BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Samorezov JE, Alsberg E. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv Drug Deliv Rev 2015;84:45-67. [PMID: 25445719 DOI: 10.1016/j.addr.2014.11.018] [Cited by in Crossref: 84] [Cited by in F6Publishing: 72] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 V. K. AD, Ray S, Arora U, Mitra S, Sionkowska A, Jaiswal AK. Dual drug delivery platforms for bone tissue engineering. Front Bioeng Biotechnol 2022;10:969843. [DOI: 10.3389/fbioe.2022.969843] [Reference Citation Analysis]
2 Zhu M, Gu Y, Bian C, Xie X, Bai Y, Zhang N. Applications of Nonviral Biomaterials for microRNA Transfection in Bone Tissue Engineering. Front Mater 2022;9:932157. [DOI: 10.3389/fmats.2022.932157] [Reference Citation Analysis]
3 Zhang W, Wu Y, Chen Q, Zhang H, Zhou M, Chen K, Cao C, Guo H, Xu J, Liu H, Lin H, Liu C, Liu R. Statistic Copolymers Working as Growth Factor-Binding Mimics of Fibronectin. Adv Sci (Weinh) 2022;:e2200775. [PMID: 35570405 DOI: 10.1002/advs.202200775] [Reference Citation Analysis]
4 Gundu S, Varshney N, Sahi AK, Mahto SK. Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering. J Polym Res 2022;29. [DOI: 10.1007/s10965-022-02928-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Pearson JJ, Temenoff JS. Growth Factor Immobilization Strategies for Musculoskeletal Disorders. Curr Osteoporos Rep 2022. [PMID: 35118607 DOI: 10.1007/s11914-022-00718-x] [Reference Citation Analysis]
6 Jeon O, Kim TH, Alsberg E. Reversible dynamic mechanics of hydrogels for regulation of cellular behavior. Acta Biomater 2021;136:88-98. [PMID: 34563721 DOI: 10.1016/j.actbio.2021.09.032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Fang J, Wang D, Hu F, Li X, Zou X, Xie J, Zhou Z. Strontium mineralized silk fibroin porous microcarriers with enhanced osteogenesis as injectable bone tissue engineering vehicles. Mater Sci Eng C Mater Biol Appl 2021;128:112354. [PMID: 34474902 DOI: 10.1016/j.msec.2021.112354] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Yang X, Wang Y, Zhou Y, Chen J, Wan Q. The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021;13:2754. [PMID: 34451293 DOI: 10.3390/polym13162754] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
9 Xu X, Liao L, Tian W. Strategies of Prevascularization in Tissue Engineering and Regeneration of Craniofacial Tissues. Tissue Eng Part B Rev 2021. [PMID: 34191620 DOI: 10.1089/ten.teb.2021.0004] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Longoni A, Li J, Lindberg GCJ, Rnjak-Kovacina J, Wise LM, Hooper GJ, Woodfield TBF, Kieser DC, Lim KS. Strategies for inclusion of growth factors into 3D printed bone grafts. Essays Biochem 2021:EBC20200130. [PMID: 34156062 DOI: 10.1042/EBC20200130] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
11 Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y, Liu J, Wang Y, Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021;6:4110-40. [PMID: 33997497 DOI: 10.1016/j.bioactmat.2021.03.043] [Cited by in Crossref: 5] [Cited by in F6Publishing: 41] [Article Influence: 5.0] [Reference Citation Analysis]
12 Sordi MB, Cruz A, Fredel MC, Magini R, Sharpe PT. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. Mater Sci Eng C Mater Biol Appl 2021;124:112055. [PMID: 33947549 DOI: 10.1016/j.msec.2021.112055] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Raspa A, Carminati L, Pugliese R, Fontana F, Gelain F. Self-assembling peptide hydrogels for the stabilization and sustained release of active Chondroitinase ABC in vitro and in spinal cord injuries. Journal of Controlled Release 2021;330:1208-19. [DOI: 10.1016/j.jconrel.2020.11.027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
