BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu R, Li X, Xiao W, Lam KS. Tumor-targeting peptides from combinatorial libraries. Adv Drug Deliv Rev 2017;110-111:13-37. [PMID: 27210583 DOI: 10.1016/j.addr.2016.05.009] [Cited by in Crossref: 95] [Cited by in F6Publishing: 83] [Article Influence: 19.0] [Reference Citation Analysis]
Number Citing Articles
1 Hou G, Li Y, Wang Q, Zhang H, Liang S, Liu B, Shi W. iRGD-grafted N-trimethyl chitosan-coated protein nanotubes enhanced the anticancer efficacy of curcumin and melittin. Int J Biol Macromol 2022;222:348-59. [PMID: 36150572 DOI: 10.1016/j.ijbiomac.2022.09.171] [Reference Citation Analysis]
2 Iavorschi M, Lupăescu A, Darie-ion L, Indeykina M, Hitruc GE, Petre BA. Cu and Zn Interactions with Peptides Revealed by High-Resolution Mass Spectrometry. Pharmaceuticals 2022;15:1096. [DOI: 10.3390/ph15091096] [Reference Citation Analysis]
3 Lv S, Ma C, Cong H, Shen Y, Yu B. Synthesis of 3,5-dichlorobenzene isocyanate-derived β-cyclodextrin and 3,5-dimethyl phenyl isocyanate-derived β-cyclodextrin chiral stationary phases and their applications in the separation of chiral compounds. Separation and Purification Technology 2022;294:121147. [DOI: 10.1016/j.seppur.2022.121147] [Reference Citation Analysis]
4 González-cruz AO, Hernández-juárez J, Ramírez-cabrera MA, Balderas-rentería I, Arredondo-espinoza E. Peptide-based drug-delivery systems: A new hope for improving cancer therapy. Journal of Drug Delivery Science and Technology 2022;72:103362. [DOI: 10.1016/j.jddst.2022.103362] [Reference Citation Analysis]
5 Cheng S, Lu Z, Feng Y, Zhao X, Zhao R, Qiu Z, Jia C, Chen L, Yuan Y, Li X, Gao Q, Xu J, Shu Z, Duan W, Hou Y, Nie G, Xiao L. A novel navigated doxorubicin delivery formulation to breast cancer therapy. Materials Today Advances 2022;14:100235. [DOI: 10.1016/j.mtadv.2022.100235] [Reference Citation Analysis]
6 Kaufmann JO, Brangsch J, Kader A, Saatz J, Mangarova DB, Zacharias M, Kempf WE, Schwaar T, Ponader M, Adams LC, Möckel J, Botnar RM, Taupitz M, Mägdefessel L, Traub H, Hamm B, Weller MG, Makowski MR. ADAMTS4-specific MR probe to assess aortic aneurysms in vivo using synthetic peptide libraries. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-30464-8] [Reference Citation Analysis]
7 Karami Fath M, Babakhaniyan K, Zokaei M, Yaghoubian A, Akbari S, Khorsandi M, Soofi A, Nabi-Afjadi M, Zalpoor H, Jalalifar F, Azargoonjahromi A, Payandeh Z, Alagheband Bahrami A. Anti-cancer peptide-based therapeutic strategies in solid tumors. Cell Mol Biol Lett 2022;27:33. [PMID: 35397496 DOI: 10.1186/s11658-022-00332-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
8 Ahmadi S, Sukprasert P, Vegesna R, Sinha S, Schischlik F, Artzi N, Khuller S, Schäffer AA, Ruppin E. The landscape of receptor-mediated precision cancer combination therapy via a single-cell perspective. Nat Commun 2022;13:1613. [PMID: 35338126 DOI: 10.1038/s41467-022-29154-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Samec T, Boulos J, Gilmore S, Hazelton A, Alexander-bryant A. Peptide-based delivery of therapeutics in cancer treatment. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100248] [Reference Citation Analysis]
10 Yang X, Bai L, Chen Y, Lin Y, Xiang H, Xiang T, Zhu S, Zhou L, Li K, Lei X. Peptide probes with high affinity to target protein selection by phage display and characterization using biophysical approaches. New J Chem 2022;46:10299-307. [DOI: 10.1039/d2nj00621a] [Reference Citation Analysis]
11 Ren E, Liu C, Lv P, Wang J, Liu G. Genetically Engineered Cellular Membrane Vesicles as Tailorable Shells for Therapeutics. Adv Sci (Weinh) 2021;8:e2100460. [PMID: 34494387 DOI: 10.1002/advs.202100460] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
