BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sanjay ST, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, Li X. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 2018;128:3-28. [PMID: 28919029 DOI: 10.1016/j.addr.2017.09.013] [Cited by in Crossref: 137] [Cited by in F6Publishing: 108] [Article Influence: 34.3] [Reference Citation Analysis]
Number Citing Articles
1 Liu Z, Ma Y, Wang X, Pang Y, Ren Y, Li D. Experimental and theoretical studies on neck thinning dynamics of droplets in cross junction microchannels. Experimental Thermal and Fluid Science 2022;139:110739. [DOI: 10.1016/j.expthermflusci.2022.110739] [Reference Citation Analysis]
2 Bao Y, Maeki M, Ishida A, Tani H, Tokeshi M. Effect of Organic Solvents on a Production of PLGA-Based Drug-Loaded Nanoparticles Using a Microfluidic Device. ACS Omega. [DOI: 10.1021/acsomega.2c03137] [Reference Citation Analysis]
3 Akbari Kenari M, Rezvani Ghomi E, Akbari Kenari A, Arabi SMS, Deylami J, Ramakrishna S. Biomedical applications of microfluidic devices: Achievements and challenges. Polymers for Advanced Techs. [DOI: 10.1002/pat.5847] [Reference Citation Analysis]
4 Hu K, Ma L, Wang Z, Fernandez-delgado O, Garay YE, Lopez JA, Li X. Facile Synthesis and Integration of Poly(vinyl alcohol) Sponge-Supported Metal Nanocatalysts on a Microfluidic Chip Enable a New Continuous Flow Multireactor Nanocatalysis Platform for High Efficiency and Reusability Catalysis. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c02060] [Reference Citation Analysis]
5 Siavashy S, Soltani M, Ahmadi M, Landi B, Mehmanparast H, Ghorbani‐bidkorbeh F. A Comprehensive Review of One Decade of Microfluidic Platforms Applications in Synthesis of Enhanced Carriers Utilized in Controlled Drug Delivery. Adv Materials Technologies. [DOI: 10.1002/admt.202101615] [Reference Citation Analysis]
6 Yaghmur A, Hamad I. Microfluidic Nanomaterial Synthesis and In Situ SAXS, WAXS, or SANS Characterization: Manipulation of Size Characteristics and Online Elucidation of Dynamic Structural Transitions. Molecules 2022;27:4602. [DOI: 10.3390/molecules27144602] [Reference Citation Analysis]
7 Fernandes DA. Review on the applications of nanoemulsions in cancer theranostics. Journal of Materials Research. [DOI: 10.1557/s43578-022-00583-5] [Reference Citation Analysis]
8 Yonet-Tanyeri N, Amer M, Balmert SC, Korkmaz E, Falo LD Jr, Little SR. Microfluidic Systems For Manufacturing of Microparticle-Based Drug-Delivery Systems: Design, Construction, and Operation. ACS Biomater Sci Eng 2022. [PMID: 35674145 DOI: 10.1021/acsbiomaterials.2c00066] [Reference Citation Analysis]
9 Zhang J, Tavakoli H, Ma L, Li X, Han L, Li X. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment. Adv Drug Deliv Rev 2022;187:114365. [PMID: 35667465 DOI: 10.1016/j.addr.2022.114365] [Reference Citation Analysis]
10 Zhang X, Wang L, Li X, Li X. AuNP aggregation-induced quantitative colorimetric aptasensing of sulfadimethoxine with a smartphone. Chinese Chemical Letters 2022;33:3078-82. [DOI: 10.1016/j.cclet.2021.09.061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Fei Y, Zhu C, Fu T, Gao X, Ma Y. Slug bubble deformation and its influence on bubble breakup dynamics in microchannel. Chinese Journal of Chemical Engineering 2022. [DOI: 10.1016/j.cjche.2022.06.016] [Reference Citation Analysis]
12 Kouthouridis S, Robson E, Hartung A, Raha S, Zhang B. Se(XY) matters: the importance of incorporating sex in microphysiological models. Trends Biotechnol 2022:S0167-7799(22)00103-2. [PMID: 35597689 DOI: 10.1016/j.tibtech.2022.04.005] [Reference Citation Analysis]
13 Preetam S, Nahak BK, Patra S, Toncu DC, Park S, Syväjärvi M, Orive G, Tiwari A. Emergence of microfluidics for next generation biomedical devices. Biosensors and Bioelectronics: X 2022;10:100106. [DOI: 10.1016/j.biosx.2022.100106] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Li Q, Xu R, Fan H, Xu J, Xu Y, Cao P, Zhang Y, Liang T, Zhang Y, Chen W, Wang Z, Wang L, Chen X. Smart Mushroom-Inspired Imprintable and Lightly Detachable (MILD) Microneedle Patterns for Effective COVID-19 Vaccination and Decentralized Information Storage. ACS Nano 2022. [PMID: 35451839 DOI: 10.1021/acsnano.1c10718] [Reference Citation Analysis]
15 Bhat MP, Thendral V, Uthappa UT, Lee KH, Kigga M, Altalhi T, Kurkuri MD, Kant K. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells. Biosensors (Basel) 2022;12:220. [PMID: 35448280 DOI: 10.3390/bios12040220] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Wang Z, Jiang H, Wu G, Li Y, Zhang T, Zhang Y, Wang X. Shape-Programmable Three-Dimensional Microfluidic Structures. ACS Appl Mater Interfaces 2022;14:15599-607. [PMID: 35319180 DOI: 10.1021/acsami.1c24799] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