14 Li L, Liu X, Gaihre B, Li Y, Lu L. Mesenchymal stem cell spheroids incorporated with collagen and black phosphorus promote osteogenesis of biodegradable hydrogels. Mater Sci Eng C Mater Biol Appl 2021;121:111812. [PMID: 33579456 DOI: 10.1016/j.msec.2020.111812] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Minamihata K, Hamada Y, Kagawa G, Ramadhan W, Higuchi A, Moriyama K, Wakabayashi R, Goto M, Kamiya N. Dual-Functionalizable Streptavidin-SpyCatcher-Fused Protein-Polymer Hydrogels as Scaffolds for Cell Culture. ACS Appl Bio Mater 2020;3:7734-42. [PMID: 35019513 DOI: 10.1021/acsabm.0c00940] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
16 Godoy-Gallardo M, Portolés-Gil N, López-Periago AM, Domingo C, Hosta-Rigau L. Multi-layered polydopamine coatings for the immobilization of growth factors onto highly-interconnected and bimodal PCL/HA-based scaffolds. Mater Sci Eng C Mater Biol Appl 2020;117:111245. [PMID: 32919623 DOI: 10.1016/j.msec.2020.111245] [Cited by in Crossref: 10] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
17 Ferraris S, Yamaguchi S, Barbani N, Cristallini C, Gautier di Confiengo G, Barberi J, Cazzola M, Miola M, Vernè E, Spriano S. The mechanical and chemical stability of the interfaces in bioactive materials: The substrate-bioactive surface layer and hydroxyapatite-bioactive surface layer interfaces. Mater Sci Eng C Mater Biol Appl 2020;116:111238. [PMID: 32806332 DOI: 10.1016/j.msec.2020.111238] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
18 Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. Immobilization of Growth Factors for Cell Therapy Manufacturing. Front Bioeng Biotechnol 2020;8:620. [PMID: 32637403 DOI: 10.3389/fbioe.2020.00620] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
19 Javaid M, Haleem A. 3D printed tissue and organ using additive manufacturing: An overview. Clinical Epidemiology and Global Health 2020;8:586-94. [DOI: 10.1016/j.cegh.2019.12.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
20 Xu GP, Zhang XF, Sun L, Chen EM. Current and future uses of skeletal stem cells for bone regeneration. World J Stem Cells 2020; 12(5): 339-350 [PMID: 32547682 DOI: 10.4252/wjsc.v12.i5.339] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
21 Zhang Y, Yu T, Peng L, Sun Q, Wei Y, Han B. Advancements in Hydrogel-Based Drug Sustained Release Systems for Bone Tissue Engineering. Front Pharmacol 2020;11:622. [PMID: 32435200 DOI: 10.3389/fphar.2020.00622] [Cited by in Crossref: 7] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
22 Zhu L, Luo D, Liu Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci 2020;12:6. [PMID: 32024822 DOI: 10.1038/s41368-020-0073-y] [Cited by in Crossref: 82] [Cited by in F6Publishing: 139] [Article Influence: 41.0] [Reference Citation Analysis]
23 Ahmad T, Byun H, Lee J, Madhurakat Perikamana SK, Shin YM, Kim EM, Shin H. Stem cell spheroids incorporating fibers coated with adenosine and polydopamine as a modular building blocks for bone tissue engineering. Biomaterials 2020;230:119652. [PMID: 31787333 DOI: 10.1016/j.biomaterials.2019.119652] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
24 Hu Y, Zheng L, Zhang J, Lin L, Shen Y, Zhang X, Wu B. Dual delivery of bone morphogenetic protein-2 and basic fibroblast growth factor from nanohydroxyapatite/collagen for bone tissue engineering. Appl Biol Chem 2019;62. [DOI: 10.1186/s13765-019-0453-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Sultankulov B, Berillo D, Sultankulova K, Tokay T, Saparov A. Progress in the Development of Chitosan-Based Biomaterials for Tissue Engineering and Regenerative Medicine. Biomolecules 2019;9:E470. [PMID: 31509976 DOI: 10.3390/biom9090470] [Cited by in Crossref: 80] [Cited by in F6Publishing: 106] [Article Influence: 26.7] [Reference Citation Analysis]
