1 |
Kim TM, Lee RH, Kim MS, Lewis CA, Park C. ETV2/ER71, the key factor leading the paths to vascular regeneration and angiogenic reprogramming. Stem Cell Res Ther 2023;14:41. [PMID: 36927793 DOI: 10.1186/s13287-023-03267-x] [Reference Citation Analysis]
|
2 |
Li M, Huang Y, Wu J, Li S, Mei M, Chen H, Wang N, Wu W, Zhou B, Tan X, Li B. A PEG-lipid-free COVID-19 mRNA vaccine triggers robust immune responses in mice. Mater Horiz 2023;10:466-72. [PMID: 36468425 DOI: 10.1039/d2mh01260j] [Reference Citation Analysis]
|
3 |
Li D, Liu Q, Yang M, Xu H, Zhu M, Zhang Y, Xu J, Tian C, Yao J, Wang L, Liang Y. Nanomaterials for mRNA ‐based Therapeutics: Challenges and Opportunities. Bioengineering & Transla Med 2023. [DOI: 10.1002/btm2.10492] [Reference Citation Analysis]
|
4 |
Puccetti M, Schoubben A, Giovagnoli S, Ricci M. Biodrug Delivery Systems: Do mRNA Lipid Nanoparticles Come of Age? Int J Mol Sci 2023;24. [PMID: 36768539 DOI: 10.3390/ijms24032218] [Reference Citation Analysis]
|
5 |
Xin X, Huang W. mRNA-Based Cancer Therapy and Challenges. Handbook of Cancer and Immunology 2023. [DOI: 10.1007/978-3-030-80962-1_204-1] [Reference Citation Analysis]
|
6 |
Park Y, Moses AS, Demessie AA, Singh P, Lee H, Korzun T, Taratula OR, Alani AWG, Taratula O. Poly(aspartic acid)-Based Polymeric Nanoparticle for Local and Systemic mRNA Delivery. Mol Pharm 2022;19:4696-704. [PMID: 36409995 DOI: 10.1021/acs.molpharmaceut.2c00738] [Reference Citation Analysis]
|
7 |
Li Z, Liu Z, Wu J, Li B. Cell-Derived Vesicles for mRNA Delivery. Pharmaceutics 2022;14. [PMID: 36559192 DOI: 10.3390/pharmaceutics14122699] [Reference Citation Analysis]
|
8 |
Che D, Wang C, Li Z, Wang K, Sun S, Zhang X, Li Y, Chen Z, Guo L, Hou Y, Zhou D, Geng S. Efficient gene transfection of suspension cells by highly branched poly(β-amino ester). Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.108066] [Reference Citation Analysis]
|
9 |
Chen J, Zhang T, Lu Y, Yang X, Ouyang Z. Emerging trends of research on mRNA vaccines: A co-citation analysis. Hum Vaccin Immunother 2022;18:2110409. [PMID: 36018287 DOI: 10.1080/21645515.2022.2110409] [Reference Citation Analysis]
|
10 |
Cai W, Luo T, Chen X, Mao L, Wang M. A Combinatorial Library of Biodegradable Lipid Nanoparticles Preferentially Deliver mRNA into Tumor Cells to Block Mutant RAS Signaling. Adv Funct Materials. [DOI: 10.1002/adfm.202204947] [Reference Citation Analysis]
|
11 |
Sagi A, Mukthavaram R, Recatto R, Hong H, Davis M, Trelles RD, El-Mecharrafie N, Acharya G, Gomez A, Leu A, Tachikawa K, Sacchetti C, Soontornniyomkij B, Rajappan K, Karmali P, Chivakula P. Efficacy increase of lipid nanoparticles in vivo by inclusion of bis(monoacylglycerol)phosphate. Nanomedicine (Lond) 2022;17:1399-410. [PMID: 36255044 DOI: 10.2217/nnm-2022-0002] [Reference Citation Analysis]
|
12 |
Chen K, Fan N, Huang H, Jiang X, Qin S, Xiao W, Zheng Q, Zhang Y, Duan X, Qin Z, Liu Y, Zeng J, Wei Y, Song X. mRNA Vaccines Against SARS‐CoV‐2 Variants Delivered by Lipid Nanoparticles Based on Novel Ionizable Lipids. Adv Funct Materials. [DOI: 10.1002/adfm.202204692] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
|
13 |
Kim Y, Kim H, Kim EH, Jang H, Jang Y, Chi SG, Yang Y, Kim SH. The Potential of Cell-Penetrating Peptides for mRNA Delivery to Cancer Cells. Pharmaceutics 2022;14:1271. [PMID: 35745843 DOI: 10.3390/pharmaceutics14061271] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
