BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li X, Gao Q, Cao Y, Yang Y, Liu S, Wang ZL, Cheng T. Optimization strategy of wind energy harvesting via triboelectric-electromagnetic flexible cooperation. Applied Energy 2022;307:118311. [DOI: 10.1016/j.apenergy.2021.118311] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Hou J, Qian S, Hou X, Zhang J, Wu H, Guo Y, Xian S, Geng W, Mu J, He J, Chou X. A high-performance mini-generator with average power of 2 W for human motion energy harvesting and wearable electronics applications. Energy Conversion and Management 2023;277:116612. [DOI: 10.1016/j.enconman.2022.116612] [Reference Citation Analysis]
2 Fang S, Chen K, Lai Z, Zhou S, Liao W. Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations. Applied Energy 2023;331:120355. [DOI: 10.1016/j.apenergy.2022.120355] [Reference Citation Analysis]
3 Yang X, Zheng H, Shao J, Zhang Y, Chen Y. Output Characteristics of an Electromagnetic–Triboelectric Hybrid Energy Harvester Based on Magnetic Liquid. ACS Appl Electron Mater 2023. [DOI: 10.1021/acsaelm.2c01262] [Reference Citation Analysis]
4 Wang H, Ma X, Zhao X, Wang W. Scheduling optimization of wind-thermal interconnected low-carbon power system integrated with hydrogen storage.. [DOI: 10.21203/rs.3.rs-2335984/v1] [Reference Citation Analysis]
5 Zhao H, Ouyang H, Zhang H. A Nonresonant Triboelectric-electromagnetic Energy Harvester via a Vibro-impact Mechanism for Low-frequency Multi-directional Excitations. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.108123] [Reference Citation Analysis]
6 Yu Y, Wu S, Yu J, Xu Y, Song L, Xu W. A hybrid multi-criteria decision-making framework for offshore wind turbine selection: A case study in China. Applied Energy 2022;328:120173. [DOI: 10.1016/j.apenergy.2022.120173] [Reference Citation Analysis]
7 Kim W, Pham KD, Choi D. Rational design of a miniaturized mechanical frequency regulator for the sustained triboelectric generation. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.108088] [Reference Citation Analysis]
8 Zhu Y, Zhao Y, Hou L, Zhang P. A Wind-Driven Rotating Micro-Hybrid Nanogenerator for Powering Environmental Monitoring Devices. Micromachines (Basel) 2022;13. [PMID: 36557352 DOI: 10.3390/mi13122053] [Reference Citation Analysis]
9 Lee D, Cho S, Jang S, Ra Y, Jang Y, Yun Y, Choi D. Toward effective irregular wind energy harvesting: Self-adaptive mechanical design strategy of triboelectric-electromagnetic hybrid wind energy harvester for wireless environmental monitoring and green hydrogen production. Nano Energy 2022;102:107638. [DOI: 10.1016/j.nanoen.2022.107638] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Zhu M, Zhang J, Wang Z, Yu X, Zhang Y, Zhu J, Wang ZL, Cheng T. Double-blade structured triboelectric–electromagnetic hybrid generator with aerodynamic enhancement for breeze energy harvesting. Applied Energy 2022;326:119970. [DOI: 10.1016/j.apenergy.2022.119970] [Reference Citation Analysis]
11 Okbaz A. GnPs/PVDF decorated thermoplastic veils to boost the triboelectric nanogenerator output performance toward highly efficient energy harvesting. Energy Conversion and Management 2022;270:116204. [DOI: 10.1016/j.enconman.2022.116204] [Reference Citation Analysis]
12 Gui Y, Wang Y, He S, Yang J. Self-powered smart agriculture real-time sensing device based on hybrid wind energy harvesting triboelectric-electromagnetic nanogenerator. Energy Conversion and Management 2022;269:116098. [DOI: 10.1016/j.enconman.2022.116098] [Reference Citation Analysis]
13 Duan G, Li Y, Tan C. A Bridge-Shaped Vibration Energy Harvester with Resonance Frequency Tunability under DC Bias Electric Field. Micromachines 2022;13:1227. [DOI: 10.3390/mi13081227] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zhao L, Zou H, Zhao Y, Wu Z, Liu F, Wei K, Zhang W. Hybrid energy harvesting for self-powered rotor condition monitoring using maximal utilization strategy in structural space and operation process. Applied Energy 2022;314:118983. [DOI: 10.1016/j.apenergy.2022.118983] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]