BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bakunowicz-Łazarczyk A, Urban B. Assessment of therapeutic options for reducing alkali burn-induced corneal neovascularization and inflammation. Adv Med Sci 2016;61:101-12. [PMID: 26651127 DOI: 10.1016/j.advms.2015.10.003] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Huang Y, Lin L, Yang Y, Duan F, Yuan M, Lou B, Lin X. Effect of Tauroursodeoxycholic Acid on Inflammation after Ocular Alkali Burn. IJMS 2022;23:11717. [DOI: 10.3390/ijms231911717] [Reference Citation Analysis]
2 Shi H, Zhu Y, Xing C, Li S, Bao Z, Lei L, Lin D, Wang Y, Chen H, Xu X. An injectable thermosensitive hydrogel for dual delivery of diclofenac and Avastin® to effectively suppress inflammatory corneal neovascularization. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.122081] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Liao Y, Jiang H, Du Y, Xiong X, Zhang Y, Du Z, Leung MF. Using Convolutional Neural Network as a Statistical Algorithm to Explore the Therapeutic Effect of Insulin Liposomes on Corneal Inflammation. Computational Intelligence and Neuroscience 2022;2022:1-9. [DOI: 10.1155/2022/1169438] [Reference Citation Analysis]
4 Liu A, Liang C, Liu J, Huang Y, Wang M, Wang L. Reactive Oxygen Species─Responsive Lipid Nanoparticles for Effective RNAi and Corneal Neovascularization Therapy. ACS Appl Mater Interfaces 2022;14:17022-31. [PMID: 35380773 DOI: 10.1021/acsami.1c23412] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Feng Y, Yang X, Huang J, Shen M, Wang L, Chen X, Yuan Y, Dong C, Ma X, Yuan F, Tahmasbpour E. Pharmacological Inhibition of Glutaminase 1 Attenuates Alkali-Induced Corneal Neovascularization by Modulating Macrophages. Oxidative Medicine and Cellular Longevity 2022;2022:1-19. [DOI: 10.1155/2022/1106313] [Reference Citation Analysis]
6 Lin J, Luisi J, Karediya N, Kraft ER, Sharifi A, Schmitz-brown ME, Merkley KH, Gupta P, Motamedi M. Anterior segment optical coherence tomography (AS-OCT) for the visualization and quantification of dose-dependent ocular toxicity. Ophthalmic Technologies XXXII 2022. [DOI: 10.1117/12.2608329] [Reference Citation Analysis]
7 Wang K, Jiang L, Zhong Y, Zhang Y, Yin Q, Li S, Zhang X, Han H, Yao K. Ferrostatin‐1‐loaded liposome for treatment of corneal alkali burn via targeting ferroptosis. Bioeng Transl Med. [DOI: 10.1002/btm2.10276] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
8 Zhang K, Guo MY, Li QG, Wang XH, Wan YY, Yang ZJ, He M, Yi YM, Jiang LP, Qu XH, Han XJ. Drp1-dependent mitochondrial fission mediates corneal injury induced by alkali burn. Free Radic Biol Med 2021;176:149-61. [PMID: 34562609 DOI: 10.1016/j.freeradbiomed.2021.09.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Lyu N, Zhao Y, Xiang J, Fan X, Huang C, Sun X, Xu J, Xu ZP, Sun J. Inhibiting corneal neovascularization by sustainably releasing anti-VEGF and anti-inflammation drugs from silica-thermogel nanohybrids. Mater Sci Eng C Mater Biol Appl 2021;128:112274. [PMID: 34474833 DOI: 10.1016/j.msec.2021.112274] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Yan D, Yu F, Chen L, Yao Q, Yan C, Zhang S, Wu N, Gong D, Sun H, Fu Y, Shao C. Subconjunctival Injection of Regulatory T Cells Potentiates Corneal Healing Via Orchestrating Inflammation and Tissue Repair After Acute Alkali Burn. Invest Ophthalmol Vis Sci 2020;61:22. [PMID: 33326018 DOI: 10.1167/iovs.61.14.22] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
11 Jiang L, He W, Tang F, Tang N, Huang G, Huang W, Wu X, Guan J, Zeng S, Li M, Chen Q, Zhang M, Zhong H, Lan Q, Cui L, Li L, Xu F. Epigenetic Landscape Analysis of the Long Non-Coding RNA and Messenger RNA in a Mouse Model of Corneal Alkali Burns. Invest Ophthalmol Vis Sci 2021;62:28. [PMID: 33891681 DOI: 10.1167/iovs.62.4.28] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Na KS, Fernandes-Cunha GM, Varela IB, Lee HJ, Seo YA, Myung D. Effect of mesenchymal stromal cells encapsulated within polyethylene glycol-collagen hydrogels formed in situ on alkali-burned corneas in an ex vivo organ culture model. Cytotherapy 2021;23:500-9. [PMID: 33752960 DOI: 10.1016/j.jcyt.2021.02.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
