BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yonezawa S, Koide H, Asai T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv Drug Deliv Rev 2020;154-155:64-78. [PMID: 32768564 DOI: 10.1016/j.addr.2020.07.022] [Cited by in Crossref: 62] [Cited by in F6Publishing: 50] [Article Influence: 31.0] [Reference Citation Analysis]
Number Citing Articles
1 Osouli-bostanabad K, Puliga S, Serrano DR, Bucchi A, Halbert G, Lalatsa A. Microfluidic Manufacture of Lipid-Based Nanomedicines. Pharmaceutics 2022;14:1940. [DOI: 10.3390/pharmaceutics14091940] [Reference Citation Analysis]
2 Waheed S, Li Z, Zhang F, Chiarini A, Armato U, Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J Nanobiotechnology 2022;20:395. [PMID: 36045386 DOI: 10.1186/s12951-022-01605-4] [Reference Citation Analysis]
3 Lv W, Xu C, Wu H, Zhu Y, Akakuru OU, Du H, Nie F, Wu A, Li J. Ultrasound-visualized nanocarriers with siRNA for targeted inhibition of M2-like TAM polarization to enhance photothermal therapy in NSCLC. Nano Res . [DOI: 10.1007/s12274-022-4767-7] [Reference Citation Analysis]
4 Arruda DC, Lachagès AM, Demory H, Escriou G, Lai-Kuen R, Dugas PY, Hoffmann C, Bessoles S, Sarrabayrouse G, Malachias A, Finet S, Gastelois PL, de Almeida Macedo WA, da Silva Cunha A Jr, Bigey P, Escriou V. Spheroplexes: Hybrid PLGA-cationic lipid nanoparticles, for in vitro and oral delivery of siRNA. J Control Release 2022:S0168-3659(22)00535-1. [PMID: 35995297 DOI: 10.1016/j.jconrel.2022.08.030] [Reference Citation Analysis]
5 Ko C, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01582-8] [Reference Citation Analysis]
6 Sharma P, Kumar A, Agarwal T, Dey AD, Moghaddam FD, Rahimmanesh I, Ghovvati M, Yousefiasl S, Borzacchiello A, Mohammadi A, Yella VR, Moradi O, Sharifi E. Nucleic acid-based therapeutics for dermal wound healing. Int J Biol Macromol 2022;220:920-33. [PMID: 35987365 DOI: 10.1016/j.ijbiomac.2022.08.099] [Reference Citation Analysis]
7 Duan C, Townley H. Exploitation of High Tumour GSH Levels for Targeted siRNA Delivery in Rhabdomyosarcoma Cells. Biomolecules 2022;12:1129. [DOI: 10.3390/biom12081129] [Reference Citation Analysis]
8 Alhaj-suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2022.114482] [Reference Citation Analysis]
9 Sargazi S, Arshad R, Ghamari R, Rahdar A, Bakhshi A, Karkan SF, Ajalli N, Bilal M, Díez-Pascual AM. siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biol Int 2022. [PMID: 35830711 DOI: 10.1002/cbin.11841] [Reference Citation Analysis]
10 Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022;7:231. [PMID: 35817770 DOI: 10.1038/s41392-022-01082-z] [Reference Citation Analysis]
11 Paul A, Muralidharan A, Biswas A, Venkatesh Kamath B, Joseph A, Alex AT. siRNA Therapeutics and its Challenges: Recent Advances in Effective Delivery for Cancer Therapy. OpenNano 2022. [DOI: 10.1016/j.onano.2022.100063] [Reference Citation Analysis]
12 Lee J, Kim D, Byun J, Wu Y, Park J, Oh YK. In vivo fate and intracellular trafficking of vaccine delivery systems. Adv Drug Deliv Rev 2022;186:114325. [PMID: 35550392 DOI: 10.1016/j.addr.2022.114325] [Reference Citation Analysis]
13 Nasrollahpour M, Vafaee M, Razzaghi S. Structural and dynamical properties of Palmitoyl-Oleoyl phosphatidylserine lipid nanotubes containing cholesterols and PEGylated dioleoyl Phosphatidylethanolamine: A Coarse-Grained molecular dynamics simulation. Chemical Engineering Science 2022;260:117848. [DOI: 10.1016/j.ces.2022.117848] [Reference Citation Analysis]
14 Du W, Wang L. The Crosstalk Between Liver Sinusoidal Endothelial Cells and Hepatic Microenvironment in NASH Related Liver Fibrosis. Front Immunol 2022;13:936196. [DOI: 10.3389/fimmu.2022.936196] [Reference Citation Analysis]
15 Yu C, Li K, Xu L, Li B, Li C, Guo S, Li Z, Zhang Y, Hussain A, Tan H, Zhang M, Zhao Y, Huang Y, Liang X. siRNA-functionalized lanthanide nanoparticle enables efficient endosomal escape and cancer treatment. Nano Res . [DOI: 10.1007/s12274-022-4573-2] [Reference Citation Analysis]
