BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang L, Wei X, Gao E, Zhang C, Hu X, Chen Y, Liu Z, Finck N, Lützenkirchen J, Dionysiou DD. Single Fe atoms confined in two-dimensional MoS2 for sulfite activation: A biomimetic approach towards efficient radical generation. Applied Catalysis B: Environmental 2020;268:118459. [DOI: 10.1016/j.apcatb.2019.118459] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 23.0] [Reference Citation Analysis]
Number Citing Articles
1 Yang M, Wu R, Cao S, Li Y, Huo S, Wang W, Hu Z, Xu X. Versatile pathways for oxidating organics via peroxymonosulfate activation by different single atom catalysts confining with Fe–N4 or Cu–N4 sites. Chemical Engineering Journal 2023;451:138606. [DOI: 10.1016/j.cej.2022.138606] [Reference Citation Analysis]
2 Zeng Y, Almatrafi E, Xia W, Song B, Xiong W, Cheng M, Wang Z, Liang Y, Zeng G, Zhou C. Nitrogen-doped carbon-based single-atom Fe catalysts: Synthesis, properties, and applications in advanced oxidation processes. Coordination Chemistry Reviews 2023;475:214874. [DOI: 10.1016/j.ccr.2022.214874] [Reference Citation Analysis]
3 Tan C, Cheng X, Xu T, Chen K, Xiang H, Su L. Crystalline boron significantly accelerates Fe(III)/PMS reaction as an electron donor: Iron recycling, reactive species generation, and acute toxicity evaluation. Chemical Engineering Journal 2023;452:139154. [DOI: 10.1016/j.cej.2022.139154] [Reference Citation Analysis]
4 Yao M, Xie M, Zhang S, Yuan J, Zhao L, Zhao R. Co nanoparticles encapsulated in nitrogen-doped nanocarbon derived from cobalt-modified covalent organic framework as peroxymonosulfate activator for sulfamerazine degradation. Separation and Purification Technology 2022;302:122145. [DOI: 10.1016/j.seppur.2022.122145] [Reference Citation Analysis]
5 Yu Q, Dai Y, Ling Y, Wu Q, Zhang Z, Feng B. Z-scheme heterojunction WO3/BiOBr supported-single Fe atom for ciprofloxacin degradation via visible-light photocatalysis. Journal of Environmental Chemical Engineering 2022;10:108693. [DOI: 10.1016/j.jece.2022.108693] [Reference Citation Analysis]
6 Wang M, Huang X, Zhang B, Zhang S, Zhang J, Wang Q. Sulfite activation for ciprofloxacin rapid degradation using an iron-based metal organic framework derivative in heterogeneous processes: Performance and mechanisms investigation. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140644] [Reference Citation Analysis]
7 Khan A, Feng X, Yin C, Ullah H, Ali Tahir A, Li B, Wang W, Li X, Xu A. Mn2O3@Mn5O8 as an efficient catalyst for the degradation of organic contaminants in aqueous media through sulfite activation. Separation and Purification Technology 2022;299:121717. [DOI: 10.1016/j.seppur.2022.121717] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zhao G, Ding J, Ren J, Zhao Q, Fan H, Wang K, Gao Q, Chen X, Long M. Treasuring industrial sulfur by-products: A review on add-value to reductive sulfide and sulfite for contaminant removal and hydrogen production. Journal of Hazardous Materials 2022;438:129462. [DOI: 10.1016/j.jhazmat.2022.129462] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Cai T, Teng Z, Wen Y, Zhang H, Wang S, Fu X, Song L, Li M, Lv J, Zeng Q. Single-atom site catalysts for environmental remediation: Recent advances. J Hazard Mater 2022;440:129772. [PMID: 35988491 DOI: 10.1016/j.jhazmat.2022.129772] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Yang K, Kong Y, Huang L, Hu X. Catalytic elimination of chlorinated organic pollutants by emerging single-atom catalysts. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.138467] [Reference Citation Analysis]
