BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Meng F, Wang Y, Chen Z, Hu J, Lu G, Ma W. Synthesis of CQDs@FeOOH nanoneedles with abundant active edges for efficient electro-catalytic degradation of levofloxacin: Degradation mechanism and toxicity assessment. Applied Catalysis B: Environmental 2021;282:119597. [DOI: 10.1016/j.apcatb.2020.119597] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 16.5] [Reference Citation Analysis]
Number Citing Articles
1 Hua X, Chen H, Rong C, Addison F, Dong D, Qu J, Liang D, Guo Z, Zheng N, Liu H. Visible-light-driven photocatalytic degradation of tetracycline hydrochloride by Z-scheme Ag(3)PO(4)/1T@2H-MoS(2) heterojunction: Degradation mechanism, toxicity assessment, and potential applications. J Hazard Mater 2023;448:130951. [PMID: 36860039 DOI: 10.1016/j.jhazmat.2023.130951] [Reference Citation Analysis]
2 Yue D, Li B, Sun D, Zhang H, Liu M, Yu J. Electrochemically prepared coniferous leaf-like nickel black membrane for desalination by solar-thermal energy conversion. Nano Res 2023. [DOI: 10.1007/s12274-023-5506-4] [Reference Citation Analysis]
3 Pan Z, Xin H, Xu R, Wang P, Fan X, Song Y, Song C, Wang T. Carbon electrochemical membrane functionalized with flower cluster-like FeOOH catalyst for organic pollutants decontamination. J Colloid Interface Sci 2023;640:588-99. [PMID: 36878076 DOI: 10.1016/j.jcis.2023.02.135] [Reference Citation Analysis]
4 Li J, Li Y, Zhu M, Mei Q, Tang X, Wu Y, Yue S, Tang Y, Wang Q. Constructing Aloe-emodin/FeOOH Organic-inorganic Heterojunction for Synergetic Photocatalysis-Fenton Eliminating Antibiotic Pollutants. Journal of Environmental Chemical Engineering 2023. [DOI: 10.1016/j.jece.2023.109775] [Reference Citation Analysis]
5 Yadav PK, Chandra S, Kumar V, Kumar D, Hasan SH. Carbon Quantum Dots: Synthesis, Structure, Properties, and Catalytic Applications for Organic Synthesis. Catalysts 2023;13:422. [DOI: 10.3390/catal13020422] [Reference Citation Analysis]
6 Hassanzadeh-Afruzi F, Esmailzadeh F, Heidari G, Maleki A, Nazarzadeh Zare E. Arabic Gum-Grafted-Hydrolyzed Polyacrylonitrile@ZnFe(2)O(4) as a Magnetic Adsorbent for Remediation of Levofloxacin Antibiotic from Aqueous Solutions. ACS Omega 2023;8:6337-48. [PMID: 36844579 DOI: 10.1021/acsomega.2c06555] [Reference Citation Analysis]
7 Guo J, Ding C, Gan W, Chen P, Lu Y, Li J, Chen R, Zhang M, Sun Z. High-activity black phosphorus quantum dots/Au/TiO2 ternary heterojunction for efficient levofloxacin removal: Pathways, toxicity assessment, mechanism and DFT calculations. Separation and Purification Technology 2023;307:122838. [DOI: 10.1016/j.seppur.2022.122838] [Reference Citation Analysis]
8 Mahjoore M, Honarmand M, Aryafar A. Plant-based green fabrication of CuO-CdO-bentonite S-scheme heterojunction with enhanced photocatalytic performance for the degradation of levofloxacin. Environ Sci Pollut Res Int 2023. [PMID: 36692716 DOI: 10.1007/s11356-023-25277-1] [Reference Citation Analysis]
9 Pan M, Tang-hu S, Ni C, Chen H, Pan B. Constructing Ti(III)-laden TiO2 Nanotube Arrays for Electrochemical Defluorination of Levofloxacin. Journal of Environmental Chemical Engineering 2023. [DOI: 10.1016/j.jece.2023.109392] [Reference Citation Analysis]