17 Qi J, Zheng Y, Li B, Wei L, Li J, Xu X, Zhao S, Zheng X, Wang Y. Mechanism of vitamin B6 benzoyl hydrazone platinum(II) complexes overcomes multidrug resistance in lung cancer. European Journal of Medicinal Chemistry 2022;237:114415. [DOI: 10.1016/j.ejmech.2022.114415] [Reference Citation Analysis]
18 Ma Z, Li B, Peng J, Gao D. Recent Development of Drug Delivery Systems through Microfluidics: From Synthesis to Evaluation. Pharmaceutics 2022;14:434. [DOI: 10.3390/pharmaceutics14020434] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
19 Ji HB, Hong JY, Kim CR, Min CH, Han JH, Kim MJ, Kim SN, Lee C, Choy YB. Microchannel-embedded implantable device with fibrosis suppression for prolonged controlled drug delivery. Drug Deliv 2022;29:489-98. [PMID: 35147052 DOI: 10.1080/10717544.2022.2032873] [Reference Citation Analysis]
20 Uvarov IV, Melenev AE, Svetovoy VB. Fast Electrochemical Actuator with Ti Electrodes in the Current Stabilization Regime. Micromachines 2022;13:283. [DOI: 10.3390/mi13020283] [Reference Citation Analysis]
21 Lin WS, Evenson WE, Bostic WKV, Roberts RW, Malmstadt N. Compatibility of Popular Three-Dimensional Printed Microfluidics Materials with In Vitro Enzymatic Reactions. ACS Appl Bio Mater 2022. [PMID: 35138792 DOI: 10.1021/acsabm.1c01180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Lusina A, Cegłowski M. Molecularly Imprinted Polymers as State-of-the-Art Drug Carriers in Hydrogel Transdermal Drug Delivery Applications. Polymers (Basel) 2022;14:640. [PMID: 35160628 DOI: 10.3390/polym14030640] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
23 Chircov C, Grumezescu AM. Microelectromechanical Systems (MEMS) for Biomedical Applications. Micromachines 2022;13:164. [DOI: 10.3390/mi13020164] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
24 Chakrabarty P, Gupta P, Illath K, Kar S, Nagai M, Tseng FG, Santra TS. Microfluidic mechanoporation for cellular delivery and analysis. Mater Today Bio 2022;13:100193. [PMID: 35005598 DOI: 10.1016/j.mtbio.2021.100193] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Falsafi SR, Rostamabadi H, Babazadeh A, Tarhan Ö, Rashidinejad A, Boostani S, Khoshnoudi-nia S, Akbari-alavijeh S, Shaddel R, Jafari SM. Lycopene nanodelivery systems; recent advances. Trends in Food Science & Technology 2022;119:378-99. [DOI: 10.1016/j.tifs.2021.12.016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
26 Ermiş N. Drug Delivery Application of poly(2-hydroxyethyl methacrylate)/ethylene glycol dimethacrylate Composite Hydrogel. GAZI UNIVERSITY JOURNAL OF SCIENCE. [DOI: 10.35378/gujs.947687] [Reference Citation Analysis]
27 Obuobi S, Ngoc Phung A, Julin K, Johannessen M, Škalko-Basnet N. Biofilm Responsive Zwitterionic Antimicrobial Nanoparticles to Treat Cutaneous Infection. Biomacromolecules 2021. [PMID: 34914360 DOI: 10.1021/acs.biomac.1c01274] [Reference Citation Analysis]
28 Truong N, Black SK, Shaw J, Scotland BL, Pearson RM. Microfluidic-Generated Immunomodulatory Nanoparticles and Formulation-Dependent Effects on Lipopolysaccharide-Induced Macrophage Inflammation. AAPS J 2021;24:6. [PMID: 34859324 DOI: 10.1208/s12248-021-00645-2] [Reference Citation Analysis]
29 Xu X, Huang X, Sun J, Wang R, Yao J, Han W, Wei M, Chen J, Guo J, Sun L, Yin M. Recent progress of inertial microfluidic-based cell separation. Analyst 2021;146:7070-86. [PMID: 34761757 DOI: 10.1039/d1an01160j] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
30 Sabbagh F, Kim BS. Recent advances in polymeric transdermal drug delivery systems. J Control Release 2021;341:132-46. [PMID: 34813879 DOI: 10.1016/j.jconrel.2021.11.025] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 20.0] [Reference Citation Analysis]
31 Le TNQ, Tran NN, Escribà-Gelonch M, Serra CA, Fisk I, McClements DJ, Hessel V. Microfluidic encapsulation for controlled release and its potential for nanofertilisers. Chem Soc Rev 2021;50:11979-2012. [PMID: 34515721 DOI: 10.1039/d1cs00465d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
32 Akgönüllü S, Bakhshpour M, Pişkin AK, Denizli A. Microfluidic Systems for Cancer Diagnosis and Applications. Micromachines (Basel) 2021;12:1349. [PMID: 34832761 DOI: 10.3390/mi12111349] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