11 Li X, Zhang W, Liu Z, Wang S, Zhang X, Xu B, Yu P, Xu Y, Sun Y. Effective removal of tetracycline from water by catalytic peroxymonosulfate oxidation over Co@MoS2: Catalytic performance and degradation mechanism. Separation and Purification Technology 2022;294:121139. [DOI: 10.1016/j.seppur.2022.121139] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
12 Shao S, Xing D, Zhao X. Effective sulfite activation with atomically dispersed cobalt loaded SBA-15 for iohexol abatement. Journal of Environmental Chemical Engineering 2022;10:108100. [DOI: 10.1016/j.jece.2022.108100] [Reference Citation Analysis]
13 Huang Y, Lai L, Huang W, Zhou H, Li J, Liu C, Lai B, Li N. Effective peroxymonosulfate activation by natural molybdenite for enhanced atrazine degradation: Role of sulfur vacancy, degradation pathways and mechanism. Journal of Hazardous Materials 2022;435:128899. [DOI: 10.1016/j.jhazmat.2022.128899] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
14 Hao Z, Hou W, Fang C, Huang Y, Liu X. Sulfite activation by cobaltosic oxide nanohydrangeas for tetracycline degradation: Performance, degradation pathways and mechanism. J Hazard Mater 2022;439:129618. [PMID: 35870208 DOI: 10.1016/j.jhazmat.2022.129618] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Yin Y, Shi L, Zhang S, Duan X, Zhang J, Sun H, Wang S. Two−dimensional nanomaterials confined single atoms: New opportunities for environmental remediation. Nano Materials Science 2022. [DOI: 10.1016/j.nanoms.2022.07.001] [Reference Citation Analysis]
16 Chen X, Li S, Yang P, Chen Y, Xue C, Long Y, Han J, Su J, Huang W, Liu D. N-doped carbon intercalated Fe-doped MoS2 nanosheets with widened interlayer spacing: an efficient peroxymonosulfate activator for high-salinity organic wastewater treatment. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.07.145] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Zhao G, Ding J, Ren J, Zhao Q, Gao Q, Wang K, Wei L, Chen X, Zhou F, Dionysiou DD. Insight into the visible light activation of sulfite by Fe/g-C3N4 with rich N vacancies for pollutant removal and sterilization: A novel approach for enhanced generation of oxysulfur radical. Chemical Engineering Journal 2022;438:135663. [DOI: 10.1016/j.cej.2022.135663] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
18 Chen Y, Ruan J, Zeng B, Jiang W, Luo L, Shao Q, Liu Z. Insights into the sulfite activation by cobalt(II) sulfide for acetaminophen removal: A synergistic catalysis and DFT calculations. Journal of Environmental Chemical Engineering 2022;10:107709. [DOI: 10.1016/j.jece.2022.107709] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Feng L, Zhang L, Chu S, Zhang S, Chen X, Du Z, Gong Y, Wang H. Controllable doping of Fe atoms into MoS2 nanosheets towards peroxidase-like nanozyme with enhanced catalysis for colorimetric analysis of glucose. Applied Surface Science 2022;583:152496. [DOI: 10.1016/j.apsusc.2022.152496] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
20 Li Z, Li H, Yang Z, Lu X, Ji S, Zhang M, Horton JH, Ding H, Xu Q, Zhu J, Yu J. Facile Synthesis of Single Iron Atoms over MoS 2 Nanosheets via Spontaneous Reduction for Highly Efficient Selective Oxidation of Alcohols. Small. [DOI: 10.1002/smll.202201092] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