10 Xu Z, Jiang J, Wang M, Wang J, Tang Y, Li S, Liu J. Enhanced levofloxacin degradation by hierarchical porous Co3O4 with rich oxygen vacancies activating peroxymonosulfate: Performance and mechanism. Separation and Purification Technology 2023;304:122055. [DOI: 10.1016/j.seppur.2022.122055] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Wang L, Niu J, Gao S, Liu Z, Wu S, Huang M, Li H, Zhu M, Yuan R. Breakthrough in controlling membrane fouling and complete demulsification via electro-fenton pathway: Principle and mechanisms. Journal of Membrane Science 2023. [DOI: 10.1016/j.memsci.2023.121354] [Reference Citation Analysis]
12 Liu H, Chen H, Addison F, Rong C, Qu J, Zhang Y, Dong D, Hua X. Insights into electrocatalytic oxidation of aqueous ampicillin: Degradation mechanism and potential toxicity from intermediates. Journal of Environmental Chemical Engineering 2022;10:108673. [DOI: 10.1016/j.jece.2022.108673] [Reference Citation Analysis]
13 Wang L, Jiang S, Huang J, Jiang H. Oxygen-doped biochar for the activation of ferrate for the highly efficient degradation of sulfadiazine with a distinct pathway. Journal of Environmental Chemical Engineering 2022;10:108537. [DOI: 10.1016/j.jece.2022.108537] [Reference Citation Analysis]
14 Wei S, Fan S, Zhang M, Ren J, Jia B, Wang Y, Wu R, Fang Z, Liang Q. Dye-sensitized Bi2MoO6 for highly efficient photocatalytic degradation of levofloxacin under LED light irradiation. Materials Today Sustainability 2022. [DOI: 10.1016/j.mtsust.2022.100311] [Reference Citation Analysis]
15 Liang J, Hou Y, Sun J, Zhu H, Pang H, Yang J, Wang M, Sun J, Xiong J, Huang W, Yu Z, Wang S. Overpotential regulation of vanadium-doped chitosan carbon aerogel cathode promotes heterogeneous electro-Fenton degradation efficiency. Applied Catalysis B: Environmental 2022;317:121794. [DOI: 10.1016/j.apcatb.2022.121794] [Reference Citation Analysis]
16 Wang B, Shen Y, Lu F, Xu N, Liu Y, Li D, Li J, Huang Y, Hu Z. A closed-loop recovery strategy of unsaturated polyester composite: Bridging heterogeneous catalyst and resin by noncovalent interactions. Composites Science and Technology 2022;230:109788. [DOI: 10.1016/j.compscitech.2022.109788] [Reference Citation Analysis]
17 Dong G, Dong L, Lang K, Chai D, Guo D, Li J, Zhao M, Chen S, Zhang W. Insight into the high-efficient electrocatalytic elimination toward antibiotics via introducing FeTiO3 interlayer under Ce-PbO2 coating. Journal of Environmental Chemical Engineering 2022;10:108453. [DOI: 10.1016/j.jece.2022.108453] [Reference Citation Analysis]
18 Yu W, Wang Y, Wan S, Sun L, Yu Z. Ultrahigh-efficient BiOBr-x%La@y%CNQDs nanocomposites with enhanced generation and separation of photogenerated carriers towards bisphenol A degradation and toxicity reduction. Chemosphere 2022;308:136390. [PMID: 36113661 DOI: 10.1016/j.chemosphere.2022.136390] [Reference Citation Analysis]
19 Zhang J, Sun J, Zhao H, Zhao G. Single-Atom Copper Promotes Efficient Generation of Hydroxyl Radicals under Alkaline Circumstances in a Photoelectrochemical Oxygen Reduction Process. ACS EST Eng 2022. [DOI: 10.1021/acsestengg.2c00119] [Reference Citation Analysis]