16 El Moukhtari SH, Garbayo E, Fernández-Teijeiro A, Rodríguez-Nogales C, Couvreur P, Blanco-Prieto MJ. Nanomedicines and cell-based therapies for embryonal tumors of the nervous system. J Control Release 2022;348:553-71. [PMID: 35705114 DOI: 10.1016/j.jconrel.2022.06.010] [Reference Citation Analysis]
17 Chen Y, Tandon I, Heelan W, Wang Y, Tang W, Hu Q. Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation. Chem Soc Rev 2022. [PMID: 35713468 DOI: 10.1039/d1cs00762a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Rahimi M, Mir SM, Baghban R, Charmi G, Plummer CM, Shafiei-Irannejad V, Soleymani J, Pietrasik J. Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022;215:346-67. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Ferhan AR, Park S, Park H, Tae H, Jackman JA, Cho N. Lipid Nanoparticle Technologies for Nucleic Acid Delivery: A Nanoarchitectonics Perspective. Adv Funct Materials. [DOI: 10.1002/adfm.202203669] [Reference Citation Analysis]
20 Rana S, Bhatnagar A, Singh S, Prabhakar N. Evaluation of liver specific ionizable lipid nanocarrierin the delivery of siRNA. Chem Phys Lipids 2022;:105207. [PMID: 35623403 DOI: 10.1016/j.chemphyslip.2022.105207] [Reference Citation Analysis]
21 Liu D, Cheng Y, Qiao S, Liu M, Ji Q, Zhang BL, Mei QB, Zhou S. Nano-Codelivery of Temozolomide and siPD-L1 to Reprogram the Drug-Resistant and Immunosuppressive Microenvironment in Orthotopic Glioblastoma. ACS Nano 2022. [PMID: 35549164 DOI: 10.1021/acsnano.1c09794] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Ezra Manicum A, Sargazi S, Razzaq S, Kumar GV, Rahdar A, Er S, Ain QU, Bilal M, Aboudzadeh MA. Nano-immunotherapeutic strategies for targeted RNA delivery: Emphasizing the role of monocyte/macrophages as nanovehicles to treat glioblastoma multiforme. Journal of Drug Delivery Science and Technology 2022;71:103288. [DOI: 10.1016/j.jddst.2022.103288] [Reference Citation Analysis]
23 Mahabady MK, Mirzaei S, Saebfar H, Gholami MH, Zabolian A, Hushmandi K, Hashemi F, Tajik F, Hashemi M, Kumar AP, Aref AR, Zarrabi A, Khan H, Hamblin MR, Nuri Ertas Y, Samarghandian S. Noncoding RNAs and their therapeutics in paclitaxel chemotherapy: Mechanisms of initiation, progression, and drug sensitivity. J Cell Physiol 2022;237:2309-44. [PMID: 35437787 DOI: 10.1002/jcp.30751] [Reference Citation Analysis]
24 Yang S, Huang Y, Zhao Q. Epigenetic Alterations and Inflammation as Emerging Use for the Advancement of Treatment in Non-Small Cell Lung Cancer. Front Immunol 2022;13:878740. [DOI: 10.3389/fimmu.2022.878740] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Tschöpe C, Elsanhoury A. Treatment of Transthyretin Amyloid Cardiomyopathy: The Current Options, the Future, and the Challenges. J Clin Med 2022;11:2148. [PMID: 35456241 DOI: 10.3390/jcm11082148] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
26 Shiohama Y, Fujita R, Sonokawa M, Hisano M, Kotake Y, Krstic-demonacos M, Demonacos C, Kashiwazaki G, Kitayama T, Fujii M. Elimination of Off-Target Effect by Chemical Modification of 5′-End of Small Interfering RNA. Nucleic Acid Therapeutics. [DOI: 10.1089/nat.2021.0068] [Reference Citation Analysis]
27 Song Y, Jing H, Vong LB, Wang J, Li N. Recent advances in targeted stimuli-responsive nano-based drug delivery systems combating atherosclerosis. Chinese Chemical Letters 2022;33:1705-17. [DOI: 10.1016/j.cclet.2021.10.055] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
28 Cabrera-Becerra SE, Vera-Juárez G, García-Rubio VG, Ocampo-Ortega SA, Blancas-Napoles CM, Aguilera-Mendez A, Romero-Nava R, Huang F, Hong E, Villafaña S. siRNA knockdown of Angiopoietin 2 significantly reduces neovascularization in diabetic rats. J Drug Target 2022;:1-20. [PMID: 35289235 DOI: 10.1080/1061186X.2022.2052888] [Reference Citation Analysis]