33 Kim JH, Ryu CH, Chon CH, Kim S, Lee S, Maharjan R, Kim NA, Jeong SH. Three months extended-release microspheres prepared by multi-microchannel microfluidics in beagle dog models. Int J Pharm 2021;608:121039. [PMID: 34450228 DOI: 10.1016/j.ijpharm.2021.121039] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
34 Antognoli M, Stoecklein D, Galletti C, Brunazzi E, Di Carlo D. Optimized design of obstacle sequences for microfluidic mixing in an inertial regime. Lab Chip 2021;21:3910-23. [PMID: 34636817 DOI: 10.1039/d1lc00483b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
35 Tesfamariam B. Vasculature-on-chip for Assessment of Bioresorbable Scaffolds and Endothelial Barrier Integrity. J Cardiovasc Pharmacol 2021;78:515-22. [PMID: 34651600 DOI: 10.1097/FJC.0000000000001086] [Reference Citation Analysis]
36 Logesh D, Vallikkadan MS, Leena MM, Moses J, Anandharamakrishnan C. Advances in microfluidic systems for the delivery of nutraceutical ingredients. Trends in Food Science & Technology 2021;116:501-24. [DOI: 10.1016/j.tifs.2021.07.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Xiao X, Xiao X, Nashalian A, Libanori A, Fang Y, Li X, Chen J. Triboelectric Nanogenerators for Self-Powered Wound Healing. Adv Healthc Mater 2021;10:e2100975. [PMID: 34263555 DOI: 10.1002/adhm.202100975] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
38 Fan Y, Zhou Y, Lu M, Si H, Li L, Tang B. Responsive Dual-Targeting Exosome as a Drug Carrier for Combination Cancer Immunotherapy. Research (Wash D C) 2021;2021:9862876. [PMID: 34541546 DOI: 10.34133/2021/9862876] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
39 Ejeta F. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine. Drug Des Devel Ther 2021;15:3881-91. [PMID: 34531650 DOI: 10.2147/DDDT.S324580] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Li X, Tat T, Chen J. Triboelectric nanogenerators for self-powered drug delivery. Trends in Chemistry 2021;3:765-78. [DOI: 10.1016/j.trechm.2021.04.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
41 Aladese AD, Jeong H. Recent Developments in 3D Printing of Droplet-Based Microfluidics. BioChip J 2021;15:313-33. [DOI: 10.1007/s13206-021-00032-1] [Reference Citation Analysis]
42 Zhou W, Dou M, Timilsina SS, Xu F, Li X. Recent innovations in cost-effective polymer and paper hybrid microfluidic devices. Lab Chip 2021;21:2658-83. [PMID: 34180494 DOI: 10.1039/d1lc00414j] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
43 Ahmad NN, Ghazali NNN, Wong YH. Concept Design of Transdermal Microneedles for Diagnosis and Drug Delivery: A Review. Adv Eng Mater 2021;23:2100503. [DOI: 10.1002/adem.202100503] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
44 Conta G, Libanori A, Tat T, Chen G, Chen J. Triboelectric Nanogenerators for Therapeutic Electrical Stimulation. Adv Mater 2021;33:e2007502. [PMID: 34014583 DOI: 10.1002/adma.202007502] [Cited by in Crossref: 24] [Cited by in F6Publishing: 33] [Article Influence: 24.0] [Reference Citation Analysis]
45 Zhi D, Yang T, Zhang T, Yang M, Zhang S, Donnelly RF. Microneedles for gene and drug delivery in skin cancer therapy. Journal of Controlled Release 2021;335:158-77. [DOI: 10.1016/j.jconrel.2021.05.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
46 Mehraji S, Saadatmand M. Flow regime mapping for a two-phase system of aqueous alginate and water droplets in T-junction geometry. Physics of Fluids 2021;33:072009. [DOI: 10.1063/5.0051789] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
47 Yang Y, Xu L, Jiang D, Chen BZ, Luo R, Liu Z, Qu X, Wang C, Shan Y, Cui Y, Zheng H, Wang Z, Wang ZL, Guo XD, Li Z. Self‐Powered Controllable Transdermal Drug Delivery System. Adv Funct Mater 2021;31:2104092. [DOI: 10.1002/adfm.202104092] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
48 Fu G, Zhou W, Li X. Remotely tunable microfluidic platform driven by nanomaterial-mediated on-demand photothermal pumping. Lab Chip 2020;20:2218-27. [PMID: 32441287 DOI: 10.1039/d0lc00317d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
49 Lugoloobi I, Maniriho H, Jia L, Namulinda T, Shi X, Zhao Y. Cellulose nanocrystals in cancer diagnostics and treatment. J Control Release 2021;336:207-32. [PMID: 34102221 DOI: 10.1016/j.jconrel.2021.06.004] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
50 Forouzandeh F, Ahamed NN, Zhu X, Bazard P, Goyal K, Walton JP, Frisina RD, Borkholder DA. A Wirelessly Controlled Scalable 3D-Printed Microsystem for Drug Delivery. Pharmaceuticals (Basel) 2021;14:538. [PMID: 34199855 DOI: 10.3390/ph14060538] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
