BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Coentro JQ, Pugliese E, Hanley G, Raghunath M, Zeugolis DI. Current and upcoming therapies to modulate skin scarring and fibrosis. Adv Drug Deliv Rev 2019;146:37-59. [PMID: 30172924 DOI: 10.1016/j.addr.2018.08.009] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 18.7] [Reference Citation Analysis]
Number Citing Articles
1 Shen Y, Xu G, Huang H, Wang K, Wang H, Lang M, Gao H, Zhao S. Sequential Release of Small Extracellular Vesicles from Bilayered Thiolated Alginate/Polyethylene Glycol Diacrylate Hydrogels for Scarless Wound Healing. ACS Nano 2021;15:6352-68. [PMID: 33723994 DOI: 10.1021/acsnano.0c07714] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 21.0] [Reference Citation Analysis]
2 Li J, Ding Z, Zheng X, Lu G, Lu Q, Kaplan DL. Injectable silk nanofiber hydrogels as stem cell carriers to accelerate wound healing. J Mater Chem B 2021;9:7771-81. [PMID: 34586152 DOI: 10.1039/d1tb01320c] [Reference Citation Analysis]
3 Yang F, Chen E, Yang Y, Han F, Han S, Wu G, Zhang M, Zhang J, Han J, Su L, Hu D. The Akt/FoxO/p27Kip1 axis contributes to the anti-proliferation of pentoxifylline in hypertrophic scars. J Cell Mol Med 2019;23:6164-72. [PMID: 31270945 DOI: 10.1111/jcmm.14498] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
4 Xie R, Zhong A, Wu J, Cen Y, Chen J. Could hyperbaric oxygen be an effective therapy option for pathological scars? A systematic review and meta-analysis. J Plast Surg Hand Surg 2022;:1-6. [PMID: 35584798 DOI: 10.1080/2000656X.2022.2075371] [Reference Citation Analysis]
5 Shao T, Tang W, Li Y, Gao D, Lv K, He P, Song Y, Gao S, Liu M, Chen Y, Yi Z. Research on function and mechanisms of a novel small molecule WG 449E for hypertrophic scar. J Eur Acad Dermatol Venereol 2019;34:608-18. [DOI: 10.1111/jdv.16028] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
6 Liu L, Yu H, Long Y, You Z, Ogawa R, Du Y, Huang C. Asporin inhibits collagen matrix-mediated intercellular mechanocommunications between fibroblasts during keloid progression. FASEB J 2021;35:e21705. [PMID: 34105826 DOI: 10.1096/fj.202100111R] [Reference Citation Analysis]
7 Guo C, Zhang J, Feng X, Du Z, Jiang Y, Shi Y, Yang G, Tan L. Polyhexamethylene biguanide chemically modified cotton with desirable hemostatic, inflammation-reducing, intrinsic antibacterial property for infected wound healing. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2021.12.086] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Stoica AE, Grumezescu AM, Hermenean AO, Andronescu E, Vasile BS. Scar-Free Healing: Current Concepts and Future Perspectives. Nanomaterials (Basel) 2020;10:E2179. [PMID: 33142891 DOI: 10.3390/nano10112179] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
9 Lv W, Ren Y, Hou K, Hu W, Yi Y, Xiong M, Wu M, Wu Y, Zhang Q. Epigenetic modification mechanisms involved in keloid: current status and prospect. Clin Epigenetics 2020;12:183. [PMID: 33243301 DOI: 10.1186/s13148-020-00981-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Liu SC, Bamodu OA, Kuo KT, Fong IH, Lin CC, Yeh CT, Chen SG. Adipose-derived stem cell induced-tissue repair or wound healing is mediated by the concomitant upregulation of miR-21 and miR-29b expression and activation of the AKT signaling pathway. Arch Biochem Biophys 2021;705:108895. [PMID: 33933426 DOI: 10.1016/j.abb.2021.108895] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Qiu X, Liu J, Zheng C, Su Y, Bao L, Zhu B, Liu S, Wang L, Wang X, Wang Y, Zhao W, Zhou J, Deng Z, Liu S, Jin Y. Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Prolif 2020;53:e12830. [PMID: 32608556 DOI: 10.1111/cpr.12830] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
