BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Meng F, Ma W, Duan C, Liu X, Chen Z, Wang M, Gao J, Zhang Z. High efficient degradation of levofloxacin by edge-selectively Fe@3D-WS2: Self-renewing behavior and Degradation mechanism study. Applied Catalysis B: Environmental 2019;252:187-97. [DOI: 10.1016/j.apcatb.2019.04.020] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Tan C, Cheng X, Xu T, Chen K, Xiang H, Su L. Crystalline boron significantly accelerates Fe(III)/PMS reaction as an electron donor: Iron recycling, reactive species generation, and acute toxicity evaluation. Chemical Engineering Journal 2023;452:139154. [DOI: 10.1016/j.cej.2022.139154] [Reference Citation Analysis]
2 Zheng Y, Zhuang W, Zhang X, Xiang J, Wang X, Song Z, Cao Z, Zhao C. Grape-like CNTs/BaTiO3 nanocatalyst boosted hydraulic-driven piezo-activation of peroxymonosulfate for carbamazepine removal. Chemical Engineering Journal 2022;449:137826. [DOI: 10.1016/j.cej.2022.137826] [Reference Citation Analysis]
3 Sheng S, Fu J, Song S, He Y, Qian J, Yi Z. Enhanced electron transfer for activation of peroxymonosulfate via MoS2 modified iron-based perovskite. Environ Technol 2022;:1-41. [PMID: 36250403 DOI: 10.1080/09593330.2022.2137438] [Reference Citation Analysis]
4 Luo Y, Zheng A, Xue M, Xie Y, Yu S, Yin Z, Xie C, Hong Z, Tan W, Zou W, Dong L, Gao B. Ball-milled Bi2MoO6/biochar composites for synergistic adsorption and photodegradation of methylene blue: Kinetics and mechanisms. Industrial Crops and Products 2022;186:115229. [DOI: 10.1016/j.indcrop.2022.115229] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Masekela D, Hintsho-mbita NC, Ntsendwana B, Mabuba N. Thin Films (FTO/BaTiO 3 /AgNPs) for Enhanced Piezo-Photocatalytic Degradation of Methylene Blue and Ciprofloxacin in Wastewater. ACS Omega. [DOI: 10.1021/acsomega.2c01699] [Reference Citation Analysis]
6 Shen G, Yan Y, Hong K. Synthesis of high-quality WS2 nanotube arrays and their photocatalytic properties. Materials Letters 2022;319:132303. [DOI: 10.1016/j.matlet.2022.132303] [Reference Citation Analysis]
7 Tang Y, Chen X, Zhu M, Liao X, Hou S, Yu Y, Fan X. The strong alternating built-in electric field sourced by ball milling on Pb2BO3X (X=Cl, Br, I) piezoelectric materials contributes to high catalytic activity. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.107545] [Reference Citation Analysis]
8 Gou G, Kang S, Zhao H, Liu C, Li N, Lai B, Li J. Efficient peroxymonosulfate activation through a simple physical mixture of FeS2 and WS2 for carbamazepine degradation. Separation and Purification Technology 2022;290:120828. [DOI: 10.1016/j.seppur.2022.120828] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Li X, Li K, Du J, Pei M, Song C, Guo X. Nitrogen-rich porous polymeric carbon nitride with enhanced photocatalytic activity for synergistic removal of organic and heavy metal pollutants. Environ Sci : Nano 2022;9:2388-2401. [DOI: 10.1039/d2en00243d] [Reference Citation Analysis]
10 Dong Z, Niu C, Guo H, Niu H, Liang S, Liang C, Liu H, Yang Y. Anchoring CuFe2O4 nanoparticles into N-doped carbon nanosheets for peroxymonosulfate activation: Built-in electric field dominated radical and non-radical process. Chemical Engineering Journal 2021;426:130850. [DOI: 10.1016/j.cej.2021.130850] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 25.0] [Reference Citation Analysis]
11 Liu J, Li Z, Wang M, Jin C, Kang J, Tang Y, Li S. Eu2O3/Co3O4 nanosheets for levofloxacin removal via peroxymonosulfate activation: Performance, mechanism and degradation pathway. Separation and Purification Technology 2021;274:118666. [DOI: 10.1016/j.seppur.2021.118666] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
