BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sosnik A, Augustine R. Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them. Adv Drug Deliv Rev 2016;103:105-20. [PMID: 26772138 DOI: 10.1016/j.addr.2015.12.022] [Cited by in Crossref: 59] [Cited by in F6Publishing: 49] [Article Influence: 9.8] [Reference Citation Analysis]
Number Citing Articles
1 Faria MJ, Machado R, Ribeiro A, Gonçalves H, Real Oliveira MECD, Viseu T, das Neves J, Lúcio M. Rational Development of Liposomal Hydrogels: A Strategy for Topical Vaginal Antiretroviral Drug Delivery in the Context of HIV Prevention. Pharmaceutics 2019;11:E485. [PMID: 31540519 DOI: 10.3390/pharmaceutics11090485] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
2 Hasan MN, Hwang YH, An JM, Shahriar SMS, Cho S, Lee YK. Oral GLP1 Gene Delivery by an Antibody-Guided Nanomaterial to Treat Type 2 Diabetes Mellitus. ACS Appl Mater Interfaces 2020;12:38925-35. [PMID: 32805914 DOI: 10.1021/acsami.0c09814] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
3 Li Z, Lim J. Biodegradable polyhydroxyalkanoates nanocarriers for drug delivery applications. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1. Elsevier; 2018. pp. 607-34. [DOI: 10.1016/b978-0-08-101997-9.00026-6] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
4 Singh Chauhan P, Abutbul Ionita I, Moshe Halamish H, Sosnik A, Danino D. Multidomain drug delivery systems of β-casein micelles for the local oral co-administration of antiretroviral combinations. J Colloid Interface Sci 2021;592:156-66. [PMID: 33652169 DOI: 10.1016/j.jcis.2020.12.021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Florek J, Caillard R, Kleitz F. Evaluation of mesoporous silica nanoparticles for oral drug delivery - current status and perspective of MSNs drug carriers. Nanoscale. 2017;9:15252-15277. [PMID: 28984885 DOI: 10.1039/c7nr05762h] [Cited by in Crossref: 108] [Cited by in F6Publishing: 27] [Article Influence: 27.0] [Reference Citation Analysis]
6 Raina H, Kaur S, Jindal AB. Development of efavirenz loaded solid lipid nanoparticles: Risk assessment, quality-by-design (QbD) based optimisation and physicochemical characterisation. Journal of Drug Delivery Science and Technology 2017;39:180-91. [DOI: 10.1016/j.jddst.2017.02.013] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 6.6] [Reference Citation Analysis]
7 Yellepeddi VK, Ghandehari H. Poly(amido amine) dendrimers in oral delivery. Tissue Barriers 2016;4:e1173773. [PMID: 27358755 DOI: 10.1080/21688370.2016.1173773] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
8 Krieser K, Emanuelli J, Daudt RM, Bilatto S, Willig JB, Guterres SS, Pohlmann AR, Buffon A, Correa DS, Külkamp-Guerreiro IC. Taste-masked nanoparticles containing Saquinavir for pediatric oral administration. Mater Sci Eng C Mater Biol Appl 2020;117:111315. [PMID: 32919675 DOI: 10.1016/j.msec.2020.111315] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Porat D, Azran C, Mualem Y, Vainer E, Gibori R, Vaynshtein J, Dukhno O, Dahan A. Lamotrigine therapy in patients after bariatric surgery: Potentially hampered solubility and dissolution. Int J Pharm 2021;:121298. [PMID: 34793937 DOI: 10.1016/j.ijpharm.2021.121298] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Mantaj J, Abu-Shams T, Enlo-Scott Z, Swedrowska M, Vllasaliu D. Role of the Basement Membrane as an Intestinal Barrier to Absorption of Macromolecules and Nanoparticles. Mol Pharm 2018;15:5802-8. [PMID: 30380896 DOI: 10.1021/acs.molpharmaceut.8b01053] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
11 Raza A, Hayat U, Bilal M, Iqbal HM, Wang J. Zein-based micro- and nano-constructs and biologically therapeutic cues with multi-functionalities for oral drug delivery systems. Journal of Drug Delivery Science and Technology 2020;58:101818. [DOI: 10.1016/j.jddst.2020.101818] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
