BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Singer AJ, Mcclain SA, Taira BR, Romanov A, Rooney J, Zimmerman T. Validation of a porcine comb burn model. The American Journal of Emergency Medicine 2009;27:285-8. [DOI: 10.1016/j.ajem.2008.02.019] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Fourman MS, Gersch RP, Levites HA, Phillips BT, Bui DT. Is There a Right Way to Interpret SPY? Normalization of Indocyanine Green Angiography Readings in a Burn Model. Plast Reconstr Surg 2015;136:128e-30e. [PMID: 25803152 DOI: 10.1097/PRS.0000000000001380] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
2 Sami DG, Heiba HH, Abdellatif A. Wound healing models: A systematic review of animal and non-animal models. Wound Medicine 2019;24:8-17. [DOI: 10.1016/j.wndm.2018.12.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 16] [Article Influence: 10.7] [Reference Citation Analysis]
3 Bhatia A, O'Brien K, Chen M, Wong A, Garner W, Woodley DT, Li W. Dual therapeutic functions of F-5 fragment in burn wounds: preventing wound progression and promoting wound healing in pigs. Mol Ther Methods Clin Dev 2016;3:16041. [PMID: 27382602 DOI: 10.1038/mtm.2016.41] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
4 Lee JY, Jung SN, Kwon H. In vitro burn model illustrating heat conduction patterns using compressed thermal papers. Wound Repair Regen 2015;23:124-31. [PMID: 25421614 DOI: 10.1111/wrr.12240] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
5 Xue C, Chou CS, Kao CY, Sen CK, Friedman A. Propagation of cutaneous thermal injury: a mathematical model. Wound Repair Regen 2012;20:114-22. [PMID: 22211391 DOI: 10.1111/j.1524-475X.2011.00759.x] [Cited by in Crossref: 6] [Article Influence: 0.5] [Reference Citation Analysis]
6 Macri LK, Singer AJ, Taira BR, Mcclain SA, Rosenberg L, Clark RA. Immediate Burn Excision Fails to Reduce Injury Progression: . Journal of Burn Care & Research 2013;34:e153-60. [DOI: 10.1097/bcr.0b013e31828fc8cd] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
7 Asif B, Rahim A, Fenner J, Lin F, Hirth D, Hassani J, Mcclain SA, Singer AJ, Tonnesen MG, Clark RA. Blood vessel occlusion in peri-burn tissue is secondary to erythrocyte aggregation and mitigated by a fibronectin-derived peptide that limits burn injury progression: Red Cells Plug Blood Vessels After Burns. Wound Rep and Reg 2016;24:501-13. [DOI: 10.1111/wrr.12430] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
8 Deng X, Chen Q, Qiang L, Chi M, Xie N, Wu Y, Yao M, Zhao D, Ma J, Zhang N, Xie Y. Development of a Porcine Full-Thickness Burn Hypertrophic Scar Model and Investigation of the Effects of Shikonin on Hypertrophic Scar Remediation. Front Pharmacol 2018;9:590. [PMID: 29922164 DOI: 10.3389/fphar.2018.00590] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
9 Singer AJ, Taira BR, Anderson R, Mcclain SA, Rosenberg L. Does Pressure Matter in Creating Burns in a Porcine Model?: . Journal of Burn Care & Research 2010;31:646-51. [DOI: 10.1097/bcr.0b013e3181e4ca73] [Cited by in Crossref: 22] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
10 Haywood N, Byler MR, Zhang A, Rotar EP, Money D, Gradecki SE, Ta HQ, Salmon M, Kron IL, Laubach VE, Mehaffey JH, Roeser ME. Secondary Burn Progression Mitigated by an Adenosine 2A Receptor Agonist. J Burn Care Res 2021:irab053. [PMID: 33769530 DOI: 10.1093/jbcr/irab053] [Reference Citation Analysis]
11 Fourman MS, Phillips BT, Crawford L, McClain SA, Lin F, Thode HC Jr, Dagum AB, Singer AJ, Clark RA. Indocyanine green dye angiography accurately predicts survival in the zone of ischemia in a burn comb model. Burns 2014;40:940-6. [PMID: 24231464 DOI: 10.1016/j.burns.2013.10.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
12 Sheu S, Wang W, Fu Y, Lin S, Lei Y, Liao J, Tang N, Kuo T, Yao C. The pig as an experimental model for mid-dermal burns research. Burns 2014;40:1679-88. [DOI: 10.1016/j.burns.2014.04.023] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
13 Ruggeri M, Bianchi E, Rossi S, Vigani B, Bonferoni MC, Caramella C, Sandri G, Ferrari F. Nanotechnology-Based Medical Devices for the Treatment of Chronic Skin Lesions: From Research to the Clinic. Pharmaceutics 2020;12:E815. [PMID: 32867241 DOI: 10.3390/pharmaceutics12090815] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Singer AJ, Mcclain SA, Taira BR, Rooney J, Steinhauff N, Rosenberg L. Rapid and Selective Enzymatic Debridement of Porcine Comb Burns With Bromelain-Derived Debrase®: Acute-Phase Preservation of Noninjured Tissue and Zone of Stasis: . Journal of Burn Care & Research 2010;31:304-9. [DOI: 10.1097/bcr.0b013e3181d0f4d4] [Cited by in Crossref: 46] [Cited by in F6Publishing: 9] [Article Influence: 3.8] [Reference Citation Analysis]