29 Zoulikha M, He W. Targeted Drug Delivery for Chronic Lymphocytic Leukemia. Pharm Res. [DOI: 10.1007/s11095-022-03214-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Goga A, Stoffel M. Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nat Rev Drug Discov 2022. [PMID: 35210608 DOI: 10.1038/s41573-022-00407-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Hasan M, Fukuta T, Inoue S, Mori H, Kagawa M, Kogure K. Iontophoresis-mediated direct delivery of nucleic acid therapeutics, without use of carriers, to internal organs via non-blood circulatory pathways. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.01.052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Zoulikha M, Xiao Q, Boafo GF, Sallam MA, Chen Z, He W. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm Sin B 2022;12:600-20. [PMID: 34401226 DOI: 10.1016/j.apsb.2021.08.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 15.0] [Reference Citation Analysis]
33 Xie B, Du K, Huang F, Lin Z, Wu L. Cationic Nanomaterials for Autoimmune Diseases Therapy. Front Pharmacol 2022;12:762362. [DOI: 10.3389/fphar.2021.762362] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Sakamoto K, Furukawa H, Arafiles JVV, Imanishi M, Matsuura K, Futaki S. Artificial Nanocage Formed via Self-Assembly of β-Annulus Peptide for Delivering Biofunctional Proteins into Cell Interiors. Bioconjug Chem 2022. [PMID: 35049280 DOI: 10.1021/acs.bioconjchem.1c00534] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Bidar N, Darroudi M, Ebrahimzadeh A, Safdari M, de la Guardia M, Baradaran B, Goodarzi V, Oroojalian F, Mokhtarzadeh A. Simultaneous nanocarrier-mediated delivery of siRNAs and chemotherapeutic agents in cancer therapy and diagnosis: Recent advances. Eur J Pharmacol 2022;915:174639. [PMID: 34919890 DOI: 10.1016/j.ejphar.2021.174639] [Reference Citation Analysis]
36 Chen X, Zhou B, Gao Y, Wang K, Wu J, Shuai M, Men K, Duan X. Efficient Treatment of Rheumatoid Arthritis by Degradable LPCE Nano-Conjugate-Delivered p65 siRNA. Pharmaceutics 2022;14:162. [PMID: 35057057 DOI: 10.3390/pharmaceutics14010162] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Yan Y, Liu XY, Lu A, Wang XY, Jiang LX, Wang JC. Non-viral vectors for RNA delivery. J Control Release 2022;342:241-79. [PMID: 35016918 DOI: 10.1016/j.jconrel.2022.01.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
38 Yoon J, Shin M, Lee JY, Lee SN, Choi JH, Choi JW. RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy. J Control Release 2022;342:228-40. [PMID: 35016917 DOI: 10.1016/j.jconrel.2022.01.012] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Akhilesh, Uniyal A, Gadepalli A, Tiwari V, Allani M, Chouhan D, Ummadisetty O, Verma N, Tiwari V. Unlocking the potential of TRPV1 based siRNA therapeutics for the treatment of chemotherapy-induced neuropathic pain. Life Sci 2022;288:120187. [PMID: 34856209 DOI: 10.1016/j.lfs.2021.120187] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Tang Y, Chen Y, Zhang Z, Tang B, Zhou Z, Chen H. Nanoparticle-Based RNAi Therapeutics Targeting Cancer Stem Cells: Update and Prospective. Pharmaceutics 2021;13:2116. [PMID: 34959397 DOI: 10.3390/pharmaceutics13122116] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
41 He K, Huang X, Shan R, Yang X, Song R, Xie F, Huang G. Intra-articular Injection of Lornoxicam and MicroRNA-140 Co-loaded Cationic Liposomes Enhanced the Therapeutic Treatment of Experimental Osteoarthritis. AAPS PharmSciTech 2021;23:9. [PMID: 34859319 DOI: 10.1208/s12249-021-02149-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
42 Brunet de Courssou JB, Durr A, Adams D, Corvol JC, Mariani LL. Antisense therapies in neurological diseases. Brain 2021:awab423. [PMID: 35286370 DOI: 10.1093/brain/awab423] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Yu W, Lei Q, Yang L, Qin G, Liu S, Wang D, Ping Y, Zhang Y. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J Hematol Oncol 2021;14:187. [PMID: 34742349 DOI: 10.1186/s13045-021-01200-4] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