12 Wu D, Zhu L, Li Y, Zhang X, Xu S, Yang G, Delair T. Chitosan-based Colloidal Polyelectrolyte Complexes for Drug Delivery: A Review. Carbohydr Polym 2020;238:116126. [PMID: 32299572 DOI: 10.1016/j.carbpol.2020.116126] [Cited by in Crossref: 48] [Cited by in F6Publishing: 32] [Article Influence: 24.0] [Reference Citation Analysis]
13 Aggarwal N, Sachin, Nabi B, Aggarwal S, Baboota S, Ali J. Nano-based drug delivery system: a smart alternative towards eradication of viral sanctuaries in management of NeuroAIDS. Drug Deliv Transl Res 2021. [PMID: 33486689 DOI: 10.1007/s13346-021-00907-8] [Reference Citation Analysis]
14 Rehman A, Jafari SM, Tong Q, Riaz T, Assadpour E, Aadil RM, Niazi S, Khan IM, Shehzad Q, Ali A, Khan S. Drug nanodelivery systems based on natural polysaccharides against different diseases. Adv Colloid Interface Sci 2020;284:102251. [PMID: 32949812 DOI: 10.1016/j.cis.2020.102251] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 14.5] [Reference Citation Analysis]
15 Nabi B, Rehman S, Baboota S, Ali J. Insights on Oral Drug Delivery of Lipid Nanocarriers: a Win-Win Solution for Augmenting Bioavailability of Antiretroviral Drugs. AAPS PharmSciTech 2019;20:60. [PMID: 30623263 DOI: 10.1208/s12249-018-1284-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
16 Abu Elella MH, Hanna DH, Mohamed RR, Sabaa MW. Synthesis of xanthan gum/trimethyl chitosan interpolyelectrolyte complex as pH-sensitive protein carrier. Polym Bull . [DOI: 10.1007/s00289-021-03656-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Yellepeddi VK, Ghandehari H. Pharmacokinetics of oral therapeutics delivered by dendrimer-based carriers. Expert Opinion on Drug Delivery 2019;16:1051-61. [DOI: 10.1080/17425247.2019.1656607] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
18 Surve DH, Jirwankar YB, Dighe VD, Jindal AB. Long-Acting Efavirenz and HIV-1 Fusion Inhibitor Peptide Co-loaded Polymer–Lipid Hybrid Nanoparticles: Statistical Optimization, Cellular Uptake, and In Vivo Biodistribution. Mol Pharmaceutics 2020;17:3990-4003. [DOI: 10.1021/acs.molpharmaceut.0c00773] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
19 Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opinion on Drug Delivery 2017;15:93-114. [DOI: 10.1080/17425247.2017.1360863] [Cited by in Crossref: 59] [Cited by in F6Publishing: 47] [Article Influence: 11.8] [Reference Citation Analysis]
20 Bhutani U, Basu T, Majumdar S. Oral Drug Delivery: Conventional to Long Acting New-Age Designs. Eur J Pharm Biopharm 2021;162:23-42. [PMID: 33631319 DOI: 10.1016/j.ejpb.2021.02.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Augustine R, Hasan A, Primavera R, Wilson RJ, Thakor AS, Kevadiya BD. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Materials Today Communications 2020;25:101692. [DOI: 10.1016/j.mtcomm.2020.101692] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
22 Neves JD, Sarmento B, Sosnik A. Editorial: Biomedical Engineering Approaches for HIV/AIDS Prophylaxis, Diagnostics and Therapy. Adv Drug Deliv Rev 2016;103:1-4. [PMID: 27378403 DOI: 10.1016/j.addr.2016.06.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
23 Hu Q, Bae M, Fleming E, Lee J, Luo Y. Biocompatible polymeric nanoparticles with exceptional gastrointestinal stability as oral delivery vehicles for lipophilic bioactives. Food Hydrocolloids 2019;89:386-95. [DOI: 10.1016/j.foodhyd.2018.10.057] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 7.7] [Reference Citation Analysis]