26 Arriaga MA, Ding MH, Gutierrez AS, Chew SA. The Application of microRNAs in Biomaterial Scaffold-Based Therapies for Bone Tissue Engineering. Biotechnol J 2019;14:e1900084. [PMID: 31166084 DOI: 10.1002/biot.201900084] [Cited by in Crossref: 11] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
27 Rindone AN, Kachniarz B, Achebe CC, Riddle RC, O'Sullivan AN, Dorafshar AH, Grayson WL. Heparin-Conjugated Decellularized Bone Particles Promote Enhanced Osteogenic Signaling of PDGF-BB to Adipose-Derived Stem Cells in Tissue Engineered Bone Grafts. Adv Healthc Mater 2019;8:e1801565. [PMID: 30941920 DOI: 10.1002/adhm.201801565] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
28 Wulftange WJ, Rose MA, Garmendia-Cedillos M, da Silva D, Poprawski JE, Srinivasachar D, Sullivan T, Lim L, Bliskovsky VV, Hall MD, Pohida TJ, Robey RW, Morgan NY, Gottesman MM. Spatial control of oxygen delivery to three-dimensional cultures alters cancer cell growth and gene expression. J Cell Physiol 2019;234:20608-22. [PMID: 31012116 DOI: 10.1002/jcp.28665] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
29 Saravanan S, Vimalraj S, Thanikaivelan P, Banudevi S, Manivasagam G. A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. International Journal of Biological Macromolecules 2019;121:38-54. [DOI: 10.1016/j.ijbiomac.2018.10.014] [Cited by in Crossref: 69] [Cited by in F6Publishing: 54] [Article Influence: 23.0] [Reference Citation Analysis]
30 Koons GL, Mikos AG. Progress in three-dimensional printing with growth factors. J Control Release 2019;295:50-9. [PMID: 30579982 DOI: 10.1016/j.jconrel.2018.12.035] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
31 Mohammadi S, Ramakrishna S, Laurent S, Shokrgozar MA, Semnani D, Sadeghi D, Bonakdar S, Akbari M. Fabrication of Nanofibrous PVA/Alginate-Sulfate Substrates for Growth Factor Delivery: Fabrication of Nanofibrous PVA/Alginate-Sulfate Substrates for Growth Factor Delivery. J Biomed Mater Res 2019;107:403-13. [DOI: 10.1002/jbm.a.36552] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
32 Bao XG, Shi MC, Hou CL, Xu GH. Recent Progress in the Construction of Functional Artificial Bone by Cytokine-Controlled Strategies. Chin Med J (Engl) 2018;131:2599-604. [PMID: 30381594 DOI: 10.4103/0366-6999.244105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
33 Singh BN, Pramanik K. Generation of bioactive nano-composite scaffold of nanobioglass/silk fibroin/carboxymethyl cellulose for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition 2018;29:2011-34. [DOI: 10.1080/09205063.2018.1523525] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
34 Zhang K, Wang S, Zhou C, Cheng L, Gao X, Xie X, Sun J, Wang H, Weir MD, Reynolds MA, Zhang N, Bai Y, Xu HHK. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res. 2018;6:31. [PMID: 30374416 DOI: 10.1038/s41413-018-0032-9] [Cited by in Crossref: 101] [Cited by in F6Publishing: 128] [Article Influence: 25.3] [Reference Citation Analysis]
35 Canadas RF, Ren T, Marques AP, Oliveira JM, Reis RL, Demirci U. Biochemical Gradients to Generate 3D Heterotypic‐Like Tissues with Isotropic and Anisotropic Architectures. Adv Funct Mater 2018;28:1804148. [DOI: 10.1002/adfm.201804148] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 8.5] [Reference Citation Analysis]