12 Yan Q, Cai M, Jing Y, Li H, Xu H, Sun J, Gao J, Wang H. Quantitatively mapping the interaction of HER2 and EGFR on cell membranes with peptide probes. Nanoscale 2021;13:17629-37. [PMID: 34664051 DOI: 10.1039/d1nr02684d] [Reference Citation Analysis]
13 Seyyednia E, Oroojalian F, Baradaran B, Mojarrad JS, Mokhtarzadeh A, Valizadeh H. Nanoparticles modified with vasculature-homing peptides for targeted cancer therapy and angiogenesis imaging. J Control Release 2021;338:367-93. [PMID: 34461174 DOI: 10.1016/j.jconrel.2021.08.044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Berger S, Hosseinzadeh P. Computational Design of Structured and Functional Peptide Macrocycles. Methods Mol Biol 2022;2371:63-100. [PMID: 34596844 DOI: 10.1007/978-1-0716-1689-5_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Kaitoh K, Yamanishi Y. TRIOMPHE: Transcriptome-Based Inference and Generation of Molecules with Desired Phenotypes by Machine Learning. J Chem Inf Model 2021;61:4303-20. [PMID: 34528432 DOI: 10.1021/acs.jcim.1c00967] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
16 Hajipour H, Nouri M, Ghorbani M, Bahramifar A, Emameh RZ, Taheri RA. Targeted nanostructured lipid carrier containing galangin as a promising adjuvant for improving cytotoxic effects of chemotherapeutic agents. Naunyn Schmiedebergs Arch Pharmacol 2021. [PMID: 34522984 DOI: 10.1007/s00210-021-02152-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Loftis AR, Zhang G, Backlund C, Quartararo AJ, Pishesha N, Hanna CC, Schissel CK, Garafola D, Loas A, Collier RJ, Ploegh H, Irvine DJ, Pentelute BL. An in vivo selection-derived d-peptide for engineering erythrocyte-binding antigens that promote immune tolerance. Proc Natl Acad Sci U S A 2021;118:e2101596118. [PMID: 34417313 DOI: 10.1073/pnas.2101596118] [Reference Citation Analysis]
18 Park SW, Jun SY, Kim JS, Kim YS. Engineering of an EpCAM-targeting cyclic peptide to improve the EpCAM-mediated cellular internalization and tumor accumulation of a peptide-fused antibody. Biochem Biophys Res Commun 2021;573:35-41. [PMID: 34388452 DOI: 10.1016/j.bbrc.2021.08.021] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
19 Ilangala AB, Lechanteur A, Fillet M, Piel G. Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems. Eur J Pharm Biopharm 2021;167:140-58. [PMID: 34311093 DOI: 10.1016/j.ejpb.2021.07.010] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
20 Yang PP, Li YJ, Cao Y, Zhang L, Wang JQ, Lai Z, Zhang K, Shorty D, Xiao W, Cao H, Wang L, Wang H, Liu R, Lam KS. Rapid discovery of self-assembling peptides with one-bead one-compound peptide library. Nat Commun 2021;12:4494. [PMID: 34301935 DOI: 10.1038/s41467-021-24597-5] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Zhou J, Li Y, Huang W, Shi W, Qian H. Source and exploration of the peptides used to construct peptide-drug conjugates. Eur J Med Chem 2021;224:113712. [PMID: 34303870 DOI: 10.1016/j.ejmech.2021.113712] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Chander S, Kulkarni GT, Dhiman N, Kharkwal H. Protein-Based Nanohydrogels for Bioactive Delivery. Front Chem 2021;9:573748. [PMID: 34307293 DOI: 10.3389/fchem.2021.573748] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
23 Hosseinzadeh P, Watson PR, Craven TW, Li X, Rettie S, Pardo-Avila F, Bera AK, Mulligan VK, Lu P, Ford AS, Weitzner BD, Stewart LJ, Moyer AP, Di Piazza M, Whalen JG, Greisen PJ, Christianson DW, Baker D. Anchor extension: a structure-guided approach to design cyclic peptides targeting enzyme active sites. Nat Commun 2021;12:3384. [PMID: 34099674 DOI: 10.1038/s41467-021-23609-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