12 Realini T, Shillingford-Ricketts H, Burt D, Balasubramani GK. West Indies Glaucoma Laser Study (WIGLS) 3. Anterior Chamber Inflammation Following Selective Laser Trabeculoplasty in Afro-Caribbeans with Open-angle Glaucoma. J Glaucoma 2019;28:622-5. [PMID: 30921277 DOI: 10.1097/IJG.0000000000001250] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
13 Shen W, Zhang Z, Ma J, Lu D, Lyu L. The Ubiquitin Proteasome System and Skin Fibrosis. Mol Diagn Ther 2021;25:29-40. [PMID: 33433895 DOI: 10.1007/s40291-020-00509-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Lingzhi Z, Meirong L, Xiaobing F. Biological approaches for hypertrophic scars. Int Wound J 2020;17:405-18. [PMID: 31860941 DOI: 10.1111/iwj.13286] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
15 Sun HH, Feng XM, Wang JC, Cai J. Allicin can suppress the activity of vascular endothelial cells probably by regulating JAK2/STAT3 pathway. Mol Cell Biochem 2021;476:435-41. [PMID: 32975696 DOI: 10.1007/s11010-020-03919-z] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Lan C, Tan J, Tang L, Liu G, Huang L, Luo X, Zhou L, Zhu Y, Liu X, Fan N. Forkhead domain inhibitory-6 attenuates subconjunctival fibrosis in rabbit model with trabeculectomy. Exp Eye Res 2021;210:108725. [PMID: 34375589 DOI: 10.1016/j.exer.2021.108725] [Reference Citation Analysis]
17 Liu X, Gao X, Li H, Li Z, Wang X, Zhang L, Wang B, Chen X, Meng X, Yu J. Ellagic acid exerts anti-fibrotic effects on hypertrophic scar fibroblasts via inhibition of TGF-β1/Smad2/3 pathway. Appl Biol Chem 2021;64. [DOI: 10.1186/s13765-021-00641-2] [Reference Citation Analysis]
18 Nischwitz SP, Rauch K, Luze H, Hofmann E, Draschl A, Kotzbeck P, Kamolz LP. Evidence-based therapy in hypertrophic scars: An update of a systematic review. Wound Repair Regen 2020;28:656-65. [PMID: 32506727 DOI: 10.1111/wrr.12839] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
19 Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J. 2019;286:2830-2869. [PMID: 30908868 DOI: 10.1111/febs.14818] [Cited by in Crossref: 94] [Cited by in F6Publishing: 90] [Article Influence: 31.3] [Reference Citation Analysis]
20 Chen L, Li Z, Zheng Y, Zhou F, Zhao J, Zhai Q, Zhang Z, Liu T, Chen Y, Qi S. 3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization. Bioact Mater 2022;10:236-46. [PMID: 34901542 DOI: 10.1016/j.bioactmat.2021.09.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
21 Grasman JM, Williams MD, Razis CG, Bonzanni M, Golding AS, Cairns DM, Levin M, Kaplan DL. Hyperosmolar potassium inhibits myofibroblast conversion and reduces scar tissue formation. ACS Biomater Sci Eng 2019;5:5327-36. [PMID: 32440531 DOI: 10.1021/acsbiomaterials.9b00810] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
22 Bin Y, Dongzhen Z, Xiaoli C, Jirigala E, Wei S, Zhao L, Tian H, Ping Z, Jianjun L, Yuzhen W, Yijie Z, Xiaobing F, Sha H. Modeling human hypertrophic scars with 3D preformed cellular aggregates bioprinting. Bioact Mater 2022;10:247-54. [PMID: 34901543 DOI: 10.1016/j.bioactmat.2021.09.004] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Hang J, Chen J, Zhang W, Yuan T, Xu Y, Zhou B. Correlation between elastic modulus and clinical severity of pathological scars: a cross-sectional study. Sci Rep 2021;11:23324. [PMID: 34857833 DOI: 10.1038/s41598-021-02730-0] [Reference Citation Analysis]