36 Bittner SM, Guo JL, Mikos AG. Spatiotemporal Control of Growth Factors in Three-Dimensional Printed Scaffolds. Bioprinting 2018;12:e00032. [PMID: 31106279 DOI: 10.1016/j.bprint.2018.e00032] [Cited by in Crossref: 32] [Cited by in F6Publishing: 37] [Article Influence: 8.0] [Reference Citation Analysis]
37 Gadjanski I. Recent advances on gradient hydrogels in biomimetic cartilage tissue engineering. F1000Res 2017;6:F1000 Faculty Rev-2158. [PMID: 29333257 DOI: 10.12688/f1000research.12391.2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
38 Chen S, Li R, Li X, Xie J. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv Drug Deliv Rev 2018;132:188-213. [PMID: 29729295 DOI: 10.1016/j.addr.2018.05.001] [Cited by in Crossref: 188] [Cited by in F6Publishing: 147] [Article Influence: 47.0] [Reference Citation Analysis]
39 Xia H, Li X, Gao W, Fu X, Fang RH, Zhang L, Zhang K. Tissue repair and regeneration with endogenous stem cells. Nat Rev Mater 2018;3:174-93. [DOI: 10.1038/s41578-018-0027-6] [Cited by in Crossref: 69] [Cited by in F6Publishing: 67] [Article Influence: 17.3] [Reference Citation Analysis]
40 Luo J, Zhang H, Zhu J, Cui X, Gao J, Wang X, Xiong J. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Colloids Surf B Biointerfaces 2018;163:369-78. [PMID: 29335199 DOI: 10.1016/j.colsurfb.2017.12.043] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 5.6] [Reference Citation Analysis]
41 Gadjanski I. Recent advances on gradient hydrogels in biomimetic cartilage tissue engineering. F1000Res 2017;6:F1000 Faculty Rev-2158. [PMID: 29333257 DOI: 10.12688/f1000research.12391.2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
42 Dorati R, DeTrizio A, Modena T, Conti B, Benazzo F, Gastaldi G, Genta I. Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy. Pharmaceuticals (Basel) 2017;10:E96. [PMID: 29231857 DOI: 10.3390/ph10040096] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 12.6] [Reference Citation Analysis]
43 Lam J, Lee EJ, Clark EC, Mikos AG. Honing Cell and Tissue Culture Conditions for Bone and Cartilage Tissue Engineering. Cold Spring Harb Perspect Med 2017;7:a025734. [PMID: 28348176 DOI: 10.1101/cshperspect.a025734] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
44 Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 2018;3:278-314. [PMID: 29744467 DOI: 10.1016/j.bioactmat.2017.10.001] [Cited by in Crossref: 376] [Cited by in F6Publishing: 469] [Article Influence: 75.2] [Reference Citation Analysis]
45 Perikamana SKM, Shin YM, Lee JK, Lee YB, Heo Y, Ahmad T, Park SY, Shin J, Park KM, Jung HS, Cho S, Shin H. Graded functionalization of biomaterial surfaces using mussel-inspired adhesive coating of polydopamine. Colloids and Surfaces B: Biointerfaces 2017;159:546-56. [DOI: 10.1016/j.colsurfb.2017.08.022] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
46 Wu G, Feng C, Quan J, Wang Z, Wei W, Zang S, Kang S, Hui G, Chen X, Wang Q. In situ controlled release of stromal cell-derived factor-1α and antimiR-138 for on-demand cranial bone regeneration. Carbohydr Polym 2018;182:215-24. [PMID: 29279118 DOI: 10.1016/j.carbpol.2017.10.090] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 5.4] [Reference Citation Analysis]
47 Kuss MA, Wu S, Wang Y, Untrauer JB, Li W, Lim JY, Duan B. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture. J Biomed Mater Res B Appl Biomater 2018;106:1788-98. [PMID: 28901689 DOI: 10.1002/jbm.b.33994] [Cited by in Crossref: 48] [Cited by in F6Publishing: 61] [Article Influence: 9.6] [Reference Citation Analysis]
