protection of mild steel in acidic medium: Experimental and computational studies. Journal of Molecular Liquids 2020;314:113609. [DOI: 10.1016/j.molliq.2020.113609] [Cited by in Crossref: 13] [Article Influence: 6.5] [Reference Citation Analysis]
58 Kobzar YL, Fatyeyeva K. Ionic liquids as green and sustainable steel corrosion inhibitors: Recent developments. Chemical Engineering Journal 2021;425:131480. [DOI: 10.1016/j.cej.2021.131480] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 15.0] [Reference Citation Analysis]
59 Erramli H, Dagdag O, Safi Z, Wazzan N, Guo L, Abbout S, Ebenso E, Verma C, Haldhar R, Gouri ME. Trifunctional epoxy resin as anticorrosive material for carbon steel in 1 M HCl: Experimental and computational studies. Surfaces and Interfaces 2020;21:100707. [DOI: 10.1016/j.surfin.2020.100707] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
60 Keleş H, Keleş M, Sayın K. Experimental and theoretical investigation of inhibition behavior of 2-((4-(dimethylamino)benzylidene)amino)benzenethiol for carbon steel in HCl solution. Corrosion Science 2021;184:109376. [DOI: 10.1016/j.corsci.2021.109376] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
61 Farag AA, Migahed MA, Badr EA. Thiazole Ionic Liquid as Corrosion Inhibitor of Steel in 1 M HCl Solution: Gravimetrical, Electrochemical, and Theoretical Studies. J Bio Tribo Corros 2019;5. [DOI: 10.1007/s40735-019-0246-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 5.7] [Reference Citation Analysis]
62 Cen H, Cao J, Chen Z, Guo X. 2-Mercaptobenzothiazole as a corrosion inhibitor for carbon steel in supercritical CO2-H2O condition. Applied Surface Science 2019;476:422-34. [DOI: 10.1016/j.apsusc.2019.01.113] [Cited by in Crossref: 47] [Cited by in F6Publishing: 9] [Article Influence: 15.7] [Reference Citation Analysis]
63 Mishra A, Verma C, Chauhan S, Quraishi MA, Ebenso EE, Srivastava V. Synthesis, Characterization, and Corrosion Inhibition Performance of 5-Aminopyrazole Carbonitriles Towards Mild Steel Acidic Corrosion. J Bio Tribo Corros 2018;4. [DOI: 10.1007/s40735-018-0174-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
64 Feng L, Zhang S, Lu Y, Tan B, Chen S, Guo L. Synergistic corrosion inhibition effect of thiazolyl-based ionic liquids between anions and cations for copper in HCl solution. Applied Surface Science 2019;483:901-11. [DOI: 10.1016/j.apsusc.2019.03.299] [Cited by in Crossref: 38] [Cited by in F6Publishing: 12] [Article Influence: 12.7] [Reference Citation Analysis]
65 Arellanes-lozada P, Díaz-jiménez V, Hernández-cocoletzi H, Nava N, Olivares-xometl O, Likhanova NV. Corrosion inhibition properties of iodide ionic liquids for API 5L X52 steel in acid medium. Corrosion Science 2020;175:108888. [DOI: 10.1016/j.corsci.2020.108888] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
66 Verma C, Alrefaee SH, Quraishi M, Ebenso EE, Hussain CM. Recent developments in sustainable corrosion inhibition using ionic liquids: A review. Journal of Molecular Liquids 2021;321:114484. [DOI: 10.1016/j.molliq.2020.114484] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
67 Ye Y, Zhang D, Zou Y, Zhao H, Chen H. A feasible method to improve the protection ability of metal by functionalized carbon dots as environment-friendly corrosion inhibitor. Journal of Cleaner Production 2020;264:121682. [DOI: 10.1016/j.jclepro.2020.121682] [Cited by in Crossref: 31] [Cited by in F6Publishing: 7] [Article Influence: 15.5] [Reference Citation Analysis]
68 Verma C, Quraishi M, Rhee KY. Present and emerging trends in using pharmaceutically active compounds as aqueous phase corrosion inhibitors. Journal of Molecular Liquids 2021;328:115395. [DOI: 10.1016/j.molliq.2021.115395] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
69 Al-rashed OA, Nazeer AA. Ionic liquids with superior protection for mild steel in acidic media: Effects of anion, cation, and alkyl chain length. Journal of Molecular Liquids 2019;288:111015. [DOI: 10.1016/j.molliq.2019.111015] [Cited by in Crossref: 16] [Article Influence: 5.3] [Reference Citation Analysis]
70 Talari M, Mozafari Nezhad S, Alavi SJ, Mohtashamipour M, Davoodi A, Hosseinpour S. Experimental and computational chemistry studies of two imidazole-based compounds as corrosion inhibitors for mild steel in HCl solution. Journal of Molecular Liquids 2019;286:110915. [DOI: 10.1016/j.molliq.2019.110915] [Cited by in Crossref: 23] [Cited by in F6Publishing: 4] [Article Influence: 7.7] [Reference Citation Analysis]
71 Emad E. El-katori, Ashraf S. Abousalem. Inhibitive Properties and Computational Approach of Organoselenides on Mild Steel Corrosion in Acidic Environment. Russ J Electrochem 2019;55:1320-35. [DOI: 10.1134/s1023193519120048] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
72 El Ibrahimi B, El Mouaden K, Jmiai A, Baddouh A, El Issami S, Bazzi L, Hilali M. Understanding the influence of solution's pH on the corrosion of tin in saline solution containing functional amino acids using electrochemical techniques and molecular modeling. Surfaces and Interfaces 2019;17:100343. [DOI: 10.1016/j.surfin.2019.100343] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 9.3] [Reference Citation Analysis]
73 El Ibrahimi B, Jmiai A, El Mouaden K, Baddouh A, El Issami S, Bazzi L, Hilali M. Effect of solution's pH and molecular structure of three linear α-amino acids on the corrosion of tin in salt solution: A combined experimental and theoretical approach. Journal of Molecular Structure 2019;1196:105-18. [DOI: 10.1016/j.molstruc.2019.06.072] [Cited by in Crossref: 31] [Cited by in F6Publishing: 7] [Article Influence: 10.3] [Reference Citation Analysis]
74 Chafiq M, Chaouiki A, Lgaz H, Salghi R, Bhaskar KV, Thakur PS, Bhat KS, Ali IH, Khan MI, Chung I. New spirocyclopropane derivatives: synthesis and evaluation of their performances toward corrosion inhibition of mild steel in acidic media. Res Chem Intermed 2020;46:2881-918. [DOI: 10.1007/s11164-020-04108-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]