51 Omidi M, Mansouri V, Mohammadi Amirabad L, Tayebi L. Impact of Lipid/Magnesium Hydroxide Hybrid Nanoparticles on the Stability of Vascular Endothelial Growth Factor-Loaded PLGA Microspheres. ACS Appl Mater Interfaces 2021;13:24370-84. [PMID: 34006111 DOI: 10.1021/acsami.0c22140] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Zhou W, Fu G, Li X. Detector-Free Photothermal Bar-Chart Microfluidic Chips (PT-Chips) for Visual Quantitative Detection of Biomarkers. Anal Chem 2021;93:7754-62. [PMID: 33999603 DOI: 10.1021/acs.analchem.1c01323] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
53 Tian F, Han Z, Deng J, Liu C, Sun J. Thermomicrofluidics for biosensing applications. VIEW 2021;2:20200148. [DOI: 10.1002/viw.20200148] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
54 Ehsanimehr S, Najafi Moghadam P, Dehaen W, Shafiei-irannejad V. Synthesis of pH-sensitive nanocarriers based on polyacrylamide grafted nanocrystalline cellulose for targeted drug delivery to folate receptor in breast cancer cells. European Polymer Journal 2021;150:110398. [DOI: 10.1016/j.eurpolymj.2021.110398] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Ma L, Abugalyon Y, Li X. Multicolorimetric ELISA biosensors on a paper/polymer hybrid analytical device for visual point-of-care detection of infection diseases. Anal Bioanal Chem 2021;413:4655-63. [PMID: 33903943 DOI: 10.1007/s00216-021-03359-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
56 Bilal M, Mehmood S, Raza A, Hayat U, Rasheed T, Iqbal HMN. Microneedles in Smart Drug Delivery. Adv Wound Care (New Rochelle) 2021;10:204-19. [PMID: 32320365 DOI: 10.1089/wound.2019.1122] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
57 Uvarov IV, Shlepakov PS, Melenev AE, Ma K, Svetovoy VB, Krijnen GJM. A Peristaltic Micropump Based on the Fast Electrochemical Actuator: Design, Fabrication, and Preliminary Testing. Actuators 2021;10:62. [DOI: 10.3390/act10030062] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
58 Esmaeili J, Barati A, Ai J, Nooshabadi VT, Mirzaei Z. Employing hydrogels in tissue engineering approaches to boost conventional cancer-based research and therapies. RSC Adv 2021;11:10646-69. [PMID: 35423538 DOI: 10.1039/d1ra00855b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
59 Won SM, Cai L, Gutruf P, Rogers JA. Wireless and battery-free technologies for neuroengineering. Nat Biomed Eng 2021. [PMID: 33686282 DOI: 10.1038/s41551-021-00683-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
60 Gonzalez-Valdivieso J, Girotti A, Schneider J, Arias FJ. Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. Int J Pharm 2021;599:120438. [PMID: 33662472 DOI: 10.1016/j.ijpharm.2021.120438] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
61 Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM. Fabrication and Applications of Microfluidic Devices: A Review. Int J Mol Sci 2021;22:2011. [PMID: 33670545 DOI: 10.3390/ijms22042011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 56] [Article Influence: 8.0] [Reference Citation Analysis]
62 Yang Q, Zhong W, Xu L, Li H, Yan Q, She Y, Yang G. Recent progress of 3D-printed microneedles for transdermal drug delivery. International Journal of Pharmaceutics 2021;593:120106. [DOI: 10.1016/j.ijpharm.2020.120106] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
63 Lv M, Zhou W, Tavakoli H, Bautista C, Xia J, Wang Z, Li X. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosens Bioelectron 2021;176:112947. [PMID: 33412430 DOI: 10.1016/j.bios.2020.112947] [Cited by in Crossref: 10] [Cited by in F6Publishing: 44] [Article Influence: 5.0] [Reference Citation Analysis]
64 Corduas F, Mancuso E, Lamprou DA. Long-acting implantable devices for the prevention and personalised treatment of infectious, inflammatory and chronic diseases. Journal of Drug Delivery Science and Technology 2020;60:101952. [DOI: 10.1016/j.jddst.2020.101952] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
65 Polat TG, Duman O, Tunç S. Agar/κ-carrageenan/montmorillonite nanocomposite hydrogels for wound dressing applications. International Journal of Biological Macromolecules 2020;164:4591-602. [DOI: 10.1016/j.ijbiomac.2020.09.048] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
66 Tomeh MA, Zhao X. Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems. Mol Pharm 2020;17:4421-34. [PMID: 33213144 DOI: 10.1021/acs.molpharmaceut.0c00913] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