48 Bao X, Zhu L, Huang X, Tang D, He D, Shi J, Xu G. 3D biomimetic artificial bone scaffolds with dual-cytokines spatiotemporal delivery for large weight-bearing bone defect repair. Sci Rep 2017;7:7814. [PMID: 28798376 DOI: 10.1038/s41598-017-08412-0] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]
49 Möller-siegert J, Parmentier J, Laquerrière P, Ouadi A, Raisslé O, Jallot E, Nedelec J, Vix-guterl C, Anselme K. Physicochemical regulation of TGF and VEGF delivery from mesoporous calcium phosphate bone substitutes. Nanomedicine 2017;12:1835-50. [DOI: 10.2217/nnm-2017-0158] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
50 Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP. 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater 2017;56:3-13. [PMID: 28342878 DOI: 10.1016/j.actbio.2017.03.030] [Cited by in Crossref: 123] [Cited by in F6Publishing: 100] [Article Influence: 24.6] [Reference Citation Analysis]
51 Adepu S, Dhiman N, Laha A, Sharma CS, Ramakrishna S, Khandelwal M. Three-dimensional bioprinting for bone tissue regeneration. Current Opinion in Biomedical Engineering 2017;2:22-8. [DOI: 10.1016/j.cobme.2017.03.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 24] [Article Influence: 7.6] [Reference Citation Analysis]
52 Scaffaro R, Lopresti F, Maio A, Sutera F, Botta L. Development of polymeric functionally graded scaffolds: a brief review. J Appl Biomater Funct Mater 2017;15:e107-21. [PMID: 28009418 DOI: 10.5301/jabfm.5000332] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
53 Xiang Y, Oo NNL, Lee JP, Li Z, Loh XJ. Recent development of synthetic nonviral systems for sustained gene delivery. Drug Discov Today 2017;22:1318-35. [PMID: 28428056 DOI: 10.1016/j.drudis.2017.04.001] [Cited by in Crossref: 82] [Cited by in F6Publishing: 80] [Article Influence: 16.4] [Reference Citation Analysis]
54 Huynh CT, Zheng Z, Nguyen MK, Mcmillan A, Yesilbag Tonga G, Rotello VM, Alsberg E. Cytocompatible Catalyst-Free Photodegradable Hydrogels for Light-Mediated RNA Release To Induce hMSC Osteogenesis. ACS Biomater Sci Eng 2017;3:2011-23. [DOI: 10.1021/acsbiomaterials.6b00796] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 3.4] [Reference Citation Analysis]
55 Krishnan L, Priddy LB, Esancy C, Klosterhoff BS, Stevens HY, Tran L, Guldberg RE. Delivery vehicle effects on bone regeneration and heterotopic ossification induced by high dose BMP-2. Acta Biomater 2017;49:101-12. [PMID: 27940197 DOI: 10.1016/j.actbio.2016.12.012] [Cited by in Crossref: 76] [Cited by in F6Publishing: 72] [Article Influence: 15.2] [Reference Citation Analysis]
56 Rajan Unnithan A, Ramachandra Kurup Sasikala A, Park CH, Kim CS. A unique scaffold for bone tissue engineering: An osteogenic combination of graphene oxide–hyaluronic acid–chitosan with simvastatin. Journal of Industrial and Engineering Chemistry 2017;46:182-91. [DOI: 10.1016/j.jiec.2016.10.029] [Cited by in Crossref: 62] [Cited by in F6Publishing: 31] [Article Influence: 12.4] [Reference Citation Analysis]
57 Venkatesan J, Anil S, Kim SK, Shim MS. Chitosan as a vehicle for growth factor delivery: Various preparations and their applications in bone tissue regeneration. Int J Biol Macromol 2017;104:1383-97. [PMID: 28109812 DOI: 10.1016/j.ijbiomac.2017.01.072] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
58 Kuss MA, Harms R, Wu S, Wang Y, Untrauer JB, Carlson MA, Duan B. Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells. RSC Adv 2017;7:29312-20. [PMID: 28670447 DOI: 10.1039/c7ra04372d] [Cited by in Crossref: 32] [Cited by in F6Publishing: 41] [Article Influence: 6.4] [Reference Citation Analysis]