24 Kim J, Lee JY, Park HY, Kim H, Kang JH, Kim HJ, Jeong W. Combination of peptides with biological, organic, and inorganic materials for synergistically enhanced diagnostics and therapeutics. Peptide Science. [DOI: 10.1002/pep2.24233] [Reference Citation Analysis]
25 Xiao L, Hou Y, He H, Cheng S, Hou Y, Jin H, Song X, Nie G, Hou Y. A novel targeted delivery system for drug-resistant hepatocellular carcinoma therapy. Nanoscale 2020;12:17029-44. [PMID: 32780053 DOI: 10.1039/d0nr01908a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
26 Xu H, Sheng G, Lu L, Wang C, Zhang Y, Feng L, Meng L, Min P, Zhang L, Wang Y, Han F. GRPr-mediated photothermal and thermodynamic dual-therapy for prostate cancer with synergistic anti-apoptosis mechanism. Nanoscale 2021;13:4249-61. [PMID: 33595022 DOI: 10.1039/d0nr07196j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
27 Aloisio A, Nisticò N, Mimmi S, Maisano D, Vecchio E, Fiume G, Iaccino E, Quinto I. Phage-Displayed Peptides for Targeting Tyrosine Kinase Membrane Receptors in Cancer Therapy. Viruses 2021;13:649. [PMID: 33918836 DOI: 10.3390/v13040649] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
28 Ayo A, Laakkonen P. Peptide-Based Strategies for Targeted Tumor Treatment and Imaging. Pharmaceutics 2021;13:481. [PMID: 33918106 DOI: 10.3390/pharmaceutics13040481] [Cited by in Crossref: 1] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
29 Liu R, Zuo R, Hudalla GA. Harnessing molecular recognition for localized drug delivery. Adv Drug Deliv Rev 2021;170:238-60. [PMID: 33484737 DOI: 10.1016/j.addr.2021.01.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
30 Chu JCH, Fong WP, Wong CTT, Ng DKP. Facile Synthesis of Cyclic Peptide-Phthalocyanine Conjugates for Epidermal Growth Factor Receptor-Targeted Photodynamic Therapy. J Med Chem 2021;64:2064-76. [PMID: 33577327 DOI: 10.1021/acs.jmedchem.0c01677] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
31 Kulkarni T, Mukhopadhyay D, Bhattacharya S. Nanomechanical Insight of Pancreatic Cancer Cell Membrane during Receptor Mediated Endocytosis of Targeted Gold Nanoparticles. ACS Appl Bio Mater 2021;4:984-94. [PMID: 34913031 DOI: 10.1021/acsabm.0c01443] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
32 Du H, Jiang D, Song G, Cao C, Zhang D, Yu P, Lai C, Guo X, Zong X, Jin X. Wound Healing Activity of Phage-Sisplayed TGF-β1 Model Peptide in Streptozotocin-Induced Diabetic Rats. Int J Pept Res Ther 2021;27:1079-94. [DOI: 10.1007/s10989-020-10152-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Hersh J, Broyles D, Capcha JMC, Dikici E, Shehadeh LA, Daunert S, Deo S. Peptide-Modified Biopolymers for Biomedical Applications. ACS Appl Bio Mater 2021;4:229-51. [PMID: 34250454 DOI: 10.1021/acsabm.0c01145] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
34 Zuo Q, Guo C, Fan W, Yang X, Zhang F. [Screening and Identification of the Peptides Specifically Binding to 
Human Non-small Cell Lung Cancer NCI-H1299 Cells]. Zhongguo Fei Ai Za Zhi 2020;23:1023-30. [PMID: 33357309 DOI: 10.3779/j.issn.1009-3419.2020.103.17] [Reference Citation Analysis]
35 Santos EDS, Nogueira KAB, Fernandes LCC, Martins JRP, Reis AVF, Neto JBV, Júnior IJDS, Pessoa C, Petrilli R, Eloy JO. EGFR targeting for cancer therapy: Pharmacology and immunoconjugates with drugs and nanoparticles. Int J Pharm 2021;592:120082. [PMID: 33188892 DOI: 10.1016/j.ijpharm.2020.120082] [Cited by in Crossref: 4] [Cited by in F6Publishing: 23] [Article Influence: 2.0] [Reference Citation Analysis]