67 Vieira D, McEachern F, Filippelli R, Dimentberg E, Harvey EJ, Merle G. Microelectrochemical Smart Needle for Real Time Minimally Invasive Oximetry. Biosensors (Basel) 2020;10:E157. [PMID: 33138031 DOI: 10.3390/bios10110157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
68 Shin Y, Lim Y, Kwak T, Hwang JH, Georgescu A, Huh D, Kim D, Kang T. Microfluidic Multi‐Scale Homogeneous Mixing with Uniform Residence Time Distribution for Rapid Production of Various Metal Core–Shell Nanoparticles. Adv Funct Mater 2021;31:2007856. [DOI: 10.1002/adfm.202007856] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
69 Zhou W, Sun J, Li X. Low-Cost Quantitative Photothermal Genetic Detection of Pathogens on a Paper Hybrid Device Using a Thermometer. Anal Chem 2020;92:14830-7. [PMID: 33059447 DOI: 10.1021/acs.analchem.0c03700] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
70 Li D, Hu D, Xu H, Patra HK, Liu X, Zhou Z, Tang J, Slater N, Shen Y. Progress and perspective of microneedle system for anti-cancer drug delivery. Biomaterials 2021;264:120410. [PMID: 32979655 DOI: 10.1016/j.biomaterials.2020.120410] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
71 Dhanapala L, Krause CE, Jones AL, Rusling JF. Printed Electrodes in Microfluidic Arrays for Cancer Biomarker Protein Detection. Biosensors (Basel) 2020;10:E115. [PMID: 32906644 DOI: 10.3390/bios10090115] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
72 Cai X, Briggs RG, Homburg HB, Young IM, Davis EJ, Lin Y, Battiste JD, Sughrue ME. Application of microfluidic devices for glioblastoma study: current status and future directions. Biomed Microdevices 2020;22. [DOI: 10.1007/s10544-020-00516-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
73 Horowitz LF, Rodriguez AD, Ray T, Folch A. Microfluidics for interrogating live intact tissues. Microsyst Nanoeng 2020;6:69. [PMID: 32879734 DOI: 10.1038/s41378-020-0164-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
74 Shang Q, Zhou S, Jiang Y, Wang D, Wang J, Song A, Luan Y. Rational Design of a Robust Antibody-like Small-Molecule Inhibitor Nanoplatform for Enhanced Photoimmunotherapy. ACS Appl Mater Interfaces 2020;12:40085-93. [DOI: 10.1021/acsami.0c11156] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
75 Ahadian S, Finbloom JA, Mofidfar M, Diltemiz SE, Nasrollahi F, Davoodi E, Hosseini V, Mylonaki I, Sangabathuni S, Montazerian H, Fetah K, Nasiri R, Dokmeci MR, Stevens MM, Desai TA, Khademhosseini A. Micro and nanoscale technologies in oral drug delivery. Adv Drug Deliv Rev 2020;157:37-62. [PMID: 32707147 DOI: 10.1016/j.addr.2020.07.012] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 21.0] [Reference Citation Analysis]
76 Kimura N, Maeki M, Sato Y, Ishida A, Tani H, Harashima H, Tokeshi M. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery. ACS Appl Mater Interfaces 2020;12:34011-20. [PMID: 32667806 DOI: 10.1021/acsami.0c05489] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
77 Forouzandeh F, Ahamed NN, Hsu MC, Walton JP, Frisina RD, Borkholder DA. A 3D-Printed Modular Microreservoir for Drug Delivery. Micromachines (Basel) 2020;11:E648. [PMID: 32629848 DOI: 10.3390/mi11070648] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
78 Omidi M, Almeida L, Tayebi L. Microfluidic-assisted fabrication of reverse micelle/PLGA hybrid microspheres for sustained vascular endothelial growth factor delivery. Biotechnol Appl Biochem 2021;68:616-25. [PMID: 32533571 DOI: 10.1002/bab.1971] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
79 Sanjay ST, Li M, Zhou W, Li X, Li X. A reusable PMMA/paper hybrid plug-and-play microfluidic device for an ultrasensitive immunoassay with a wide dynamic range. Microsyst Nanoeng 2020;6:28. [PMID: 34567643 DOI: 10.1038/s41378-020-0143-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 10.5] [Reference Citation Analysis]
80 Chua CYX, Ho J, Demaria S, Ferrari M, Grattoni A. Emerging Technologies for Local Cancer Treatment. Adv Therap 2020;3:2000027. [DOI: 10.1002/adtp.202000027] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
81 Hamdallah SI, Zoqlam R, Erfle P, Blyth M, Alkilany AM, Dietzel A, Qi S. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. Int J Pharm 2020;584:119408. [PMID: 32407942 DOI: 10.1016/j.ijpharm.2020.119408] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
82 Zeng D, Wu N, Qian L, Shi H, Kang Y. A Novel Controllable Pneumatic Needle-Free Injection System for Larger-Volume Drug Delivery. Journal of Pharmaceutical Sciences 2020;109:1772-9. [DOI: 10.1016/j.xphs.2020.02.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