12 Zhang Y, Zhao H, Wen J, Ding S, Wang W. Insights into the nonradical degradation mechanisms of antibiotics in persulfate activation by tourmaline. Separation and Purification Technology 2021;270:118772. [DOI: 10.1016/j.seppur.2021.118772] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
13 Li S, Wang C, Liu Y, Xue B, Jiang W, Liu Y, Mo L, Chen X. Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism. Chemical Engineering Journal 2021;415:128991. [DOI: 10.1016/j.cej.2021.128991] [Cited by in Crossref: 157] [Cited by in F6Publishing: 164] [Article Influence: 157.0] [Reference Citation Analysis]
14 Goulart LA, Moratalla A, Lanza MRV, Sáez C, Rodrigo MA. Photoelectrocatalytic treatment of levofloxacin using Ti/MMO/ZnO electrode. Chemosphere 2021;284:131303. [PMID: 34182289 DOI: 10.1016/j.chemosphere.2021.131303] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Sharma A, Bhardwaj U, Kushwaha HS. Ba 2 TiMnO 6 two-dimensional nanosheets for rhodamine B organic contaminant degradation using ultrasonic vibrations. Mater Adv 2021;2:2649-57. [DOI: 10.1039/d1ma00106j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
16 Sitara E, Ehsan MF, Nasir H, Iram S, Bukhari SAB. Synthesis, Characterization and Photocatalytic Activity of MoS2/ZnSe Heterostructures for the Degradation of Levofloxacin. Catalysts 2020;10:1380. [DOI: 10.3390/catal10121380] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
17 Hu Z, Ge M, Guo C. Efficient removal of levofloxacin from different water matrices via simultaneous adsorption and photocatalysis using a magnetic Ag3PO4/rGO/CoFe2O4 catalyst. Chemosphere 2021;268:128834. [PMID: 33168283 DOI: 10.1016/j.chemosphere.2020.128834] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 14.5] [Reference Citation Analysis]
18 Zhao Y, Yuan X, Jiang L, Li X, Zhang J, Wang H. Reutilization of cathode material from spent batteries as a heterogeneous catalyst to remove antibiotics in wastewater via peroxymonosulfate activation. Chemical Engineering Journal 2020;400:125903. [DOI: 10.1016/j.cej.2020.125903] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 17.0] [Reference Citation Analysis]
19 Gao Y, Zou D. Efficient degradation of levofloxacin by a microwave–3D ZnCo2O4/activated persulfate process: Effects, degradation intermediates, and acute toxicity. Chemical Engineering Journal 2020;393:124795. [DOI: 10.1016/j.cej.2020.124795] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 20.0] [Reference Citation Analysis]
20 Wei X, Wang X, Gao B, Zou W, Dong L. Facile Ball-Milling Synthesis of CuO/Biochar Nanocomposites for Efficient Removal of Reactive Red 120. ACS Omega 2020;5:5748-55. [PMID: 32226853 DOI: 10.1021/acsomega.9b03787] [Cited by in Crossref: 37] [Cited by in F6Publishing: 43] [Article Influence: 18.5] [Reference Citation Analysis]
21 Zhong X, Zhang K, Wu D, Ye X, Huang W, Zhou B. Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation. Chemical Engineering Journal 2020;383:123148. [DOI: 10.1016/j.cej.2019.123148] [Cited by in Crossref: 87] [Cited by in F6Publishing: 90] [Article Influence: 43.5] [Reference Citation Analysis]
22 Zhang G, Hao Z, Yin J, Wang C, Zhang J, Zhao Z, Wei D, Zhou H, Li Z. FeS2 crystal lattice promotes the nanostructure and enhances the electrocatalytic performance of WS2 nanosheets for the oxygen evolution reaction. Dalton Trans 2020;49:9804-10. [PMID: 32633295 DOI: 10.1039/d0dt01660h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
23 Meng F, Ma W, Wang Y, Zhu Z, Chen Z, Lu G. A tribo-positive Fe@MoS 2 piezocatalyst for the durable degradation of tetracycline: degradation mechanism and toxicity assessment. Environ Sci : Nano 2020;7:1704-18. [DOI: 10.1039/d0en00284d] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
24 Liang H, Zhang B, Song J. Synthesis of Textured Tungsten Disulfide Nanosheets and their Catalysis for Benzylamine Coupling Reaction. ChemCatChem 2019;11:6288-94. [DOI: 10.1002/cctc.201901576] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]