20 Wang Y, Peng Z, Yang Y, Li Z, Wen Y, Liu M, Li S, Su L, Zhou Z, Zhu Y, Zhou N. Auricularia auricula biochar supported γ-FeOOH nanoarrays for electrostatic self-assembly and pH-responsive controlled release of herbicide and fertilizer. Chemical Engineering Journal 2022;437:134984. [DOI: 10.1016/j.cej.2022.134984] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Chen Y, Jin Q, Tang Z. Degradation of ofloxacin by potassium ferrate: kinetics and degradation pathways. Environ Sci Pollut Res Int 2022;29:44504-12. [PMID: 35133598 DOI: 10.1007/s11356-022-18949-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Liu L, Zhan R, Zhang M, Li J, Wang Z, Mi H, Zhang Y. Insights into the performance, mechanism, and ecotoxicity of levofloxacin degradation in CoFe2O4 catalytic peroxymonosulfate process. Journal of Environmental Chemical Engineering 2022;10:107435. [DOI: 10.1016/j.jece.2022.107435] [Reference Citation Analysis]
23 Tang J, Liu X, Liu Y, Zhang X, Lin Y, Chen L, Fang D, Wang J. Novel Z-scheme Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4 photocatalyst for round-the-clock efficient degradation of organic pollutants and hydrogen production. Chemical Engineering Journal 2022;435:134773. [DOI: 10.1016/j.cej.2022.134773] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
24 Marinho BA, Suhadolnik L, Likozar B, Huš M, Marinko Ž, Čeh M. Photocatalytic, electrocatalytic and photoelectrocatalytic degradation of pharmaceuticals in aqueous media: Analytical methods, mechanisms, simulations, catalysts and reactors. Journal of Cleaner Production 2022;343:131061. [DOI: 10.1016/j.jclepro.2022.131061] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
25 Zhang Z, Li Y, Dong L, Yin Z, Tian Z, Yang W, Yang Z. MIL-101(Cr)-decorated Ti/TiO2 anode for electrochemical oxidation of aromatic pollutants from water. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.04.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Jin Q, Ji D, Chen Y, Tang Z, Fu Y. Kinetics and pathway of levofloxacin degradation by ferrate(VI) and reaction mechanism of catalytic degradation by copper sulfide. Separation and Purification Technology 2022;282:120104. [DOI: 10.1016/j.seppur.2021.120104] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Zhang R, Hua S, Dang Y, Zhang B, Sun X, Yu S, He Y, Chen S, Zhou Y. Strategy for enhancing the electrocatalytic performance of Ti/β-PbO2 anode: Optimizing SnO2 intermediate layer by Cs doping and application for the efficient removal of mixed fluoroquinolones. Journal of Alloys and Compounds 2022;895:162528. [DOI: 10.1016/j.jallcom.2021.162528] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Dung NT, Thu LM, Thuy UTD, Thien VT, Thuy NT, Tien NTC, Lin KA, Huy NN. Mechanism insight into the photocatalytic degradation of fluoroquinolone antibiotics by the ZIF-8@Bi2MoO6 heterojunction. Environ Sci : Nano 2022. [DOI: 10.1039/d2en00219a] [Reference Citation Analysis]
29 Wang Y, Ding L, Liu C, Lu Y, Wu Q, Wang C, Hu Q. 0D/2D/2D ZnFe2O4/Bi2O2CO3/BiOBr double Z-scheme heterojunctions for the removal of tetracycline antibiotics by permonosulfate activation: Photocatalytic and non-photocatalytic mechanisms, radical and non-radical pathways. Separation and Purification Technology 2022;283:120164. [DOI: 10.1016/j.seppur.2021.120164] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
30 Li X, Li K, Du J, Pei M, Song C, Guo X. Nitrogen-rich porous polymeric carbon nitride with enhanced photocatalytic activity for synergistic removal of organic and heavy metal pollutants. Environ Sci : Nano 2022;9:2388-2401. [DOI: 10.1039/d2en00243d] [Reference Citation Analysis]
31 Saya L, Malik V, Gautam D, Gambhir G, Balendra, Singh WR, Hooda S. A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater. Sci Total Environ 2021;:152529. [PMID: 34953830 DOI: 10.1016/j.scitotenv.2021.152529] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