83 Zhou W, Feng M, Valadez A, Li X. One-Step Surface Modification to Graft DNA Codes on Paper: The Method, Mechanism, and Its Application. Anal Chem 2020;92:7045-53. [PMID: 32207965 DOI: 10.1021/acs.analchem.0c00317] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
84 Zhang Q, Mao S, Li W, Huang Q, Feng S, Hong Z, Lin J. Microfluidic adhesion analysis of single glioma cells for evaluating the effect of drugs. Sci China Chem 2020;63:865-70. [DOI: 10.1007/s11426-020-9734-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
85 Zhou Y, Liu J, Yan J, Zhu T, Guo S, Li S, Li T. Standing Air Bubble-Based Micro-Hydraulic Capacitors for Flow Stabilization in Syringe Pump-Driven Systems. Micromachines (Basel) 2020;11:E396. [PMID: 32290176 DOI: 10.3390/mi11040396] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
86 Han Z, Lv W, Li Y, Chang J, Zhang W, Liu C, Sun J. Improving Tumor Targeting of Exosomal Membrane-Coated Polymeric Nanoparticles by Conjugation with Aptamers. ACS Appl Bio Mater 2020;3:2666-73. [DOI: 10.1021/acsabm.0c00181] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
87 Mao K, Min X, Zhang H, Zhang K, Cao H, Guo Y, Yang Z. Paper-based microfluidics for rapid diagnostics and drug delivery. J Control Release 2020;322:187-99. [PMID: 32169536 DOI: 10.1016/j.jconrel.2020.03.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 25] [Article Influence: 8.5] [Reference Citation Analysis]
88 Silva ACQ, Vilela C, Santos HA, Silvestre AJ, Freire CS. Recent trends on the development of systems for cancer diagnosis and treatment by microfluidic technology. Applied Materials Today 2020;18:100450. [DOI: 10.1016/j.apmt.2019.100450] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
89 Ammosova L, Mönkkönen K, Suvanto M. Precise fabrication of microtextured stainless steel surfaces using metal injection moulding. Precision Engineering 2020;62:89-94. [DOI: 10.1016/j.precisioneng.2019.11.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
90 Liu Z, Wang J, Pang Y, Zhou Q, Li M. Role of periodic inner dripping on compound jets in a capillary device. International Journal of Multiphase Flow 2020;123:103180. [DOI: 10.1016/j.ijmultiphaseflow.2019.103180] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
91 Uddin MJ, Scoutaris N, Economidou SN, Giraud C, Chowdhry BZ, Donnelly RF, Douroumis D. 3D printed microneedles for anticancer therapy of skin tumours. Materials Science and Engineering: C 2020;107:110248. [DOI: 10.1016/j.msec.2019.110248] [Cited by in Crossref: 50] [Cited by in F6Publishing: 69] [Article Influence: 25.0] [Reference Citation Analysis]
92 Zhou W, Hu K, Kwee S, Tang L, Wang Z, Xia J, Li X. Gold Nanoparticle Aggregation-Induced Quantitative Photothermal Biosensing Using a Thermometer: A Simple and Universal Biosensing Platform. Anal Chem 2020;92:2739-47. [DOI: 10.1021/acs.analchem.9b04996] [Cited by in Crossref: 46] [Cited by in F6Publishing: 28] [Article Influence: 23.0] [Reference Citation Analysis]
93 Jin Q, Ma L, Zhou W, Himmelhaver C, Chintalapalle R, Shen Y, Li X. Strong interaction between Au nanoparticles and porous polyurethane sponge enables efficient environmental catalysis with high reusability. Catal Today 2020;358:246-53. [PMID: 33716402 DOI: 10.1016/j.cattod.2020.01.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
94 You M, Li Z, Feng S, Gao B, Yao C, Hu J, Xu F. Ultrafast Photonic PCR Based on Photothermal Nanomaterials. Trends Biotechnol 2020;38:637-49. [PMID: 31918858 DOI: 10.1016/j.tibtech.2019.12.006] [Cited by in Crossref: 35] [Cited by in F6Publishing: 50] [Article Influence: 17.5] [Reference Citation Analysis]
95 Sudhakara Prasad K, Cao X, Gao N, Jin Q, Sanjay ST, Henao-Pabon G, Li X. A Low-Cost Nanomaterial-based Electrochemical Immunosensor on Paper for High-Sensitivity Early Detection of Pancreatic Cancer. Sens Actuators B Chem 2020;305:127516. [PMID: 32863588 DOI: 10.1016/j.snb.2019.127516] [Cited by in Crossref: 34] [Cited by in F6Publishing: 19] [Article Influence: 11.3] [Reference Citation Analysis]
96 Singh P, Carrier A, Chen Y, Lin S, Wang J, Cui S, Zhang X. Polymeric microneedles for controlled transdermal drug delivery. Journal of Controlled Release 2019;315:97-113. [DOI: 10.1016/j.jconrel.2019.10.022] [Cited by in Crossref: 51] [Cited by in F6Publishing: 33] [Article Influence: 17.0] [Reference Citation Analysis]
97 Zhang L, Chen Q, Ma Y, Sun J. Microfluidic Methods for Fabrication and Engineering of Nanoparticle Drug Delivery Systems. ACS Appl Bio Mater 2020;3:107-20. [DOI: 10.1021/acsabm.9b00853] [Cited by in Crossref: 32] [Cited by in F6Publishing: 11] [Article Influence: 10.7] [Reference Citation Analysis]