15 Andrews CJ, Cuttle L. Comparing the reported burn conditions for different severity burns in porcine models: a systematic review. Int Wound J 2017;14:1199-212. [PMID: 28736990 DOI: 10.1111/iwj.12786] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
16 Seaton M, Hocking A, Gibran NS. Porcine Models of Cutaneous Wound Healing. ILAR Journal 2015;56:127-38. [DOI: 10.1093/ilar/ilv016] [Cited by in Crossref: 106] [Cited by in F6Publishing: 94] [Article Influence: 15.1] [Reference Citation Analysis]
17 Domergue S, Jorgensen C, Noël D. Advances in Research in Animal Models of Burn-Related Hypertrophic Scarring: . Journal of Burn Care & Research 2015;36:e259-66. [DOI: 10.1097/bcr.0000000000000167] [Cited by in Crossref: 32] [Cited by in F6Publishing: 14] [Article Influence: 4.6] [Reference Citation Analysis]
18 Mahmood R, Mehmood A, Choudhery MS, Awan SJ, Khan SN, Riazuddin S. Human neonatal stem cell-derived skin substitute improves healing of severe burn wounds in a rat model. Cell Biol Int 2019;43:147-57. [PMID: 30443955 DOI: 10.1002/cbin.11072] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
19 Singer AJ, Hirth D, McClain SA, Crawford L, Lin F, Clark RA. Validation of a vertical progression porcine burn model. J Burn Care Res 2011;32:638-46. [PMID: 21841494 DOI: 10.1097/BCR.0b013e31822dc439] [Cited by in Crossref: 33] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
20 Lanier ST, McClain SA, Lin F, Singer AJ, Clark RA. Spatiotemporal progression of cell death in the zone of ischemia surrounding burns. Wound Repair Regen 2011;19:622-32. [PMID: 22092800 DOI: 10.1111/j.1524-475X.2011.00725.x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
21 Reddy AS, Abraham A, McClain SA, Clark RA, Ralen P, Sandoval S, Singer AJ. The Role of Necroptosis in Burn Injury Progression in a Rat Comb Burn Model. Acad Emerg Med 2015;22:1181-6. [PMID: 26375585 DOI: 10.1111/acem.12768] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
22 Frederick RE, Bearden R, Jovanovic A, Jacobson N, Sood R, Dhall S. Clostridium Collagenase Impact on Zone of Stasis Stabilization and Transition to Healthy Tissue in Burns. Int J Mol Sci 2021;22:8643. [PMID: 34445347 DOI: 10.3390/ijms22168643] [Reference Citation Analysis]
23 Firat C, Samdanci E, Erbatur S, Aytekin AH, Ak M, Turtay MG, Coban YK. β-Glucan treatment prevents progressive burn ischaemia in the zone of stasis and improves burn healing: an experimental study in rats. Burns 2013;39:105-12. [PMID: 22469518 DOI: 10.1016/j.burns.2012.02.031] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
24 El Ayadi A, Salsbury JR, Enkhbaatar P, Herndon DN, Ansari NH. Metal chelation attenuates oxidative stress, inflammation, and vertical burn progression in a porcine brass comb burn model. Redox Biol 2021;45:102034. [PMID: 34139550 DOI: 10.1016/j.redox.2021.102034] [Reference Citation Analysis]
25 Singer AJ, Taira BR, Anderson R, Mcclain SA, Rosenberg L. The Effects of Rapid Enzymatic Debridement of Deep Partial-Thickness Burns With Debrase® on Wound Reepithelialization in Swine: . Journal of Burn Care & Research 2010;31:795-802. [DOI: 10.1097/bcr.0b013e3181eed48e] [Cited by in Crossref: 22] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
26 Dolgachev VA, Ciotti SM, Eisma R, Gracon S, Wilkinson JE, Baker JR Jr, Hemmila MR. Nanoemulsion Therapy for Burn Wounds Is Effective as a Topical Antimicrobial Against Gram-Negative and Gram-Positive Bacteria. J Burn Care Res 2016;37:e104-14. [PMID: 26182074 DOI: 10.1097/BCR.0000000000000217] [Cited by in Crossref: 11] [Article Influence: 1.8] [Reference Citation Analysis]
27 Andrews CJ, Kempf M, Kimble R, Cuttle L. Development of a Consistent and Reproducible Porcine Scald Burn Model. PLoS One 2016;11:e0162888. [PMID: 27612153 DOI: 10.1371/journal.pone.0162888] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
28 Tobalem M, Wettstein R, Tschanz E, Plock J, Lindenblatt N, Harder Y, Rezaeian F. The burn comb model revisited. Burns 2020;46:675-81. [DOI: 10.1016/j.burns.2019.09.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]