44 Jiang T, Qiao Y, Ruan W, Zhang D, Yang Q, Wang G, Chen Q, Zhu F, Yin J, Zou Y, Qian R, Zheng M, Shi B. Cation-Free siRNA Micelles as Effective Drug Delivery Platform and Potent RNAi Nanomedicines for Glioblastoma Therapy. Adv Mater 2021;33:e2104779. [PMID: 34751990 DOI: 10.1002/adma.202104779] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
45 Liu Z, Xu N, Zhao L, Yu J, Zhang P. Bifunctional lipids in tumor vaccines: An outstanding delivery carrier and promising immune stimulator. Int J Pharm 2021;608:121078. [PMID: 34500059 DOI: 10.1016/j.ijpharm.2021.121078] [Reference Citation Analysis]
46 Biessen EAL, Van Berkel TJC. N-Acetyl Galactosamine Targeting: Paving the Way for Clinical Application of Nucleotide Medicines in Cardiovascular Diseases. Arterioscler Thromb Vasc Biol 2021;41:2855-65. [PMID: 34645280 DOI: 10.1161/ATVBAHA.121.316290] [Reference Citation Analysis]
47 Connerty P, Moles E, de Bock CE, Jayatilleke N, Smith JL, Meshinchi S, Mayoh C, Kavallaris M, Lock RB. Development of siRNA-Loaded Lipid Nanoparticles Targeting Long Non-Coding RNA LINC01257 as a Novel and Safe Therapeutic Approach for t(8;21) Pediatric Acute Myeloid Leukemia. Pharmaceutics 2021;13:1681. [PMID: 34683974 DOI: 10.3390/pharmaceutics13101681] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
48 Evans B, Furlong HA 4th, de Lencastre A. Parkinson's disease and microRNAs - Lessons from model organisms and human studies. Exp Gerontol 2021;155:111585. [PMID: 34634413 DOI: 10.1016/j.exger.2021.111585] [Reference Citation Analysis]
49 Suzuki Y, Ishihara H. Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs. Drug Metab Pharmacokinet 2021;41:100424. [PMID: 34757287 DOI: 10.1016/j.dmpk.2021.100424] [Cited by in F6Publishing: 14] [Reference Citation Analysis]
50 Kim MJ, Chang H, Nam G, Ko Y, Kim SH, Roberts TM, Ryu JH. RNAi-Based Approaches for Pancreatic Cancer Therapy. Pharmaceutics 2021;13:1638. [PMID: 34683931 DOI: 10.3390/pharmaceutics13101638] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
51 Hirai Y, Hirose H, Imanishi M, Asai T, Futaki S. Cytosolic protein delivery using pH-responsive, charge-reversible lipid nanoparticles. Sci Rep 2021;11:19896. [PMID: 34615928 DOI: 10.1038/s41598-021-99180-5] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
52 Uddin MN, Roni MA. Challenges of Storage and Stability of mRNA-Based COVID-19 Vaccines. Vaccines (Basel) 2021;9:1033. [PMID: 34579270 DOI: 10.3390/vaccines9091033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 25] [Article Influence: 1.0] [Reference Citation Analysis]
53 Luo D, Xu X, Iqbal MZ, Zhao Q, Zhao R, Farheen J, Zhang Q, Zhang P, Kong X. siRNA-Loaded Hydroxyapatite Nanoparticles for KRAS Gene Silencing in Anti-Pancreatic Cancer Therapy. Pharmaceutics 2021;13:1428. [PMID: 34575504 DOI: 10.3390/pharmaceutics13091428] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Binzel DW, Guo S, Yin H, Lee TJ, Liu S, Shu D, Guo P. Rational design for controlled release of Dicer-substrate siRNA harbored in phi29 pRNA-based nanoparticles. Mol Ther Nucleic Acids 2021;25:524-35. [PMID: 34589275 DOI: 10.1016/j.omtn.2021.07.021] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
55 Kumar S, Duan Q, Wu R, Harris EN, Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev 2021;176:113869. [PMID: 34280515 DOI: 10.1016/j.addr.2021.113869] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 17.0] [Reference Citation Analysis]
56 Rinoldi C, Zargarian SS, Nakielski P, Li X, Liguori A, Petronella F, Presutti D, Wang Q, Costantini M, De Sio L, Gualandi C, Ding B, Pierini F. Nanotechnology-Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVID-19 Vaccines. Small Methods 2021;:2100402. [PMID: 34514087 DOI: 10.1002/smtd.202100402] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