13 Yuvaci İ, Yazar H. Topikal Siklosporin A, Propolis, ve Deksametazonun Korneal Neovaskülarisazyonlu Ratlarda Oksidatif Stres Üzerine Etkileri. Online Türk Sağlık Bilimleri Dergisi 2020. [DOI: 10.26453/otjhs.718950] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
14 Nieto-Nicolau N, Martínez-Conesa EM, Velasco-García AM, Aloy-Reverté C, Vilarrodona A, Casaroli-Marano RP. Xenofree generation of limbal stem cells for ocular surface advanced cell therapy. Stem Cell Res Ther 2019;10:374. [PMID: 31801638 DOI: 10.1186/s13287-019-1501-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
15 Pan J, Wang X, Li D, Li J, Jiang Z. MSCs inhibits the angiogenesis of HUVECs through the miR-211/Prox1 pathway. J Biochem 2019;166:107-13. [PMID: 31143937 DOI: 10.1093/jb/mvz038] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
16 Ibrahim Al-mashahedah AM, Kanwar RK, Kanwar JR. Utility of nanomedicine targeting scar-forming myofibroblasts to attenuate corneal scarring and haze. Nanomedicine 2019;14:1049-72. [DOI: 10.2217/nnm-2017-0305] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
17 Xu H, Tong M, Wang L, Chen R, Li X, Sohawon Y, Yao Q, Xiao J, Zhao Y. Thiolated γ-polyglutamic acid as a bioadhesive hydrogel-forming material: evaluation of gelation, bioadhesive properties and sustained release of KGF in the repair of injured corneas. Biomater Sci 2019;7:2582-99. [DOI: 10.1039/c9bm00341j] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
18 Yang Q, Tang L, Shen M, Wang Y, Wei Y, Jeyalatha V, Chen P, Dong F, Wang G, Wu S, Liu Z, Li C. Effects of diesel exhaust particles on the condition of mouse ocular surface. Ecotoxicology and Environmental Safety 2018;163:585-93. [DOI: 10.1016/j.ecoenv.2018.07.101] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
19 Chen L, Zhong J, Li S, Li W, Wang B, Deng Y, Yuan J. The long-term effect of tacrolimus on alkali burn-induced corneal neovascularization and inflammation surpasses that of anti-vascular endothelial growth factor. Drug Des Devel Ther 2018;12:2959-69. [PMID: 30254425 DOI: 10.2147/DDDT.S175297] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
20 Zahir-Jouzdani F, Khonsari F, Soleimani M, Mahbod M, Arefian E, Heydari M, Shahhosseini S, Dinarvand R, Atyabi F. Nanostructured lipid carriers containing rapamycin for prevention of corneal fibroblasts proliferation and haze propagation after burn injuries: In vitro and in vivo. J Cell Physiol 2019;234:4702-12. [PMID: 30191977 DOI: 10.1002/jcp.27243] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
21 Torrecilla J, Del Pozo-Rodríguez A, Vicente-Pascual M, Solinís MÁ, Rodríguez-Gascón A. Targeting corneal inflammation by gene therapy: Emerging strategies for keratitis. Exp Eye Res 2018;176:130-40. [PMID: 29981344 DOI: 10.1016/j.exer.2018.07.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
22 Kandeel S, Balaha M. Olopatadine enhances recovery of alkali-induced corneal injury in rats. Life Sci 2018;207:499-507. [PMID: 30056863 DOI: 10.1016/j.lfs.2018.07.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
23 Zhou H, Zhang W, Bi M, Wu J. The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (Review). Int J Mol Med 2016;38:1003-11. [PMID: 27499172 DOI: 10.3892/ijmm.2016.2699] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
24 Rodríguez‐gascón A, Pozo‐rodríguez A, Isla A, Solinís MA. Gene Therapy in the Cornea. eLS 2016. [DOI: 10.1002/9780470015902.a0024274] [Cited by in F6Publishing: 1] [Reference Citation Analysis]