21 Tang J, Wu Y, Li X, Bu L, Chang B. Single-atom iron catalysts for biomedical applications. Progress in Materials Science 2022. [DOI: 10.1016/j.pmatsci.2022.100959] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Tong R, Fu R, Yang Z, Jiang Y, Jiang K, Sun X. Efficient degradation of sulfachloropyridazine by sulfite activation with CuO-Al2O3 composites under neutral pH conditions: Radical and non-radical. Journal of Environmental Chemical Engineering 2022;10:107276. [DOI: 10.1016/j.jece.2022.107276] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Zhou J, Guo X, Zhou X, Yang J, Yu S, Niu X, Chen Q, Li F, Liu Y. Boosting the efficiency of Fe-MoS2/peroxymonosulfate catalytic systems for organic powllutants remediation: Insights into edge-site atomic coordination. Chemical Engineering Journal 2022;433:134511. [DOI: 10.1016/j.cej.2022.134511] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
24 Ibrahim Q, Creedon L, Gharbia S. A Literature Review of Modelling and Experimental Studies of Water Treatment by Adsorption Processes on Nanomaterials. Membranes 2022;12:360. [DOI: 10.3390/membranes12040360] [Reference Citation Analysis]
25 Zhou H, Xie Z, Liu Y, Lai B, Ong W, Wang S, Duan X. Recent advances in molybdenum disulfide-based advanced oxidation processes. Environmental Functional Materials 2022;1:1-9. [DOI: 10.1016/j.efmat.2022.04.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
26 Peng X, Wu J, Zhao Z, Wang X, Dai H, Wei Y, Xu G, Hu F. Activation of peroxymonosulfate by single atom Co-N-C catalysts for high-efficient removal of chloroquine phosphate via non-radical pathways: Electron-transfer mechanism. Chemical Engineering Journal 2022;429:132245. [DOI: 10.1016/j.cej.2021.132245] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 55.0] [Reference Citation Analysis]
27 Yi C, He Z, Hu Y, Liang D, Zhang Y, Chen Y. FeOOH@MoS2 as a highly effective and stable activator of peroxymonosulfate-based advanced oxidation processes for pollutant degradation. Surfaces and Interfaces 2021;27:101465. [DOI: 10.1016/j.surfin.2021.101465] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
28 Sun Y, Li R, Song C, Zhang H, Cheng Y, Nie A, Li H, Dionysiou DD, Qian J, Pan B. Origin of the improved reactivity of MoS2 single crystal by confining lattice Fe atom in peroxymonosulfate-based Fenton-like reaction. Applied Catalysis B: Environmental 2021;298:120537. [DOI: 10.1016/j.apcatb.2021.120537] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 18.0] [Reference Citation Analysis]
29 Li G, Guo Y, Jin Y, Tan W, Liu F, Yin H. Intrinsic mechanisms of calcium sulfite activation by siderite for atrazine degradation. Chemical Engineering Journal 2021;426:131917. [DOI: 10.1016/j.cej.2021.131917] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
30 Wu J, Zhang H, Zhang H, Qing M, Feng Z, Hu H, Zhang Y, Liang L, Tian ZQ, Huang Z. A Fe-N/FeS@C composite prepared via mechanical activation and pyrolysis for sulfite activation to degrade organic contaminants: Single atomic irons anchored into carbon matrix with encapsulated FeS nanoparticles. Journal of Environmental Chemical Engineering 2021;9:106451. [DOI: 10.1016/j.jece.2021.106451] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Wang X, Zhang Y, Wu J, Zhang Z, Liao Q, Kang Z, Zhang Y. Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chem Rev 2021. [PMID: 34788542 DOI: 10.1021/acs.chemrev.1c00505] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 23.0] [Reference Citation Analysis]
32 Cui T, Li L, Ye C, Li X, Liu C, Zhu S, Chen W, Wang D. Heterogeneous Single Atom Environmental Catalysis: Fundamentals, Applications, and Opportunities. Adv Funct Materials 2022;32:2108381. [DOI: 10.1002/adfm.202108381] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
33 Wu L, Guo P, Wang X, Li H, Li A, Chen K. Mechanism study of CoS2/Fe(III)/peroxymonosulfate catalysis system: The vital role of sulfur vacancies. Chemosphere 2021;:132646. [PMID: 34699885 DOI: 10.1016/j.chemosphere.2021.132646] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