32 Wu Y, Gao Z, Feng Y, Cui Q, Du C, Yu C, Liang L, Zhao W, Feng J, Sun J, Yang R, Sun J. Harnessing selective and durable electrosynthesis of H2O2 over dual-defective yolk-shell carbon nanosphere toward on-site pollutant degradation. Applied Catalysis B: Environmental 2021;298:120572. [DOI: 10.1016/j.apcatb.2021.120572] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
33 Pang Z, Luo P, Wei C, Qin Z, Wei T, Hu Y, Wu H, Wei C. In-situ growth of Co/Ni bimetallic organic frameworks on carbon spheres with catalytic ozonation performance for removal of bio-treated coking wastewater. Chemosphere 2021;:132874. [PMID: 34774613 DOI: 10.1016/j.chemosphere.2021.132874] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
34 Jing Y, Jia M, Xu Z, Xiong W, Yang Z, Peng H, Cao J, Xiang Y, Zhang C. Facile synthesis of recyclable 3D gelatin aerogel decorated with MIL-88B(Fe) for activation peroxydisulfate degradation of norfloxacin. J Hazard Mater 2021;424:127503. [PMID: 34736183 DOI: 10.1016/j.jhazmat.2021.127503] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
35 Wan C, Pan Y, Chen Z, Hu J, Zhang Z, Sun Y, Ma W. The action of enhanced reactive oxygen species production through the dopant of Al2O3/GO in piezoelectric ZnO. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;627:127148. [DOI: 10.1016/j.colsurfa.2021.127148] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Samarghandi MR, Ansari A, Dargahi A, Shabanloo A, Nematollahi D, Khazaei M, Nasab HZ, Vaziri Y. Enhanced electrocatalytic degradation of bisphenol A by graphite/β-PbO2 anode in a three-dimensional electrochemical reactor. Journal of Environmental Chemical Engineering 2021;9:106072. [DOI: 10.1016/j.jece.2021.106072] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 15.5] [Reference Citation Analysis]
37 Du C, Nie S, Feng W, Zhang J, Qi M, Liang Y, Wu Y, Feng J, Dong S, Liu H, Sun J. Hydroxyl regulating effect on surface structure of BiOBr photocatalyst toward high-efficiency degradation performance. Chemosphere 2022;287:132246. [PMID: 34543902 DOI: 10.1016/j.chemosphere.2021.132246] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
38 Li X, Yang B, Xiao K, Duan H, Wan J, Zhao H. Targeted degradation of refractory organic compounds in wastewaters based on molecular imprinting catalysts. Water Res 2021;203:117541. [PMID: 34416650 DOI: 10.1016/j.watres.2021.117541] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
39 Qi K, Song M, Xie X, Wen Y, Wang Z, Wei B, Wang Z. CQDs/biochar from reed straw modified Z-scheme MgIn2S4/BiOCl with enhanced visible-light photocatalytic performance for carbamazepine degradation in water. Chemosphere 2022;287:132192. [PMID: 34517240 DOI: 10.1016/j.chemosphere.2021.132192] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
40 Yao B, Luo Z, Du S, Yang J, Zhi D, Zhou Y. Sustainable biochar/MgFe2O4 adsorbent for levofloxacin removal: Adsorption performances and mechanisms. Bioresour Technol 2021;340:125698. [PMID: 34365297 DOI: 10.1016/j.biortech.2021.125698] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 14.0] [Reference Citation Analysis]
41 Li X, Wang J, Duan X, Li Y, Fan X, Zhang G, Zhang F, Peng W. Fine-Tuning Radical/Nonradical Pathways on Graphene by Porous Engineering and Doping Strategies. ACS Catal 2021;11:4848-61. [DOI: 10.1021/acscatal.0c05089] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 16.0] [Reference Citation Analysis]