59 Addi C, Murschel F, De Crescenzo G. Design and Use of Chimeric Proteins Containing a Collagen-Binding Domain for Wound Healing and Bone Regeneration. Tissue Eng Part B Rev 2017;23:163-82. [PMID: 27824290 DOI: 10.1089/ten.TEB.2016.0280] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
60 Chen R, Wang J, Liu C. Biomaterials Act as Enhancers of Growth Factors in Bone Regeneration. Adv Funct Mater 2016;26:8810-23. [DOI: 10.1002/adfm.201603197] [Cited by in Crossref: 63] [Cited by in F6Publishing: 51] [Article Influence: 10.5] [Reference Citation Analysis]
61 Cattalini JP, Roether J, Hoppe A, Pishbin F, Haro Durand L, Gorustovich A, Boccaccini AR, Lucangioli S, Mouriño V. Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering. Biomed Mater 2016;11:065003. [PMID: 27767020 DOI: 10.1088/1748-6041/11/6/065003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
62 Newman MR, Benoit DS. Local and targeted drug delivery for bone regeneration. Curr Opin Biotechnol 2016;40:125-32. [PMID: 27064433 DOI: 10.1016/j.copbio.2016.02.029] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 7.8] [Reference Citation Analysis]
63 Nakasa T, Yoshizuka M, Andry Usman M, Elbadry Mahmoud E, Ochi M. MicroRNAs and Bone Regeneration. Curr Genomics 2015;16:441-52. [PMID: 27019619 DOI: 10.2174/1389202916666150817213630] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 4.2] [Reference Citation Analysis]
64 Landis WJ, Chubinskaya S, Tokui T, Wada Y, Isogai N, Jacquet R. Tissue engineering a human phalanx. J Tissue Eng Regen Med 2017;11:2373-87. [PMID: 26999523 DOI: 10.1002/term.2137] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
65 Cao F, Long Y, Wang S, Li B, Fan J, Zeng X, Zhang X. Fluorescence light-up AIE probe for monitoring cellular alkaline phosphatase activity and detecting osteogenic differentiation. J Mater Chem B 2016;4:4534-41. [DOI: 10.1039/c6tb00828c] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
66 Demirtaş TT, Göz E, Karakeçili A, Gümüşderelioğlu M. Combined delivery of PDGF-BB and BMP-6 for enhanced osteoblastic differentiation. J Mater Sci: Mater Med 2016;27. [DOI: 10.1007/s10856-015-5626-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
67 Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev 2015;94:126-40. [PMID: 25777059 DOI: 10.1016/j.addr.2015.03.004] [Cited by in Crossref: 141] [Cited by in F6Publishing: 131] [Article Influence: 20.1] [Reference Citation Analysis]
68 van Griensven M. Preclinical testing of drug delivery systems to bone. Adv Drug Deliv Rev 2015;94:151-64. [PMID: 26212157 DOI: 10.1016/j.addr.2015.07.006] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
69 Murschel F, Zaimi A, Noel S, Jolicoeur M, De Crescenzo G. Specific Adsorption via Peptide Tags: Oriented Grafting and Release of Growth Factors for Tissue Engineering. Biomacromolecules 2015;16:3445-54. [DOI: 10.1021/acs.biomac.5b00955] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
70 Auer JA, Grainger DW. Fracture management in horses: Where have we been and where are we going? The Veterinary Journal 2015;206:5-14. [DOI: 10.1016/j.tvjl.2015.06.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
71 Shalumon KT, Lai G, Chen C, Chen J. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core–Shell Nanofibrous Membranes. ACS Appl Mater Interfaces 2015;7:21170-81. [DOI: 10.1021/acsami.5b04962] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 9.1] [Reference Citation Analysis]
72 Zeugolis DI, Pandit A. Scaffolds, cells, biologics: At the crossroads of musculoskeletal repair. Adv Drug Deliv Rev 2015;84:v-vi. [PMID: 25596419 DOI: 10.1016/j.addr.2015.01.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]