36 Chu W, Prodromou R, Day KN, Schneible JD, Bacon KB, Bowen JD, Kilgore RE, Catella CM, Moore BD, Mabe MD, Alashoor K, Xu Y, Xiao Y, Menegatti S. Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics. J Chromatogr A 2021;1635:461632. [PMID: 33333349 DOI: 10.1016/j.chroma.2020.461632] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
37 Li K, Liu CJ, Zhang XZ. Multifunctional peptides for tumor therapy. Adv Drug Deliv Rev 2020;160:36-51. [PMID: 33080257 DOI: 10.1016/j.addr.2020.10.009] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
38 Hochman JH. Adapting ADME and Pharmacokinetic Analysis to the Next Generation of Therapeutic Modalities. J Pharm Sci 2021;110:35-41. [PMID: 33049260 DOI: 10.1016/j.xphs.2020.09.057] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Silva LR, da Silva Santos-Júnior PF, de Andrade Brandão J, Anderson L, Bassi ÊJ, Xavier de Araújo-Júnior J, Cardoso SH, da Silva-Júnior EF. Druggable targets from coronaviruses for designing new antiviral drugs. Bioorg Med Chem 2020;28:115745. [PMID: 33007557 DOI: 10.1016/j.bmc.2020.115745] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
40 Kalafatovic D, Mauša G, Rešetar Maslov D, Giralt E. Bottom-Up Design Approach for OBOC Peptide Libraries. Molecules 2020;25:E3316. [PMID: 32707811 DOI: 10.3390/molecules25153316] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
41 Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, Liang XJ. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5:101. [PMID: 32561705 DOI: 10.1038/s41392-020-0207-x] [Cited by in Crossref: 99] [Cited by in F6Publishing: 235] [Article Influence: 49.5] [Reference Citation Analysis]
42 Liu Y, Zhang M, Bu W. Bioactive nanomaterials for ion‐interference therapy. View 2020;1. [DOI: 10.1002/viw2.18] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
43 Conibear AC, Schmid A, Kamalov M, Becker CFW, Bello C. Recent Advances in Peptide-Based Approaches for Cancer Treatment. Curr Med Chem 2020;27:1174-205. [PMID: 29173146 DOI: 10.2174/0929867325666171123204851] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
44 Bai XD, Cao XW, Chen YH, Fu LY, Zhao J, Wang FJ. Constructing a better binding peptide for drug delivery targeting the interleukin-4 receptor. J Drug Target 2020;28:970-81. [PMID: 32363946 DOI: 10.1080/1061186X.2020.1764964] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Kavand A, Anton N, Vandamme T, Serra CA, Chan-seng D. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. Journal of Controlled Release 2020;321:285-311. [DOI: 10.1016/j.jconrel.2020.02.019] [Cited by in Crossref: 22] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
46 Axente E, Sima F. Biomimetic Nanostructures with Compositional Gradient Grown by Combinatorial Matrix-Assisted Pulsed Laser Evaporation for Tissue Engineering. Curr Med Chem 2020;27:903-18. [PMID: 31526343 DOI: 10.2174/0929867326666190916145455] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
47 Sandomenico A, Caporale A, Doti N, Cross S, Cruciani G, Chambery A, De Falco S, Ruvo M. Synthetic Peptide Libraries: From Random Mixtures to In Vivo Testing. Curr Med Chem 2020;27:997-1016. [PMID: 30009695 DOI: 10.2174/0929867325666180716110833] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
48 Shah SS, Casanova N, Antuono G, Sabatino D. Polyamide Backbone Modified Cell Targeting and Penetrating Peptides in Cancer Detection and Treatment. Front Chem 2020;8:218. [PMID: 32296681 DOI: 10.3389/fchem.2020.00218] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Pirooznia N, Abdi K, Beiki D, Emami F, Arab SS, Sabzevari O, Pakdin-Parizi Z, Geramifar P. Radiosynthesis, Biological Evaluation, and Preclinical Study of a 68Ga-Labeled Cyclic RGD Peptide as an Early Diagnostic Agent for Overexpressed α v β 3 Integrin Receptors in Non-Small-Cell Lung Cancer. Contrast Media Mol Imaging 2020;2020:8421657. [PMID: 32292304 DOI: 10.1155/2020/8421657] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