34 Zhao G, Zou J, Chen X, Liu L, Wang Y, Zhou S, Long X, Yu J, Jiao F. Iron-based catalysts for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Chemical Engineering Journal 2021;421:127845. [DOI: 10.1016/j.cej.2020.127845] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 30.0] [Reference Citation Analysis]
35 Wu S, Shen L, Lin Y, Yin K, Yang C. Sulfite-based advanced oxidation and reduction processes for water treatment. Chemical Engineering Journal 2021;414:128872. [DOI: 10.1016/j.cej.2021.128872] [Cited by in Crossref: 71] [Cited by in F6Publishing: 51] [Article Influence: 71.0] [Reference Citation Analysis]
36 Guo T, Jiang L, Wang K, Li Y, Huang H, Wu X, Zhang G. Efficient persulfate activation by hematite nanocrystals for degradation of organic pollutants under visible light irradiation: Facet-dependent catalytic performance and degradation mechanism. Applied Catalysis B: Environmental 2021;286:119883. [DOI: 10.1016/j.apcatb.2021.119883] [Cited by in Crossref: 78] [Cited by in F6Publishing: 84] [Article Influence: 78.0] [Reference Citation Analysis]
37 Huang B, Wu Z, Zhou H, Li J, Zhou C, Xiong Z, Pan Z, Yao G, Lai B. Recent advances in single-atom catalysts for advanced oxidation processes in water purification. Journal of Hazardous Materials 2021;412:125253. [DOI: 10.1016/j.jhazmat.2021.125253] [Cited by in Crossref: 51] [Cited by in F6Publishing: 56] [Article Influence: 51.0] [Reference Citation Analysis]
38 Luo T, Xu J, Li J, Wu F, Zhou D. Strengthening arsenite oxidation in water using metal-free ultrasonic activation of sulfite. Chemosphere 2021;281:130860. [PMID: 34020199 DOI: 10.1016/j.chemosphere.2021.130860] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
39 Zhang W, Yin C, Jin Y, Feng X, Li X, Xu A. Thiosulfate enhanced degradation of organic pollutants in aqueous solution with g-C3N4 under visible light irradiation. Chemosphere 2021;275:130119. [PMID: 33984896 DOI: 10.1016/j.chemosphere.2021.130119] [Reference Citation Analysis]
40 Yang L, Chen H, Jia F, Peng W, Tian X, Xia L, Wu X, Song S. Emerging Hexagonal Mo2C Nanosheet with (002) Facet Exposure and Cu Incorporation for Peroxymonosulfate Activation Toward Antibiotic Degradation. ACS Appl Mater Interfaces 2021;13:14342-54. [PMID: 33734663 DOI: 10.1021/acsami.1c03601] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 22.0] [Reference Citation Analysis]
41 Gao Y, Duan X, Li B, Jia Q, Li Y, Fan X, Zhang F, Zhang G, Wang S, Peng W. Fe containing template derived atomic Fe–N–C to boost Fenton-like reaction and charge migration analysis on highly active Fe–N 4 sites. J Mater Chem A 2021;9:14793-805. [DOI: 10.1039/d1ta02446a] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 24.0] [Reference Citation Analysis]
42 Shang Y, Xu X, Gao B, Wang S, Duan X. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem Soc Rev 2021;50:5281-322. [DOI: 10.1039/d0cs01032d] [Cited by in Crossref: 222] [Cited by in F6Publishing: 240] [Article Influence: 222.0] [Reference Citation Analysis]
43 Wu M, Wang Y, Lu B, Xiao B, Chen R, Liu H. Efficient activation of peroxymonosulfate and degradation of Orange G in iron phosphide prepared by pickling waste liquor. Chemosphere 2021;269:129398. [PMID: 33383255 DOI: 10.1016/j.chemosphere.2020.129398] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
44 Liu R, Fei H, Ye G. Recent advances in single metal atom-doped MoS2 as catalysts for hydrogen evolution reaction. Tungsten 2020;2:147-61. [DOI: 10.1007/s42864-020-00045-7] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 13.5] [Reference Citation Analysis]