98 García J, Ríos I, Fonthal Rico F. Design and Analyses of a Transdermal Drug Delivery Device (TD3) †. Sensors (Basel) 2019;19:E5090. [PMID: 31766416 DOI: 10.3390/s19235090] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
99 Mohtashami Z, Esmaili Z, Vakilinezhad MA, Seyedjafari E, Akbari Javar H. Pharmaceutical implants: classification, limitations and therapeutic applications. Pharmaceutical Development and Technology 2020;25:116-32. [DOI: 10.1080/10837450.2019.1682607] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
100 Liu Z, Fontana F, Python A, Hirvonen JT, Santos HA. Microfluidics for Production of Particles: Mechanism, Methodology, and Applications. Small 2020;16:e1904673. [PMID: 31702878 DOI: 10.1002/smll.201904673] [Cited by in Crossref: 19] [Cited by in F6Publishing: 30] [Article Influence: 6.3] [Reference Citation Analysis]
101 Dong R, Liu Y, Mou L, Deng J, Jiang X. Microfluidics-Based Biomaterials and Biodevices. Adv Mater 2019;31:e1805033. [PMID: 30345586 DOI: 10.1002/adma.201805033] [Cited by in Crossref: 66] [Cited by in F6Publishing: 64] [Article Influence: 22.0] [Reference Citation Analysis]
102 Mai HN, Kim DY, Hyun DC, Park JH, Lee SM, Lee DH. A New Antibacterial Agent-Releasing Polydimethylsiloxane Coating for Polymethyl Methacrylate Dental Restorations. J Clin Med 2019;8:E1831. [PMID: 31683956 DOI: 10.3390/jcm8111831] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
103 Li W, Wang H, Li Z, Wang T, Zhao C. Numerical investigation of drug transport from blood vessels to tumour tissue using a Tumour-Vasculature-on-a-Chip. Chemical Engineering Science 2019;208:115155. [DOI: 10.1016/j.ces.2019.115155] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
104 Liu C, Zhang W, Li Y, Chang J, Tian F, Zhao F, Ma Y, Sun J. Microfluidic Sonication To Assemble Exosome Membrane-Coated Nanoparticles for Immune Evasion-Mediated Targeting. Nano Lett 2019;19:7836-44. [DOI: 10.1021/acs.nanolett.9b02841] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 17.0] [Reference Citation Analysis]
105 Jayaneththi V, Aw K, Sharma M, Wen J, Svirskis D, Mcdaid A. Controlled transdermal drug delivery using a wireless magnetic microneedle patch: Preclinical device development. Sensors and Actuators B: Chemical 2019;297:126708. [DOI: 10.1016/j.snb.2019.126708] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 6.7] [Reference Citation Analysis]
106 Fu G, Zhu Y, Wang W, Zhou M, Li X. Spatiotemporally Controlled Multiplexed Photothermal Microfluidic Pumping under Monitoring of On-Chip Thermal Imaging. ACS Sens 2019;4:2481-90. [PMID: 31452364 DOI: 10.1021/acssensors.9b01109] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
107 Economidou SN, Pere CPP, Reid A, Uddin MJ, Windmill JF, Lamprou DA, Douroumis D. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Materials Science and Engineering: C 2019;102:743-55. [DOI: 10.1016/j.msec.2019.04.063] [Cited by in Crossref: 68] [Cited by in F6Publishing: 55] [Article Influence: 22.7] [Reference Citation Analysis]
108 Doufène K, Tourné-péteilh C, Etienne P, Aubert-pouëssel A. Microfluidic Systems for Droplet Generation in Aqueous Continuous Phases: A Focus Review. Langmuir 2019;35:12597-612. [DOI: 10.1021/acs.langmuir.9b02179] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
109 Patra P, Soni SR, Seesala VS, Dhara S, Ghosh A, Pal S. Synthesis of a novel copolymer using glycogen and poly(lactide) as a carrier of dual drugs—ornidazole and ofloxacin. J Polym Sci Part A: Polym Chem 2019;57:1697-703. [DOI: 10.1002/pola.29434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
110 Cao X, Xia J, Meng X, Xu J, Liu Q, Wang Z. Stimuli‐Responsive DNA‐Gated Nanoscale Porous Carbon Derived from ZIF‐8. Adv Funct Mater 2019;29:1902237. [DOI: 10.1002/adfm.201902237] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
111 Huang K, He Y, Zhu Z, Guo J, Wang G, Deng C, Zhong Z. Small, Traceable, Endosome-Disrupting, and Bioresponsive Click Nanogels Fabricated via Microfluidics for CD44-Targeted Cytoplasmic Delivery of Therapeutic Proteins. ACS Appl Mater Interfaces 2019;11:22171-80. [DOI: 10.1021/acsami.9b05827] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
112 Yang J, Liu X, Fu Y, Song Y. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm Sin B 2019;9:469-83. [PMID: 31193810 DOI: 10.1016/j.apsb.2019.03.007] [Cited by in Crossref: 119] [Cited by in F6Publishing: 100] [Article Influence: 39.7] [Reference Citation Analysis]