50 Rajavenkatesh K, Padmaja M, Janani I, Aishwarya S, Purna Sai K, Thennarasu S. Design and synthesis of a novel peptide for selective detection of cancer cells. Chem Biol Drug Des 2020;95:610-23. [PMID: 32147880 DOI: 10.1111/cbdd.13675] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
51 He B, Dzisoo AM, Derda R, Huang J. Development and Application of Computational Methods in Phage Display Technology. Curr Med Chem 2019;26:7672-93. [PMID: 29956612 DOI: 10.2174/0929867325666180629123117] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
52 Araste F, Abnous K, Hashemi M, Dehshahri A, Detampel P, Alibolandi M, Ramezani M. Na+/K+ ATPase-targeted delivery to metastatic breast cancer models. Eur J Pharm Sci 2020;143:105207. [PMID: 31870814 DOI: 10.1016/j.ejps.2019.105207] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
53 Kavanaugh WM. Antibody prodrugs for cancer. Expert Opin Biol Ther 2020;20:163-71. [PMID: 31779489 DOI: 10.1080/14712598.2020.1699053] [Cited by in Crossref: 13] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
54 Hsiao C, Fang Q, Zheng S, He P, Zhang K, Hong Y, Ran Y, Sun S, Liu Z, Liang Z, Zhong B, Wu W, Xia R, Bai S, Yao K, Wang Y, He L, Ma G. Combinatorial cell surface display system in Escherichia coli for noninvasive colorectal cancer detection. Journal of Bio-X Research 2019;2:185-96. [DOI: 10.1097/jbr.0000000000000052] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
55 Shreffler JW, Pullan JE, Dailey KM, Mallik S, Brooks AE. Overcoming Hurdles in Nanoparticle Clinical Translation: The Influence of Experimental Design and Surface Modification. Int J Mol Sci 2019;20:E6056. [PMID: 31801303 DOI: 10.3390/ijms20236056] [Cited by in Crossref: 32] [Cited by in F6Publishing: 45] [Article Influence: 10.7] [Reference Citation Analysis]
56 Sikder S, Gote V, Alshamrani M, Sicotte J, Pal D. Long-term delivery of protein and peptide therapeutics for cancer therapies. Expert Opinion on Drug Delivery 2019;16:1113-31. [DOI: 10.1080/17425247.2019.1662785] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
57 Wang Q, Jiang N, Fu B, Huang F, Liu J. Self-assembling peptide-based nanodrug delivery systems. Biomater Sci 2019;7:4888-911. [PMID: 31509120 DOI: 10.1039/c9bm01212e] [Cited by in Crossref: 19] [Cited by in F6Publishing: 29] [Article Influence: 6.3] [Reference Citation Analysis]
58 Hajipour H, Ghorbani M, Kahroba H, Mahmoodzadeh F, Emameh RZ, Taheri RA. Arginyl-glycyl-aspartic acid (RGD) containing nanostructured lipid carrier co-loaded with doxorubicin and sildenafil citrate enhanced anti-cancer effects and overcomes drug resistance. Process Biochemistry 2019;84:172-9. [DOI: 10.1016/j.procbio.2019.06.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
59 Jiang Z, Guan J, Qian J, Zhan C. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomater Sci 2019;7:461-71. [PMID: 30656305 DOI: 10.1039/c8bm01340c] [Cited by in Crossref: 54] [Cited by in F6Publishing: 65] [Article Influence: 18.0] [Reference Citation Analysis]
60 Vostakolaei MA, Molavi O, Hejazi MS, Kordi S, Rahmati S, Barzegari A, Abdolalizadeh J. Isolation and characterization of a novel scFv antibody fragments specific for Hsp70 as a tumor biomarker. J Cell Biochem 2019;120:14711-24. [DOI: 10.1002/jcb.28732] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