57 Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021;174:140-67. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
58 Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid Nanoparticles-From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021. [PMID: 34181394 DOI: 10.1021/acsnano.1c04996] [Cited by in Crossref: 86] [Cited by in F6Publishing: 107] [Article Influence: 86.0] [Reference Citation Analysis]
59 Elia U, Ramishetti S, Rosenfeld R, Dammes N, Bar-Haim E, Naidu GS, Makdasi E, Yahalom-Ronen Y, Tamir H, Paran N, Cohen O, Peer D. Design of SARS-CoV-2 hFc-Conjugated Receptor-Binding Domain mRNA Vaccine Delivered via Lipid Nanoparticles. ACS Nano 2021;15:9627-37. [PMID: 33480671 DOI: 10.1021/acsnano.0c10180] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 30.0] [Reference Citation Analysis]
60 Huntington J, Pachauri M, Ali H, Giacca M. RNA interference therapeutics for cardiac regeneration. Curr Opin Genet Dev 2021;70:48-53. [PMID: 34098251 DOI: 10.1016/j.gde.2021.05.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
61 Adachi H, Hengesbach M, Yu YT, Morais P. From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies. Biomedicines 2021;9:550. [PMID: 34068948 DOI: 10.3390/biomedicines9050550] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
62 Wang Y, Chen S, Yang X, Zhang S, Cui C. Preparation Optimization of Bovine Serum Albumin Nanoparticles and Its Application for siRNA Delivery. Drug Des Devel Ther 2021;15:1531-47. [PMID: 33883877 DOI: 10.2147/DDDT.S299479] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
63 Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines (Basel) 2021;9:359. [PMID: 33918072 DOI: 10.3390/vaccines9040359] [Cited by in Crossref: 17] [Cited by in F6Publishing: 78] [Article Influence: 17.0] [Reference Citation Analysis]
64 Dutta K, Das R, Medeiros J, Kanjilal P, Thayumanavan S. Charge‐Conversion Strategies for Nucleic Acid Delivery. Adv Funct Mater 2021;31:2011103. [DOI: 10.1002/adfm.202011103] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
65 Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021;260:117809. [PMID: 33712155 DOI: 10.1016/j.carbpol.2021.117809] [Cited by in Crossref: 13] [Cited by in F6Publishing: 47] [Article Influence: 13.0] [Reference Citation Analysis]
66 Munson MJ, O'Driscoll G, Silva AM, Lázaro-Ibáñez E, Gallud A, Wilson JT, Collén A, Esbjörner EK, Sabirsh A. A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery. Commun Biol 2021;4:211. [PMID: 33594247 DOI: 10.1038/s42003-021-01728-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
67 Kurmi M, Suryavanshi V, Panduranga NS, Jayaraman K, Bajpai L, Fish W, Hu Y, Bhutani H. Development of HPLC-CAD stability indicating assay method for polyethylene glycol-conjugated phospholipid (DMPE-PEG 2000) and identification of its degradation products. J Pharm Biomed Anal 2021;198:113967. [PMID: 33662758 DOI: 10.1016/j.jpba.2021.113967] [Reference Citation Analysis]
68 Qiao H, Zhang L, Fang D, Zhu Z, He W, Hu L, Di L, Guo Z, Wang X. Surmounting tumor resistance to metallodrugs by co-loading a metal complex and siRNA in nanoparticles. Chem Sci 2021;12:4547-56. [PMID: 34163720 DOI: 10.1039/d0sc06680j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
69 Ndeboko B, Omouessi ST, Ongali B, Mouinga-Ondémé A. Cell Penetrating Peptides Used in Delivery of Therapeutic Oligonucleotides Targeting Hepatitis B Virus. Pharmaceuticals (Basel) 2020;13:483. [PMID: 33371278 DOI: 10.3390/ph13120483] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
70 Macchione MA, Aristizabal Bedoya D, Figueroa FN, Muñoz-Fernández MÁ, Strumia MC. Nanosystems Applied to HIV Infection: Prevention and Treatments. Int J Mol Sci 2020;21:E8647. [PMID: 33212766 DOI: 10.3390/ijms21228647] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]