24 Abdellatif AAH, Alsowinea AF. Approved and marketed nanoparticles for disease targeting and applications in COVID-19. Nanotechnology Reviews 2021;10:1941-77. [DOI: 10.1515/ntrev-2021-0115] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Pinto AM, Silva MD, Pastrana LM, Bañobre-López M, Sillankorva S. The clinical path to deliver encapsulated phages and lysins. FEMS Microbiol Rev 2021:fuab019. [PMID: 33784387 DOI: 10.1093/femsre/fuab019] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 García A, Priotti J, Codina AV, Vasconi MD, Quiroga AD, Hinrichsen LI, Leonardi D, Lamas MC. Synthesis and characterization of a new cyclodextrin derivative with improved properties to design oral dosage forms. Drug Deliv Transl Res 2019;9:273-83. [PMID: 30264285 DOI: 10.1007/s13346-018-0591-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
27 Raguraman V, Jayasri MA, Suthindhiran K. Magnetosome mediated oral Insulin delivery and its possible use in diabetes management. J Mater Sci Mater Med 2020;31:75. [PMID: 32761252 DOI: 10.1007/s10856-020-06417-2] [Reference Citation Analysis]
28 Rao MRP, Bhutada K, Kaushal P. Taste Evaluation by Electronic Tongue and Bioavailability Enhancement of Efavirenz. AAPS PharmSciTech 2019;20:56. [PMID: 30617434 DOI: 10.1208/s12249-018-1277-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
29 Vllasaliu D, Thanou M, Stolnik S, Fowler R. Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opin Drug Deliv 2018;15:759-70. [PMID: 30033780 DOI: 10.1080/17425247.2018.1504017] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 7.5] [Reference Citation Analysis]
30 Ghosal K, Augustine R, Zaszczynska A, Barman M, Jain A, Hasan A, Kalarikkal N, Sajkiewicz P, Thomas S. Novel drug delivery systems based on triaxial electrospinning based nanofibers. Reactive and Functional Polymers 2021;163:104895. [DOI: 10.1016/j.reactfunctpolym.2021.104895] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
31 Darbasizadeh B, Motasadizadeh H, Foroughi-nia B, Farhadnejad H. Tripolyphosphate-crosslinked chitosan/poly (ethylene oxide) electrospun nanofibrous mats as a floating gastro-retentive delivery system for ranitidine hydrochloride. Journal of Pharmaceutical and Biomedical Analysis 2018;153:63-75. [DOI: 10.1016/j.jpba.2018.02.023] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
32 Deng Y, Shen L, Yang Y, Shen J. Development of nanoparticle-based orodispersible palatable pediatric formulations. Int J Pharm 2021;596:120206. [PMID: 33493595 DOI: 10.1016/j.ijpharm.2021.120206] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Jamshidi M, Ziamajidi N, Abbasalipourkabir R, Khodadadi I, Moradi M, Dehghan A, Kalantarian G. Study the effect of insulin-loaded trimethylchitosan nanoparticles on HepG2 cell line. Gene Reports 2022;27:101602. [DOI: 10.1016/j.genrep.2022.101602] [Reference Citation Analysis]
34 Augustine R, Hasan A. Emerging applications of biocompatible phytosynthesized metal/metal oxide nanoparticles in healthcare. Journal of Drug Delivery Science and Technology 2020;56:101516. [DOI: 10.1016/j.jddst.2020.101516] [Cited by in Crossref: 24] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
35 Chen Z, Han S, Yang X, Xu L, Qi H, Hao G, Cao J, Liang Y, Ma Q, Zhang G, Sun Y. Overcoming Multiple Absorption Barrier for Insulin Oral Delivery Using Multifunctional Nanoparticles Based on Chitosan Derivatives and Hyaluronic Acid. Int J Nanomedicine 2020;15:4877-98. [PMID: 32753869 DOI: 10.2147/IJN.S251627] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Nie H, Zhang Y, Yu H, Xiao H, Li T, Yang Q. Oral delivery of carrier-free dual-drug nanocrystal self-assembled microspheres improved NAD+ bioavailability and attenuated cardiac ischemia/reperfusion injury in mice. Drug Deliv 2021;28:433-44. [PMID: 33605178 DOI: 10.1080/10717544.2021.1886198] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Mahajan K, Rojekar S, Desai D, Kulkarni S, Vavia P. Efavirenz Loaded Nanostructured Lipid Carriers for Efficient and Prolonged Viral Inhibition in HIV-Infected Macrophages. Pharm Sci 2021;27:418-32. [DOI: 10.34172/ps.2020.96] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Stuart-Walker W, Mahon CS. Glycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Adv Drug Deliv Rev 2021;171:77-93. [PMID: 33539854 DOI: 10.1016/j.addr.2021.01.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