|
14 |
Huang P, Deng H, Zhou Y, Chen X. The roles of polymers in mRNA delivery. Matter 2022;5:1670-99. [DOI: 10.1016/j.matt.2022.03.006] [Reference Citation Analysis]
|
15 |
Chen Z, Hao W, Gao C, Zhou Y, Zhang C, Zhang J, Wang R, Wang Y, Wang S. A polyphenol-assisted IL-10 mRNA delivery system for ulcerative colitis. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.03.025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
16 |
Dirisala A, Uchida S, Li J, Van Guyse JFR, Hayashi K, Vummaleti SVC, Kaur S, Mochida Y, Fukushima S, Kataoka K. Effective mRNA Protection by Poly(l-ornithine) Synergizes with Endosomal Escape Functionality of a Charge-Conversion Polymer toward Maximizing mRNA Introduction Efficiency. Macromol Rapid Commun 2022;:e2100754. [PMID: 35286740 DOI: 10.1002/marc.202100754] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
|
17 |
Chen W, Ma Y, Liu X, Zhu D. Polyester materials for mRNA delivery. Exploration of Targeted Anti-tumor Therapy. [DOI: 10.37349/etat.2022.00075] [Reference Citation Analysis]
|
18 |
Dobrovolskaia MA, Afonin KA, González-Fernández Á. Editorial to "Journey into the immunological properties of engineered nanomaterials: There and back again". Adv Drug Deliv Rev 2022;181:114100. [PMID: 34954314 DOI: 10.1016/j.addr.2021.114100] [Reference Citation Analysis]
|
19 |
Chen M, Hu X, Liu S. Next‐Generation Nonviral Vectors for mRNA Vaccine Delivery. Macro Chemistry & Physics. [DOI: 10.1002/macp.202100443] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
20 |
Shin H, Kim J. Nanoparticle-based non-viral CRISPR delivery for enhanced immunotherapy. Chem Commun (Camb) 2022. [PMID: 35040444 DOI: 10.1039/d1cc05999h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
21 |
Singh P, Muhammad I, Nelson NE, Tran KTM, Vinikoor T, Chorsi MT, D'Orio E, Nguyen TD. Transdermal delivery for gene therapy. Drug Deliv Transl Res 2022;12:2613-33. [PMID: 35538189 DOI: 10.1007/s13346-022-01138-1] [Reference Citation Analysis]
|
22 |
Gómez-aguado I, Rodríguez-castejón J, Beraza-millor M, Rodríguez-gascón A, del Pozo-rodríguez A, Solinís MÁ. mRNA delivery technologies: Toward clinical translation. mRNA-Based Therapeutics 2022. [DOI: 10.1016/bs.ircmb.2022.04.010] [Reference Citation Analysis]
|
23 |
Yokoo H, Oba M, Uchida S. Cell-Penetrating Peptides: Emerging Tools for mRNA Delivery. Pharmaceutics 2021;14:78. [PMID: 35056974 DOI: 10.3390/pharmaceutics14010078] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
|
24 |
Ouranidis A, Vavilis T, Mandala E, Davidopoulou C, Stamoula E, Markopoulou CK, Karagianni A, Kachrimanis K. mRNA Therapeutic Modalities Design, Formulation and Manufacturing under Pharma 4.0 Principles. Biomedicines 2022;10:50. [DOI: 10.3390/biomedicines10010050] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
25 |
Liu J, Yang L, Yuan X, Xiong M, Zhu J, Wu W, Ren M, Long J, Xu X, Gou M. Targeted Nanotherapeutics Using LACTB Gene Therapy Against Melanoma. Int J Nanomedicine 2021;16:7697-709. [PMID: 34819728 DOI: 10.2147/IJN.S331519] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
26 |
Tarn WY, Cheng Y, Ko SH, Huang LM. Antisense Oligonucleotide-Based Therapy of Viral Infections. Pharmaceutics 2021;13:2015. [PMID: 34959297 DOI: 10.3390/pharmaceutics13122015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|