61 Kalafatovic D, Mauša G, Todorovski T, Giralt E. Algorithm-supported, mass and sequence diversity-oriented random peptide library design. J Cheminform 2019;11:25. [PMID: 30923940 DOI: 10.1186/s13321-019-0347-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
62 Arslan M, Karadağ D, Kalyoncu S. Protein engineering approaches for antibody fragments: directed evolution and rational design approaches. Turk J Biol 2019;43:1-12. [PMID: 30930630 DOI: 10.3906/biy-1809-28] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
63 Mihailescu N, Haskoylu ME, Ristoscu C, Bostan MS, Sopronyi M, Eroğlu MS, Carmen Chifiriuc M, Mustaciosu CC, Axente E, Toksoy Oner E, Mihailescu IN. Gradient multifunctional biopolymer thin film assemblies synthesized by combinatorial MAPLE. Applied Surface Science 2019;466:628-36. [DOI: 10.1016/j.apsusc.2018.10.077] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
64 Ren L, Ma Z, Li Q, Zhao W, Wang Y, Wang H, Shen L, Zhang C, Fang X, Yu J. Identifying a Membrane-Type 2 Matrix Metalloproteinase-Targeting Peptide for Human Lung Cancer Detection and Targeting Chemotherapy with Functionalized Mesoporous Silica. ACS Appl Bio Mater 2019;2:397-405. [PMID: 35016363 DOI: 10.1021/acsabm.8b00633] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
65 Tang J, Wang Q, Yu Q, Qiu Y, Mei L, Wan D, Wang X, Li M, He Q. A stabilized retro-inverso peptide ligand of transferrin receptor for enhanced liposome-based hepatocellular carcinoma-targeted drug delivery. Acta Biomater 2019;83:379-89. [PMID: 30395963 DOI: 10.1016/j.actbio.2018.11.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 10.7] [Reference Citation Analysis]
66 Liu X, Yang X, Sun W, Wu Q, Song Y, Yuan L, Yang G. Systematic Evolution of Ligands by Exosome Enrichment: A Proof-of-Concept Study for Exosome-Based Targeting Peptide Screening. Adv Biosyst 2019;3:e1800275. [PMID: 32627374 DOI: 10.1002/adbi.201800275] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
67 Araste F, Abnous K, Hashemi M, Taghdisi SM, Ramezani M, Alibolandi M. Peptide-based targeted therapeutics: Focus on cancer treatment. Journal of Controlled Release 2018;292:141-62. [DOI: 10.1016/j.jconrel.2018.11.004] [Cited by in Crossref: 57] [Cited by in F6Publishing: 63] [Article Influence: 14.3] [Reference Citation Analysis]
68 Mendes M, Sousa JJ, Pais A, Vitorino C. Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics 2018;10:E181. [PMID: 30304861 DOI: 10.3390/pharmaceutics10040181] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 11.5] [Reference Citation Analysis]
69 Zhang C, Wu W, Li R, Qiu W, Zhuang Z, Cheng S, Zhang X. Peptide‐Based Multifunctional Nanomaterials for Tumor Imaging and Therapy. Adv Funct Mater 2018;28:1804492. [DOI: 10.1002/adfm.201804492] [Cited by in Crossref: 62] [Cited by in F6Publishing: 54] [Article Influence: 15.5] [Reference Citation Analysis]
70 Xue B, Kozlovskaya V, Sherwani MA, Ratnayaka S, Habib S, Anderson T, Manuvakhova M, Klampfer L, Yusuf N, Kharlampieva E. Peptide-Functionalized Hydrogel Cubes for Active Tumor Cell Targeting. Biomacromolecules 2018;19:4084-97. [PMID: 30169033 DOI: 10.1021/acs.biomac.8b01088] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
71 Shaw SK, Liu W, Gómez Durán CFA, Schreiber CL, Betancourt Mendiola ML, Zhai C, Roland FM, Padanilam SJ, Smith BD. Non-Covalently Pre-Assembled High-Performance Near-Infrared Fluorescent Molecular Probes for Cancer Imaging. Chemistry 2018;24:13821-9. [PMID: 30022552 DOI: 10.1002/chem.201801825] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
72 Arun AS, Tepper CG, Lam KS. Identification of integrin drug targets for 17 solid tumor types. Oncotarget 2018;9:30146-62. [PMID: 30046394 DOI: 10.18632/oncotarget.25731] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