39 Priotti J, Codina AV, Leonardi D, Vasconi MD, Hinrichsen LI, Lamas MC. Albendazole Microcrystal Formulations Based on Chitosan and Cellulose Derivatives: Physicochemical Characterization and In Vitro Parasiticidal Activity in Trichinella spiralis Adult Worms. AAPS PharmSciTech 2017;18:947-56. [PMID: 27882479 DOI: 10.1208/s12249-016-0659-z] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 4.6] [Reference Citation Analysis]
40 Gurumukhi VC, Bari SB. Quantification and Validation of Stability-Indicating RP-HPLC Method for Efavirenz in Bulk and Tablet Dosage Form using Quality by Design (QbD): A Shifting Paradigm. J Chromatogr Sci 2021:bmab061. [PMID: 34021559 DOI: 10.1093/chromsci/bmab061] [Reference Citation Analysis]
41 Hu Q, Luo Y. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int J Biol Macromol 2018;120:775-82. [PMID: 30170057 DOI: 10.1016/j.ijbiomac.2018.08.152] [Cited by in Crossref: 48] [Cited by in F6Publishing: 35] [Article Influence: 12.0] [Reference Citation Analysis]
42 Savage AC, Tatham LM, Siccardi M, Scott T, Vourvahis M, Clark A, Rannard SP, Owen A. Improving maraviroc oral bioavailability by formation of solid drug nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 2019;138:30-6. [DOI: 10.1016/j.ejpb.2018.05.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
43 Giaretta M, Bianchin MD, Kanis LA, Contri RV, Külkamp-guerreiro IC. Development of Innovative Polymer-Based Matricial Nanostructures for Ritonavir Oral Administration. Journal of Nanomaterials 2019;2019:1-10. [DOI: 10.1155/2019/8619819] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
44 Arzi RS, Kay A, Raychman Y, Sosnik A. Excipient-Free Pure Drug Nanoparticles Fabricated by Microfluidic Hydrodynamic Focusing. Pharmaceutics 2021;13:529. [PMID: 33920184 DOI: 10.3390/pharmaceutics13040529] [Reference Citation Analysis]
45 Rao MRP, Chaudhari J, Trotta F, Caldera F. Investigation of Cyclodextrin-Based Nanosponges for Solubility and Bioavailability Enhancement of Rilpivirine. AAPS PharmSciTech 2018;19:2358-69. [PMID: 29869305 DOI: 10.1208/s12249-018-1064-6] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 6.8] [Reference Citation Analysis]
46 Kang X, Chen H, Li S, Jie L, Hu J, Wang X, Qi J, Ying X, Du Y. Magnesium lithospermate B loaded PEGylated solid lipid nanoparticles for improved oral bioavailability. Colloids and Surfaces B: Biointerfaces 2018;161:597-605. [DOI: 10.1016/j.colsurfb.2017.11.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
47 Cong Y, Wu S, Han J, Chen J, Liu H, Sun Q, Wu Y, Fang Y. Pharmacokinetics of homoplantaginin in rats following intravenous, peritoneal injection and oral administration. Journal of Pharmaceutical and Biomedical Analysis 2016;129:405-9. [DOI: 10.1016/j.jpba.2016.07.034] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
48 Augustine R, Ashkenazi DL, Arzi RS, Zlobin V, Shofti R, Sosnik A. Nanoparticle-in-microparticle oral drug delivery system of a clinically relevant darunavir/ritonavir antiretroviral combination. Acta Biomater 2018;74:344-59. [PMID: 29723705 DOI: 10.1016/j.actbio.2018.04.045] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 8.5] [Reference Citation Analysis]
49 Faria MJ, Lopes CM, das Neves J, Lúcio M. Lipid Nanocarriers for Anti-HIV Therapeutics: A Focus on Physicochemical Properties and Biotechnological Advances. Pharmaceutics 2021;13:1294. [PMID: 34452255 DOI: 10.3390/pharmaceutics13081294] [Reference Citation Analysis]
50 Zhao C, Cai L, Nie M, Shang L, Wang Y, Zhao Y. Cheerios Effect Inspired Microbubbles as Suspended and Adhered Oral Delivery Systems. Adv Sci (Weinh) 2021;8:2004184. [PMID: 33854900 DOI: 10.1002/advs.202004184] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]