24 Boumil EF, Castro N, Phillips AT, Chatterton JE, McCauley SM, Wolfson AD, Shmushkovich T, Ridilla M, Bernstein AM. USP10 Targeted Self-Deliverable siRNA to Prevent Scarring in the Cornea. Mol Ther Nucleic Acids 2020;21:1029-43. [PMID: 32829179 DOI: 10.1016/j.omtn.2020.07.032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Chen Z, Jin Y, Zou Y, Qiu Y, Hu L, Chang L, Chen H, Lin X. Prolonged Usage of an Adhesive Wound Closure Device in Postoperative Facial Scar Management: A Split-Wound Randomized Controlled Trial. Facial Plast Surg Aesthet Med 2021;23:389-92. [PMID: 33667113 DOI: 10.1089/fpsam.2020.0574] [Reference Citation Analysis]
26 Korntner S, Zeugolis DI. Wound healing and fibrosis - State of play. Adv Drug Deliv Rev 2019;146:1-2. [PMID: 31706374 DOI: 10.1016/j.addr.2019.10.002] [Reference Citation Analysis]
27 Magni G, Banchelli M, Cherchi F, Coppi E, Fraccalvieri M, Rossi M, Tatini F, Pugliese AM, Rossi Degl'Innocenti D, Alfieri D, Matteini P, Pini R, Pavone FS, Rossi F. Experimental Study on Blue Light Interaction with Human Keloid-Derived Fibroblasts. Biomedicines 2020;8:E573. [PMID: 33291338 DOI: 10.3390/biomedicines8120573] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
28 Jiang K, Zhao D, Ye R, Liu X, Gao C, Guo Y, Zhang C, Zeng J, Wang S, Song J. Transdermal delivery of poly-hyaluronic acid-based spherical nucleic acids for chemogene therapy. Nanoscale 2022. [PMID: 35040454 DOI: 10.1039/d1nr06353g] [Reference Citation Analysis]
29 Karppinen SM, Heljasvaara R, Gullberg D, Tasanen K, Pihlajaniemi T. Toward understanding scarless skin wound healing and pathological scarring. F1000Res 2019;8:F1000 Faculty Rev-787. [PMID: 31231509 DOI: 10.12688/f1000research.18293.1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 10.7] [Reference Citation Analysis]
30 Zhang Q, Shi L, He H, Liu X, Huang Y, Xu D, Yao M, Zhang N, Guo Y, Lu Y, Li H, Zhou J, Tan J, Xing M, Luo G. Down-Regulating Scar Formation by Microneedles Directly via a Mechanical Communication Pathway. ACS Nano 2022. [PMID: 35617518 DOI: 10.1021/acsnano.1c11016] [Reference Citation Analysis]
31 Griffin MF, desJardins-Park HE, Mascharak S, Borrelli MR, Longaker MT. Understanding the impact of fibroblast heterogeneity on skin fibrosis. Dis Model Mech 2020;13:dmm044164. [PMID: 32541065 DOI: 10.1242/dmm.044164] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 12.5] [Reference Citation Analysis]
32 Coentro JQ, May U, Prince S, Zwaagstra J, Ritvos O, Järvinen TAH, Zeugolis DI. Adapting the Scar-in-a-Jar to Skin Fibrosis and Screening Traditional and Contemporary Anti-Fibrotic Therapies. Front Bioeng Biotechnol 2021;9:756399. [PMID: 34765594 DOI: 10.3389/fbioe.2021.756399] [Reference Citation Analysis]
33 Chen Z, Jin Y, Zou Y, Qiu Y, Hu L, Chang L, Chen H, Lin X. Scar Prevention With Prolonged Use of Tissue Adhesive Zipper Immediately After Facial Surgery: A Randomized Controlled Trial. Aesthet Surg J 2022;42:NP265-72. [PMID: 34850808 DOI: 10.1093/asj/sjab407] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Krämer B, Neis F, Brucker SY, Kommoss S, Andress J, Hoffmann S. Peritoneal Adhesions and their Prevention - Current Trends. Surg Technol Int 2021;38:221-33. [PMID: 33503674] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Song J, Li X, Li J. Emerging evidence for the roles of peptide in hypertrophic scar. Life Sci 2020;241:117174. [PMID: 31843531 DOI: 10.1016/j.lfs.2019.117174] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
36 Wang P, Gu L, Bi H, Wang Q, Qin Z. Comparing the Efficacy and Safety of Intralesional Verapamil With Intralesional Triamcinolone Acetonide in Treatment of Hypertrophic Scars and Keloids: A Meta-Analysis of Randomized Controlled Trials. Aesthet Surg J 2021;41:NP567-75. [PMID: 33313652 DOI: 10.1093/asj/sjaa357] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Jiang K, Chen Y, Zhao D, Cheng J, Mo F, Ji B, Gao C, Zhang C, Song J. A facile and efficient approach for hypertrophic scar therapy via DNA-based transdermal drug delivery. Nanoscale 2020;12:18682-91. [DOI: 10.1039/d0nr04751a] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