113 Shi H, Nie K, Dong B, Long M, Xu H, Liu Z. Recent progress of microfluidic reactors for biomedical applications. Chemical Engineering Journal 2019;361:635-50. [DOI: 10.1016/j.cej.2018.12.104] [Cited by in Crossref: 58] [Cited by in F6Publishing: 62] [Article Influence: 19.3] [Reference Citation Analysis]
114 Dou M, Sanchez J, Tavakoli H, Gonzalez JE, Sun J, Dien Bard J, Li X. A low-cost microfluidic platform for rapid and instrument-free detection of whooping cough. Anal Chim Acta 2019;1065:71-8. [PMID: 31005153 DOI: 10.1016/j.aca.2019.03.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
115 He F, Zhang M, Wang W, Cai Q, Su Y, Liu Z, Faraj Y, Ju X, Xie R, Chu L. Designable Polymeric Microparticles from Droplet Microfluidics for Controlled Drug Release. Adv Mater Technol 2019;4:1800687. [DOI: 10.1002/admt.201800687] [Cited by in Crossref: 42] [Cited by in F6Publishing: 34] [Article Influence: 14.0] [Reference Citation Analysis]
116 Brzeziński M, Socka M, Kost B. Microfluidics for producing polylactide nanoparticles and microparticles and their drug delivery application. Polym Int 2019;68:997-1014. [DOI: 10.1002/pi.5753] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
117 Schultz HB, Vasani RB, Holmes AM, Roberts MS, Voelcker NH. Stimulus-Responsive Antibiotic Releasing Systems for the Treatment of Wound Infections. ACS Appl Bio Mater 2019;2:704-16. [DOI: 10.1021/acsabm.8b00577] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
118 Rezvantalab S, Keshavarz Moraveji M. Microfluidic assisted synthesis of PLGA drug delivery systems. RSC Adv 2019;9:2055-72. [DOI: 10.1039/c8ra08972h] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 12.3] [Reference Citation Analysis]
119 Omidi M, Hashemi M, Tayebi L. Microfluidic synthesis of PLGA/carbon quantum dot microspheres for vascular endothelial growth factor delivery. RSC Adv 2019;9:33246-56. [DOI: 10.1039/c9ra06279c] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
120 Sankaran S, Becker J, Wittmann C, Del Campo A. Optoregulated Drug Release from an Engineered Living Material: Self-Replenishing Drug Depots for Long-Term, Light-Regulated Delivery. Small 2019;15:e1804717. [PMID: 30589209 DOI: 10.1002/smll.201804717] [Cited by in Crossref: 18] [Cited by in F6Publishing: 28] [Article Influence: 4.5] [Reference Citation Analysis]
121 Churchill CDM, Winter P, Tuszynski JA, Levin M. EDEn-Electroceutical Design Environment: Ion Channel Tissue Expression Database with Small Molecule Modulators. iScience 2019;11:42-56. [PMID: 30590250 DOI: 10.1016/j.isci.2018.12.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
122 Bai W, Kuang T, Chitrakar C, Yang R, Li S, Zhu D, Chang L. Patchable micro/nanodevices interacting with skin. Biosensors and Bioelectronics 2018;122:189-204. [DOI: 10.1016/j.bios.2018.09.035] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 7.3] [Reference Citation Analysis]
123 Francis AT, Nguyen TT, Lamm MS, Teller R, Forster SP, Xu W, Rhodes T, Smith RL, Kuiper J, Su Y, Fu D. In Situ Stimulated Raman Scattering (SRS) Microscopy Study of the Dissolution of Sustained-Release Implant Formulation. Mol Pharmaceutics 2018;15:5793-801. [DOI: 10.1021/acs.molpharmaceut.8b00965] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
124 Eo J, Cepeda B, Kim J, Kim N. A New Paradigm of Pharmaceutical Drug Delivery Systems (DDS): Challenges for Space, Time, and Shapes. Innov Pharm 2018;9:1-13. [PMID: 34007712 DOI: 10.24926/iip.v9i3.1450] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
125 Zhang J, Misra RDK. Nanomaterials in microfluidics for disease diagnosis and therapy development. Materials Technology 2018;34:92-116. [DOI: 10.1080/10667857.2018.1527803] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
126 Ita K. Ceramic microneedles and hollow microneedles for transdermal drug delivery: Two decades of research. Journal of Drug Delivery Science and Technology 2018;44:314-22. [DOI: 10.1016/j.jddst.2018.01.004] [Cited by in Crossref: 32] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
127 Tokeshi M. Microfluidic Devices for Drug Delivery Systems. Adv Drug Deliv Rev 2018;128:1-2. [PMID: 29908612 DOI: 10.1016/j.addr.2018.05.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
128 Iliescu FS, Teo JCM, Vrtacnik D, Taylor H, Iliescu C. Cell therapy using an array of ultrathin hollow microneedles. Microsyst Technol 2018;24:2905-12. [DOI: 10.1007/s00542-017-3631-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]