73 Bi X, Yin J, Hemu X, Rao C, Tam JP, Liu C. Immobilization and Intracellular Delivery of Circular Proteins by Modifying a Genetically Incorporated Unnatural Amino Acid. Bioconjugate Chem 2018;29:2170-5. [DOI: 10.1021/acs.bioconjchem.8b00244] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
74 Lee SG, Kim CH, Sung SW, Lee ES, Goh MS, Yoon HY, Kang MJ, Lee S, Choi YW. RIPL peptide-conjugated nanostructured lipid carriers for enhanced intracellular drug delivery to hepsin-expressing cancer cells. Int J Nanomedicine 2018;13:3263-78. [PMID: 29910614 DOI: 10.2147/IJN.S166021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
75 Kaiser L, Weisser J, Kohl M, Deigner HP. Small molecule detection with aptamer based lateral flow assays: Applying aptamer-C-reactive protein cross-recognition for ampicillin detection. Sci Rep 2018;8:5628. [PMID: 29618771 DOI: 10.1038/s41598-018-23963-6] [Cited by in Crossref: 22] [Cited by in F6Publishing: 30] [Article Influence: 5.5] [Reference Citation Analysis]
76 Passioura T, Suga H. A RaPID way to discover nonstandard macrocyclic peptide modulators of drug targets. Chem Commun (Camb) 2017;53:1931-40. [PMID: 28091672 DOI: 10.1039/c6cc06951g] [Cited by in Crossref: 85] [Cited by in F6Publishing: 79] [Article Influence: 21.3] [Reference Citation Analysis]
77 Hosseinzadeh P, Bhardwaj G, Mulligan VK, Shortridge MD, Craven TW, Pardo-Avila F, Rettie SA, Kim DE, Silva DA, Ibrahim YM, Webb IK, Cort JR, Adkins JN, Varani G, Baker D. Comprehensive computational design of ordered peptide macrocycles. Science 2017;358:1461-6. [PMID: 29242347 DOI: 10.1126/science.aap7577] [Cited by in Crossref: 86] [Cited by in F6Publishing: 92] [Article Influence: 21.5] [Reference Citation Analysis]
78 Li Y, Sun S, Fan L, Hu S, Huang Y, Zhang K, Nie Z, Yao S. Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis. Angew Chem Int Ed 2017;56:14888-92. [DOI: 10.1002/anie.201708327] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
79 Li Y, Sun S, Fan L, Hu S, Huang Y, Zhang K, Nie Z, Yao S. Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis. Angew Chem 2017;129:15084-8. [DOI: 10.1002/ange.201708327] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
80 Yang M, Sunderland K, Mao C. Virus-Derived Peptides for Clinical Applications. Chem Rev 2017;117:10377-402. [PMID: 28723101 DOI: 10.1021/acs.chemrev.7b00100] [Cited by in Crossref: 31] [Cited by in F6Publishing: 38] [Article Influence: 6.2] [Reference Citation Analysis]
81 Li HM, Dong ZP, Wang QY, Liu LX, Li BX, Ma XN, Lin MS, Lu T, Wang Y. De Novo Computational Design for Development of a Peptide Ligand Oriented to VEGFR-3 with High Affinity and Long Circulation. Mol Pharmaceutics 2017;14:2236-44. [DOI: 10.1021/acs.molpharmaceut.7b00070] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
82 Kim CH, Lee SG, Kang MJ, Lee S, Choi YW. Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. Journal of Pharmaceutical Investigation 2017;47:203-27. [DOI: 10.1007/s40005-017-0329-5] [Cited by in Crossref: 57] [Cited by in F6Publishing: 46] [Article Influence: 11.4] [Reference Citation Analysis]
83 Cui H, Chen X. Peptides and Peptide Conjugates in Medicine. Adv Drug Deliv Rev 2017;110-111:1-2. [PMID: 28606347 DOI: 10.1016/j.addr.2017.04.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
84 Hu LY, Kelly KA, Sutcliffe JL. High-Throughput Approaches to the Development of Molecular Imaging Agents. Mol Imaging Biol 2017;19:163-82. [DOI: 10.1007/s11307-016-1016-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
85 [DOI: 10.1101/2020.10.13.337584] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]