38 Capella-Monsonís H, Tilbury MA, Wall JG, Zeugolis DI. Porcine mesothelium matrix as a biomaterial for wound healing applications. Mater Today Bio 2020;7:100057. [PMID: 32577613 DOI: 10.1016/j.mtbio.2020.100057] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
39 He T, Bai X, Jing J, Liu Y, Wang H, Zhang W, Li X, Li Y, Wang L, Xie S, Hu D. Notch signal deficiency alleviates hypertrophic scar formation after wound healing through the inhibition of inflammation. Archives of Biochemistry and Biophysics 2020;682:108286. [DOI: 10.1016/j.abb.2020.108286] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Capella-Monsonís H, De Pieri A, Peixoto R, Korntner S, Zeugolis DI. Extracellular matrix-based biomaterials as adipose-derived stem cell delivery vehicles in wound healing: a comparative study between a collagen scaffold and two xenografts. Stem Cell Res Ther 2020;11:510. [PMID: 33246508 DOI: 10.1186/s13287-020-02021-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
41 Song J, He S, Wang Y, Yu A, Zhang F, Zhu X. Successful treatment of facial hypertrophic scar with HMME-PDT: A case report. Photodiagnosis Photodyn Ther 2020;31:101910. [PMID: 32622073 DOI: 10.1016/j.pdpdt.2020.101910] [Reference Citation Analysis]
42 Chen H, Hou K, Wu Y, Liu Z. Use of Adipose Stem Cells Against Hypertrophic Scarring or Keloid. Front Cell Dev Biol 2021;9:823694. [PMID: 35071247 DOI: 10.3389/fcell.2021.823694] [Reference Citation Analysis]
43 Zhu H, Li J, Li Y, Zheng Z, Guan H, Wang H, Tao K, Liu J, Wang Y, Zhang W, Li C, Li J, Jia L, Bai W, Hu D. Glucocorticoid counteracts cellular mechanoresponses by LINC01569-dependent glucocorticoid receptor-mediated mRNA decay. Sci Adv 2021;7:eabd9923. [PMID: 33627425 DOI: 10.1126/sciadv.abd9923] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
44 Ahangar P, Mills SJ, Smith LE, Strudwick XL, Ting AE, Vaes B, Cowin AJ. Human multipotent adult progenitor cell-conditioned medium improves wound healing through modulating inflammation and angiogenesis in mice. Stem Cell Res Ther 2020;11:299. [PMID: 32680566 DOI: 10.1186/s13287-020-01819-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
45 Nurkesh A, Jaguparov A, Jimi S, Saparov A. Recent Advances in the Controlled Release of Growth Factors and Cytokines for Improving Cutaneous Wound Healing. Front Cell Dev Biol 2020;8:638. [PMID: 32760728 DOI: 10.3389/fcell.2020.00638] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
46 Ji X, Tang Z, Shuai W, Zhang Z, Li J, Chen L, Cao J, Yin W. Endogenous peptide LYENRL prevents the activation of hypertrophic scar-derived fibroblasts by inhibiting the TGF-β1/Smad pathway. Life Sciences 2019;231:116674. [DOI: 10.1016/j.lfs.2019.116674] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
47 Capella-Monsonís H, Kearns S, Kelly J, Zeugolis DI. Battling adhesions: from understanding to prevention. BMC Biomed Eng 2019;1:5. [PMID: 32903353 DOI: 10.1186/s42490-019-0005-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
48 Tu L, Lin Z, Huang Q, Liu D. USP15 Enhances the Proliferation, Migration, and Collagen Deposition of Hypertrophic Scar-Derived Fibroblasts by Deubiquitinating TGF-βR1 In Vitro. Plast Reconstr Surg 2021;148:1040-51. [PMID: 34546211 DOI: 10.1097/PRS.0000000000008488] [Reference Citation Analysis]
49 Yang YW, Zhang CN, Cao YJ, Qu YX, Li TY, Yang TG, Geng D, Sun YK. Bidirectional regulation of i-type lysozyme on cutaneous wound healing. Biomed Pharmacother 2020;131:110700. [PMID: 33152906 DOI: 10.1016/j.biopha.2020.110700] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]